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1 INTRODUCTION

1 Introduction

The following thesis is concerned with K-analytic topological spaces, and their applica-
tions in topology and functional analysis. A completely regular topological space is said
to be K-analytic if it is the image of the Baire space N under an upper semi-continuous
compact-valued map (see Definitions 3.1 and 4.1). The class of K-analytic spaces con-
tains the class of compact spaces as well as the class of Polish spaces.

In every K-analytic space X there exists a family of subsets (Aα)α∈N satisfying

(A) Aα is compact for every α ∈ N ,

(B) Aα ⊆ Aβ if α ≤ β, and

(C) X =
⋃
α∈N

Aα.

A central theorem of this paper examines under which conditions the existence of such
a family implies that a space is K-analytic (Theorem 5.5). This is certainly the case for
the class of angelic spaces (Definition 6.1), in which all notions of compactness coincide
(Proposition 6.4).

The main strength of K-analytic spaces in their application to topology and functional
analysis lies in the fact they are Lindelöf (Corollary 4.7). Thus implied is the separa-
bility of metrisable K-analytic spaces. Moreover, a metrisable space is K-analytic if and
only if it is analytic (Theorem 7.2.7). The following diagram summarises these relations,
wherein the dashed arrows only hold true for metrisable spaces.

Polish analytic separable

compact K-analytic

Lindelöf

After a thorough study of K-analytic spaces and their properties, we will show their ap-
plicability regarding the metrisability of compact topological spaces (Section 8), weakly
compactly generated Banach spaces (Section 9), Fréchet-Montel spaces (Section 10), and
inductive limits of separable Fréchet spaces (Section 11).

The majority of this thesis is based on Chapter 2 of ”A biased view of topology as a tool
in functional analysis” by Bernardo Cascales and José Orihuela [4]. Knowledge of the
basic concepts of topology and functional analysis is tacitly assumed up to the extent of
[2] and [3].
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2 BASIC DEFINITIONS AND OBSERVATIONS

2 Basic Definitions and Observations

For the sake of completeness we will state some basic definitions and properties of topo-
logical spaces. As in the following sections, we will not prove most of these commonly
known results, but refer to the lecture notes ”Analysis 3” by Martin Blümlinger [2], and
”Topologie” by Harald Woracek [20] instead.

2.1 Underlying Topological Concepts and Conventions

We want to recall the definitions of some classes of topological spaces that we are going
to use throughout this thesis.

Definition 2.1.1. Let (X, T ) be a topological space. It is said to be

• metrisable if there exists a metric d on X so that the topology Td induced by d
fulfils Td = T .

• completely metrisable, if there exists a complete metric d so that Td = T .

• separable if it contains a countable, dense subset.

• Polish if it is separable and completely metrisable.

• first-countable if every element x ∈ X has a countable basis of its neighbourhood
filter U(x).

• second-countable if X has a countable basis of its topology.

• Lindelöf if every cover of X consisting of open sets has a countable subcover.

For metrisable spaces we have the following equivalence whose proof may be found in
[6, Satz 1.32].

Proposition 2.1.2. Let X be a metrisable topological space. The following statements
are equivalent:

(i) X is separable.

(ii) X is second-countable.

(iii) X is Lindelöf.

Let us agree on the following notations:

By K(X) we denote the class of all non-empty compact subsets of a topological space
X. C(X) is the set of all continuous real-valued functions on X. For any x ∈ X its
neighbourhood filter is denoted by U(x). The powerset of a set S is being referred to
as P(S). If (X, ‖.‖) is a normed space, we write for the open and the closed unit ball
U1(0) := {x ∈ X : ‖x‖ < 1} and K1(0) := {x ∈ X : ‖x‖ ≤ 1}, respectively.
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2 BASIC DEFINITIONS AND OBSERVATIONS

2.2 Separation Axioms

In topological spaces points and subsets may be separated by open sets, or by continuous
functions. The following definitions represent a not exhaustive list of separation axioms:

Definition 2.2.1. A topological space (X, T ) is said to satisfy the separation axiom

(T1) if

∀x, y ∈ X,x 6= y∃Ox, Oy ∈ T : (x ∈ Ox ∧ y ∈ Oy) ∧ (y /∈ Ox ∧ x /∈ Oy)

(T2), or is called Hausdorff if

∀x, y ∈ X,x 6= y∃Ox, Oy ∈ T : (x ∈ Ox ∧ y ∈ Oy) ∧ (Ox ∩Oy = ∅)

(T3 1
2
) if

∀x ∈ X,B ⊆ X closed, x /∈ B ∃f : X → [0, 1] continuous :

f(x) = 1 ∧ f(B) = {0}

(T4) if

∀A,B ⊆ X closed, A ∩B = ∅ ∃OA, OB ∈ T :

(A ⊆ OA ∧B ⊆ OB) ∧ (OA ∩OB = ∅)

(T4 1
2
) if

∀A,B ⊆ X closed, A ∩B = ∅ ∃f : X → [0, 1] continuous :

f(A) = {1} ∧ f(B) = {0}

A topological space is called completely regular if it satisfies both (T1) and (T3 1
2
), and

normal if it satisfies both (T1) and (T4).

Lemma 2.2.2. A topological space X is (T1) if and only if for every x ∈ X the set {x}
is closed.

Proof. Take x ∈ X. Assuming that X is T1, we find an open neighbourhood Oy ∈ U(y)
with x /∈ Oy for every y 6= x. Now, X \ {x} =

⋃
{Oy : y 6= x} is open. Conversely,

Ox := X \ {y}, and Oy := X \ {x} are separating open subsets for any x 6= y.

Remark 2.2.3. Note that every completely regular space is Hausdorff: Because of
(T1), singleton sets are closed. By (T3 1

2
) we therefore find a continuous function f with

f(x) = 1 and f(y) = 0 for every x 6= y . We obtain Hausdorff by using f−1([0, 1
2)) and

f−1((1
2 , 1]) as separating open sets.
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3 THE BAIRE SPACE

Compact subsets K of a Hausdorff space X are closed: If we fix x ∈ X \K and take any
y ∈ K we find disjoint open sets Oy, Uy so that x ∈ Oy and y ∈ Uy. Since {Uy : y ∈ K}
is an open cover of K, we find finitely many yi ∈ K with K ⊆

⋃n
i=1 Uyi . The set

U :=
⋂n
i=1 Uyi is an open neighbourhood of x, which is disjoint from K. Therefore,

X \K must be open.

The following theorems characterise (T4)-spaces.

Proposition 2.2.4. A topological space X is (T4) if and only if for subsets E ⊆ O ⊆ X
with E closed and O open, there exists an open set U ⊆ X so that E ⊆ U ⊆ U ⊆ O.

Theorem 2.2.5 (Urysohn’s Lemma). A topological space is (T4) if and only if it is
(T4 1

2
).

For the proofs we refer to [2, Proposition 1.6.1 and Satz 1.6.2].

3 The Baire Space

The Baire space is a powerful object in set theory, and will play an important role
in our disquisition on K-analytic sets. We will cover some of its numerous interesting
properties.

Definition 3.1. The Baire space is the space N := NN of all sequences of natural
numbers endowed with the product topology of the discrete topology on N.

Note that sets of the form(
N∏
i=1

{ni}

)
×

( ∞∏
i=N+1

N

)
with ni, N ∈ N (1)

form a basis of the topology on N .

For α = (an)n∈N ∈ N , and m ∈ N we will write

α|m := (a1, a2, . . . , am).

Given sequences α = (an)n∈N and β = (bn)n∈N in N we define

α ≤ β :⇔ an ≤ bn for all n ∈ N.

Proposition 3.2. The Baire space N is homeomorphic to the countable product of
copies of itself.

Proof. Let h : N× N→ N and g : N→ N× N : n 7→ (g1(n), g2(n)) be homeomorphisms
so that h ◦ g = idN. We define Φ : NN → N by

Φ(f) :

{
N → N
n 7→ f(g1(n))(g2(n))

5



3 THE BAIRE SPACE

Φ is injective: For any f 6= f̃ ∈ NN there exist n, k ∈ N so that f(n)(k) 6= f̃(n)(k).
Since g is surjective, we find m ∈ N with g(m) = (g1(m), g2(m)) = (n, k) and therefore
Φ(f) 6= Φ(f̃).

Φ is surjective: Consider the map Ψ : N → NN with

Ψ(a)(n) :

{
N→ N
m 7→ a ◦ h(n,m)

For a ∈ N and n ∈ N we get

Φ ◦Ψ(a)(n) = Ψ(a)(g1(n))(g2(n)) = a ◦ h(g1(n), g2(n)) = a(n).

Thus, Φ has a right inverse.

Φ is a homeomorphism: Since N is endowed with the discrete topology, any sequence is
continuous. Therefore, both Φ and the inverse Ψ are continuous, being compositions of
continuous functions.

Lemma 3.3. The Baire space N is Polish.

Proof. N with the discrete topology is metrisable, and

d(n,m) :=

{
1 if n = m

0 if n 6= m

metrises its topology. The metric d is complete as a sequence in N is Cauchy if and only
if it is eventually constant. Trivially, N is separable. Therefore, the product space N is
separable, and completely metrisable.

Remark 3.4. It can be shown that the Baire space N is homeomorphic to the set of
irrational numbers with the subspace topology inherited by the Euklidian topology on R
[9, Exercise 3.4]. However, note that the set of irrationals is not completely metrisable.
This points out that complete metrisability is a quality of the metric, rather than of the
topology.

Theorem 3.5. [14, Theorem 1A.1.] For every non-empty Polish space X there exists a
continuous surjection f : N → X.

Proof. Let Y = {yn : n ∈ N} be a countable dense subset of X, and d be a compatible
complete metric on X . For each α = (an)n∈N ∈ N we define a sequence (xαn)n∈N by the
recursion

xα1 := ya1

xαn+1 :=

{
yan+1 if d(xαn, yan+1) < 2−n,

xαn else.
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4 K-ANALYTIC SPACES

By definition, we get that d(xαn, x
α
n+1) < 2−n for every n ∈ N. Therefore,

d(xαn, x
α
m) ≤

m−1∑
k=n

d(xαk , x
α
k+1) ≤

m−1∑
k=n

(
1

2

)k
for any n < m ∈ N. For all ε > 0 there exists N ∈ N so that for all n,m ≥ N it holds
that

d(xαn, x
α
m) ≤

∞∑
k=N

(
1

2

)k
< ε,

thus (xαn)n∈N is Cauchy in X. Because of the completeness of d, it converges, and we
can set

f :

{
N → X

α 7→ lim
n→∞

xαn.

For α, β ∈ N , and n ∈ N with α|n = β|n we clearly have xαn = xβn. Again, using the
triangle inequality, we get

d(f(α), f(β)) ≤ d(f(α), xαn) + d(xβn, f(β)) ≤ 2
∞∑
k=n

(
1

2

)k
=

(
1

2

)n−2

.

Since the sets in (1) are a basis of the topology on N , we have hereby shown the conti-
nuity of f .

For an arbitrary x ∈ X we assign an := min
{
k ∈ N : d(x, yk) <

(
1
2

)n+1
}

. This is well-

defined, since Y is dense in X. Because of

d(yan , yan+1) ≤ d(yan , x) + d(x, yan+1) < 2−(n+1) + 2−(n+2) < 2−n,

the sequence defined by α := (an)n∈N ∈ N gives f(α) = lim
n→∞

yan = x.

4 K-Analytic Spaces

This section is devoted to examine some general properties of K-analytic spaces. In
particular, we show that every K-analytic space is Lindelöf, which will prove useful in
later applications.

In what follows, we will assume that all topological spaces are completely regular.

If T : X → P(Y ) is a set-valued map, for every A ⊆ X we set

T (A) :=
⋃
a∈A

T (a),
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4 K-ANALYTIC SPACES

Definition 4.1. Let (X, T ) and (Y,V) be topological spaces. A set-valued map T : X →
P(Y ) is called upper semi-continuous if for every α ∈ X and U ∈ V with T (α) ⊆ U
there exists an open neighbourhood V ∈ U(α) so that T (V ) ⊆ U .

Definition 4.2. A topological space (X, T ) is said to be K-analytic if there exists an
upper semi-continuous compact-valued map T : N → K(X) so that T (N ) = X.

Remark 4.3. Clearly, every compact topological space X is K-analytic, since we can
simply choose T (α) = X for all α ∈ N .

Lemma 4.4. Let X = T (N ) be a K-analytic space and K ∈ K(N ). Then T (K) is a
compact subset of X.

Proof. Let (Vi)i∈I be an open cover of T (K). Since for all α ∈ K we have that T (α) ⊆⋃
i∈I Vi, and T (α) is compact by assumption, we find nα ∈ N and i1 . . . inα ∈ I so that

T (α) ⊆
⋃nα
k=1 Vik =: Wα. Because of the upper semi-continuity of T , we can choose

an open neighbourhood Uα of α with T (Uα) ⊆ Wα. By compactness of K, we get
K ⊆

⋃m
j=1 Uαj , and therefore obtain a finite subcover

T (K) ⊆
m⋃
j=1

T (Uαj ) ⊆
m⋃
j=1

Wαj =

m⋃
j=1

nα⋃
k=1

Vik .

K-analytic spaces are stable under the following actions:

Proposition 4.5. [18, Theorems 2.5.1, 2.5.5] Closed subspaces, compact-valued upper
semi-continuous images, and countable products of K-analytic spaces are K-analytic.

Proof.
(i) Let (X, T ) with X = T (N ), T upper semi-continuous and compact-valued, be a
K-analytic space, and A be a closed subset of X. We define

T̃ :

{
N → P(A)

α 7→ T (α) ∩A.

Since compact subsets of a Hausdorff-space are closed, and subsets of a topological
space are compact if and only if they are compact with respect to the induced topology,
T (α) ∩A is – being a closed subset of the compact set T (α) – itself compact in A. The
map T̃ is therefore compact-valued. We have that

T̃ (N ) =
⋃
α∈N

T̃ (α) =
⋃
α∈N

(T (α) ∩A) = (
⋃
α∈N

T (α)) ∩A = X ∩A = A.

In order to prove the upper semi-continuity of T̃ as map to A endowed with the induced
topology TA, fix α ∈ N , and an open subset U ∈ TA that contains T̃ (α). By definition
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4 K-ANALYTIC SPACES

of the induced topology, we find O ∈ T so that U = O ∩ A. Since T is upper semi-
continuous, we find an open neighbourhood V ∈ U(α) , whose image is contained in O.
We obtain T̃ (V ) = T (V ) ∩A ⊆ O ∩A = U , hence T̃ is upper semi-continuous.

(ii) Let X = T (N ) be a K-analytic space, Y a topological space, and F : X → K(Y ) a
compact-valued upper semi-continuous map. By Lemma 4.4, F (K) is compact for every
K ∈ K(X). Therefore, as T (α) is compact in X for every α ∈ N , the composition T ◦F is
a compact-valued map fromN to F (X). Since

⋃
α∈N F ◦T (α) = F (

⋃
α∈N T (α)) = F (X)

we only need to show that F ◦ T is upper semi-continuous. Let α ∈ N , and let U be an
open subset of F (X) with F ◦T (α) ⊆ U . As F is upper semi-continuous, we find and open
neighbourhood V ∈ U(T (α)) with F (V ) ⊆ U . As T is upper semi-continuous we can
choose an open set W containing α with T (W ) ⊆ V , and we get F ◦T (W ) ⊆ F (V ) ⊆ U .

(ii) For i ∈ N let Xi = Ti(N ) be K-analytic spaces, and consider the product X :=
∏
i∈N

Xi

endowed with the product topology. We define

T :

N
N → K(X)

(α(i))i∈N 7→
∏
i∈N

Ti(α(i)).

By Tychonoff’s Theorem, the product
∏
i∈N Ti(α(i)) is compact in the product topology,

so T is well-defined. We have

X =
∏
i∈N

Xi =
∏
i∈N

⋃
α(i)∈N

Ti(α(i)) =
⋃

α∈NN

∏
i∈N

Ti(α(i)) =

=
⋃

α∈NN

T ((α(i))i∈N) = T (NN).

Since by Proposition 3.2, NN is homeomorphic to N , and the composition of an upper
semi-continuous function with a continuous function is upper semi-continuous, it suffices
to show that T is upper semi-continuous. So, let (α(i))i∈N be a sequence in N , and
U ⊆ X be an open set with T ((α(i))i∈N) ⊆ U .

If T ((α(i))i∈N) = ∅, there exists j ∈ N so that Tj(α(j)) = ∅. Applying the upper semi-
continuity of Tj , we find an open neighbourhood V ⊆ N of α(j) with Tj(V ) = ∅. Using
basic open sets as in (1), we can find m ∈ N with Vm := {β ∈ N : β|m = α(j)|m} ⊆ V .
W := {(β(i))i∈N ∈ NN : β(j) ∈ Vm} is an open neighbourhood of (α(i))i∈N in NN with
T (W ) = ∅.

Now suppose T ((α(i))i∈N) 6= ∅. Because of its compactness, T ((α(i))i∈N) is covered by
a finite union of basic open sets that are contained in U . This allows us to pick N ∈ N,

9



4 K-ANALYTIC SPACES

and an open set UN ⊆
∏N
i=1Xi with

T ((α(i))i∈N) ⊆ UN ×

( ∞∏
i=N+1

Xi

)
⊆ U.

In particular, we get that
∏N
i=1 Ti(α(i)) ⊆ UN . As all Ti(α(i)) are compact in Xi, we find

open subsets UN,i of Xi with Ti(α(i)) ⊆ UN,i for every 1 ≤ i ≤ N , and
∏N
i=1 UN,i ⊆ UN .

Now, since Ti are upper semi-continuous, we again choose mi ∈ N with Ti(Vmi) ⊆ UN,i,
where Vmi := {β ∈ N : β|mi = α(i)|mi} as above. With

W := {(β(i))i∈N ∈ NN : β(i) ∈ Vmi for 1 ≤ i ≤ N}

we have found an open neighbourhood of (α(i))i∈N that fulfils

T (W ) ⊆

(
N∏
i=1

UN,i

)
×

( ∞∏
i=1

Xi

)
⊆ UN ×

( ∞∏
i=N+1

Xi

)
⊆ U.

Proposition 4.6. Let (X, T ) and (Y,V) be topological spaces, and T : X → K(Y ) be a
surjective compact-valued upper semi-continuous map. If (X, T ) is Lindelöf, then so is
(Y,V).

Proof. Let (Ui)i∈I be an open cover of Y = T (X). In particular, for every x ∈ X the
compact set T (x) is covered by (Ui)i∈I , and we find a finite subcover, say T (x) ⊆

⋃nx
i=1 Ui.

As T is upper semi-continuous, we find an open neighbourhood Vx ∈ U(x), whose image
T (Vx) is still contained in the finite union. As X is Lindelöf, we may choose a sequence
(xn)n∈N in X with X =

⋃
n∈N Vxn . We obtain

Y = T (X) ⊆
⋃
n∈N

T (Vxn) ⊆
⋃
n∈N

nx⋃
i=1

Ui,

which is a countable subcover as required.

Corollary 4.7. [18, Theorem 2.7.1] K-analytic spaces are Lindelöf.

Proof. N is a second-countable space because it is the countable product of the countable
space N. Every second-countable space is Lindelöf.

We are now going to single out three properties that every K-analytic space has.

For each α ∈ N the set {β ∈ N : β ≤ α} is a compact subset of N : A subset of
a discrete topological space is compact if and only if it is finite. Therefore, the set
{bn ∈ N : bn ≤ an} is compact for every n ∈ N. By Tychonoff’s Theorem, the product∏
n∈N{bn ∈ N : bn ≤ an} = {β ∈ N : β ≤ α} is compact in the product topology.
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5 CONSTRUCTION OF K-ANALYTIC SPACES

Recall that by Lemma 4.4, the image of any compact subset ofN under a compact-valued
upper semi-continuous map T is always compact. For a K-analytic space X = T (N )
and α ∈ N we define

Aα := T ({β ∈ N : β ≤ α}),

and obtain

(A) Aα is compact for every α ∈ N ,

(B) Aα ⊆ Aβ if α ≤ β, and

(C) X =
⋃
α∈N

Aα.

(2)

5 Construction of K-Analytic Spaces

One may ask if any topological space that contains a family {Aα : α ∈ N} of compact
subsets satisfying conditions (A), (B), and (C) from above is K-analytic. In general, the
answer is no. However, in the following section we will examine under which additional
requirements the converse still holds.

Definition 5.1. Given a sequence χ = (xn)n∈N in a topological space X, we define the
set of all cluster points of χ in X as

clustX(χ) :=
⋂
n∈N
{xm : m ≥ n}.

Lemma 5.2. Let X be a topological space and χ = (xn)n∈N be a sequence in X. A point
x ∈ X is cluster point of χ if and only if for all V ∈ U(x) it holds that

|V ∩ {xn : n ∈ N}| = ℵ0.

Proof. ”⇒” Take any V ∈ U(x). If x ∈ clustX(χ), we have that x ∈ {xm : m ≥ n} for
all n ∈ N. Therefore, V ∩ {xm : m ≥ n} 6= ∅ for every n ∈ N. Denote by mn ≥ n the
smallest index so that xmn ∈ V ∩ {xm : m ≥ n}. Clearly, |V ∩ {xnV : n ∈ N}| = ℵ0.

”⇐” For every n ∈ N and for every V ∈ U(x) there exists m ≥ n so that xm ∈ V .
Therefore, x ∈ {xm : m ≥ n} for every n. Thus, x is a cluster point.

Definition 5.3. Let A be a subset of a topological space X.

(i) A is said to be relatively countably compact if for every sequence χ in A the set
clustX(χ) is not empty.

11



5 CONSTRUCTION OF K-ANALYTIC SPACES

(ii) A is called countably compact if for every sequence χ in A the set clustX(χ)∩A is
not empty.

Given a sequence α = (an)n∈N ∈ N , and n ∈ N, we define

Cαn :=
⋃
β∈N
{Aβ : β|n = α|n}

Let us state a practical lemma:

Lemma 5.4. If α = (an)n∈N ∈ N , and χ = (xn)n∈N is a sequence in X that satisfies
xn ∈ Cαn for every n ∈ N, it holds that

∅ 6= clustX(χ) ⊆
⋂
n∈N

Cαn .

Proof. By definition of Cαn , we may choose βn ∈ N for each n ∈ N that fulfils xn ∈ Aβn
and βn|n = α|n. Let πn : N → N be the projection onto the n-th coordinate, and set

bn := max
k≤n

πn(βk).

We consider the sequence β := (bn)n∈N.

In order to see that clustX(χ) 6= ∅, note that because of condition (B), and βn ≤ β
for every n ∈ N, we get Aβn ⊆ Aβ, which is compact by condition (A). χ is therefore
entirely contained in the compact set Aβ. Recall that subset of a topological space is
compact if and only if every net in the subset has a cluster point within the subset.
Hence, clustX(χ) 6= ∅.

Observe that π1(β) = a1, and consequently clustX(χ) ⊆ Aβ ⊆ Cα1 . Now pick any
m ∈ N, and consider the sequence χm := (xn)n≥m. Clearly, clustX(χ) = clustX(χm)
and βn|m = α|m for n ≥ m. If we repeat the argument above, we obtain clust(χm) ⊆ Cαm
and therefore clustX(χ) ⊆

⋂
m∈NC

α
m.

We can now show in which circumstances the existence of a family satisfying conditions
(A), (B), and (C) from (2) is sufficient to guarantee K-analyticity.

Theorem 5.5. [4, Proposition 1] Let X be a topological space that contains a family
{Aα : α ∈ N} of subsets satisfying conditions (A), (B), and (C) from (2). Let T be the
following mapping:

T :

N → P(X)

α 7→
⋂
n∈N

Cαn

(i) For every α ∈ N the set T (α) ⊆ X is countably compact.

12



6 ANGELIC SPACES

(ii) If T (α) is compact for every α ∈ N , T makes X a K-analytic space.

Proof.
(i) The statement follows immediately from Lemma 5.4, as any sequence (xn)n∈N in T (α)
fulfils xn ∈ Cαn for all n ∈ N. Therefore, for every α ∈ N we have that every sequence in
T (α) admits cluster points, all of which remain in T (α), and T (α) is countably compact.

(ii) Assume that T is compact-valued. Since Aα ⊆ T (α) for every α ∈ N we have
T (N ) ⊇

⋃
α∈N Aα = X, the last equality being justified by condition (C). It is only left

to show that T is upper semi-continuous.

So, pick α = (an)n∈N ∈ N , and an open U ⊆ X that contains the image T (α). If for
every n ∈ N there existed xn ∈ Cn \ U , the sequence defined by χ := (xn)n∈N would
fulfil clust(χ) ⊆ X \ U ⊆ X \ T (α) in contradiction to item (i). Therefore, we are able
to choose m ∈ N with Cαm ⊆ U . V := {β ∈ N : β|m = α|m} is a basic open set that
contains α. Since n ≤ k implies Cαn ⊇ Cαk , we get

T (V ) =
⋃
β∈V

T (β) =
⋃
β∈V

⋂
n∈N

Cβn =

=
⋃
β∈V

 ⋂
n≤m

Cαn

 ∩( ⋂
n>m

Cβn

) ⊆
⊆
⋃
β∈V

 ⋂
n≤m

Cαn

 ∩ Cβm
 = Cαm ⊆ U.

As X is now the image of N under the compact-valued upper semi-continuous map T ,
it is a K-analytic space.

6 Angelic Spaces

If the mapping T as defined in Theorem 5.5 is compact-valued, it creates a K-analytic
structure on the topological space. Additionally, we showed that T (α) is countably
compact for every α ∈ N . In angelic spaces the assumption of T being compact-valued
may be omitted, as all concepts of compactness coincide.

Definition 6.1. A topological space X is said to be angelic if for every relatively count-
ably compact subset A ⊆ X it holds that

(i) A is relatively compact, and

(ii) for every x ∈ Ā there exists a sequence in A, which converges to x.

13



6 ANGELIC SPACES

In what follows it will be useful to complete Definition 5.3 with equivalent conditions.

Lemma 6.2. Let X be a topological space. The following conditions are equivalent:

(i) Every countable open cover of X has a finite subcover.

(ii) Every countable family of closed subsets that has the finite intersection property
has non-empty intersection.

(iii) Every sequence in X has a cluster point in X, i.e. X is countably compact as
defined in Definition 5.3.

Proof.
(i)⇒ (ii) Let (Cn)n∈N be a family of closed subsets, whose finite intersections are non-
empty. Suppose

⋂
n∈NCn = ∅. It follows that

⋃
n∈NC

C
n = X. By (i) there exists a finite

subset E with
⋃
n∈E C

C
n = X, or equivalently

⋂
n∈E Cn = ∅ in contradiction to the finite

intersection property.

(ii)⇒ (i) Let {Un : n ∈ N} be an open cover of X. If there did not exist a finite subcover,
we would get

⋂
n∈E U

C
n 6= ∅ for every finite E. Hence,

⋂
n∈N U

C
n 6= ∅ in contradiction to

{Un : n ∈ N} being a cover of X.

(i)⇒ (iii) Let (xn)n∈N be a sequence in X, and define Cn := {xm : m ≥ n}. The family
(Cn)n∈N is a family of closed subsets that fulfil the finite intersection property. Using
the equivalence (i)⇔ (ii) we obtain

⋂
n∈NCn 6= ∅, hence the existence of a cluster point.

(iii) ⇒ (i) Let {Un : n ∈ N} be an open cover of X. If there did not exist a finite
subcover, we could choose xn ∈

⋂n
k=1 U

C
k for every n ∈ N. For every x ∈ X there exists

N ∈ N so that x ∈ UN . By our choice of the sequence, we obtain xn ∈ UCN for all n ≥ N .

Therefore, {xn : n ≥ N} ⊆ UCN , so x is not a cluster point. Since x was arbitrary, the
proof is finished.

Recall the following definition:

Definition 6.3. A subset A of a topological space X is sequentially compact if every
sequence in A has a convergent subsequence with limit in A.

It is well known that compactness, countable compactness, and sequential compactness
coincide in metric spaces. The significance of angelic spaces is that the compactness
behaviour of metric spaces carries over:

Proposition 6.4. [7] Let X be an angelic space and A be any subset of X. Then the
following statements are equivalent:

(i) A is compact.

(ii) A is countably compact.

14



6 ANGELIC SPACES

(iii) A is sequentially compact.

Proof. We carry out the proof in two steps. First, we show that every sequence (xn)n∈N
in X with cluster point x has a subsequence converging to x if {xn : n ∈ N} is a relatively
compact set. As a second step, we will use this property to prove the equivalence of the
statements made in the Proposition.

(1) Let (xn)n∈N be a sequence in X, x be a cluster point of the sequence, and suppose
that the set Y := {xn : n ∈ N} is relatively compact. If there exist infinitely many
n ∈ N with xn = x, we have found a subsequence converging to x. Hence, without loss
of generality we assume that xn 6= x for all n ∈ N. As x ∈ Ȳ , by the definition of angelic
spaces, we obtain a sequence (yk)k∈N in Y that converges to x. For every k ∈ N pick
nk ∈ N so that yk = xnk . The sequence (xnk)k∈N is now a subsequence of (xn)n∈N that
converges to x.

(2) (i)⇒ (ii) It generally holds that every compact set is countably compact. This can
easily be seen with Lemma 6.2.

(iii)⇒ (ii) This implication is also clear, since the limit of a convergent subsequence is
a cluster point of the sequence.

(ii) ⇒ (iii) Let (xn)n∈N be a sequence in A with cluster point x ∈ A. As the set
Y := {xn : n ∈ N} is a subset of A, and A is countably compact, every sequence Y has
a cluster point in A. Therefore, Y is relatively countably compact. As X is angelic, Y
is relatively compact. By (1), the sequence admits a subsequence converging to x.

(ii) ⇒ (i) Clearly, A being countably compact implies it being relatively countably
compact. By the definition of angelic spaces, A is relatively compact, and for every
x ∈ Ā we may take a sequence (xn)n∈N in A that converges to x. As x is the only cluster
point of the sequence, and A is countably compact, x must in fact be an element of A.
Hence, A = Ā is compact.

Combining Proposition 6.4 and Theorem 5.5, we immediately obtain the following corol-
lary:

Corollary 6.5. An angelic space X is K-analytic if and only if there exists a family
{Aα : α ∈ N} of subsets that satisfy conditions (A), (B), and (C) from (2).

In general, only the implications (i)⇒ (ii) and (iii)⇒ (ii) in Proposition 6.4 hold. For
example, by the Theorem of Banach-Alaoglu 9.1.7, the closed unit ball in (`∞)′ is com-
pact with respect to the weak∗-topology, but it is not sequentially compact. Otherwise,
if there existed a convergent subsequence (enk)k∈N of the sequence of all unit vectors,
the sequence

(enk(ξ))k∈N = (ξnk)k∈N

15



6 ANGELIC SPACES

would converge for every ξ = (ξn)n∈N ∈ `∞ [7, page 8].

An example for a space that is countably compact but not compact is the first uncount-
able ordinal with the order topology, see [19, Part II, Section 39]. However, in all second
countable spaces compactness is equivalent to countable compactness, as are countable
compactness and sequential compactness in first countable spaces ([19, Part I, Section 3].

Figure 1 summarises the relations between compactness and the countability axioms.

Figure 1: Countability Axioms and Compactness [19]

In [7, Chapter 3] many examples of angelic spaces are given. These include

• metric spaces,

• metrisable locally convex spaces (therefore, in particular Banach spaces) in their
weak topology,

• subspaces of RN with a locally convex topology finer than the topology of pointwise
convergence in their weak topology,

• strict inductive limits of Fréchet spaces in their weak topology (see section 11.1),

• the space Cp(X,Y ) of all continuous functions from a separable topological space
X into a metric space Y equipped with the topology of pointwise convergence,

• Cp(X,R) for K-analytic (therefore, in particular for compact) spaces X [17],

• subspaces of angelic spaces, and

• the domain X of any continuous injective function Φ : X → Y into an angelic
space Y if it is completely regular.
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7 ANALYTIC METRISABLE SPACES

7 Analytic Metrisable Spaces

Analytic spaces are continuous images of Polish spaces. We will show that K-analyticity
is equivalent to analyticity in all metrisable spaces. In particular, we obtain that the
class of K-analytic spaces contains the class of Polish spaces.

7.1 Preliminaries

The following section contains preparatory work for the proof of Theorem 7.2.7.

Definition 7.1.1. Let (X, T ) be a topological space. A compactification of (X, T ) is a
triple (Y,V, ι), where

(i) (Y,V) is a compact topological space,

(ii) ι : X → Y is an embedding i.e. its corestriction ι̃ : X → ι(X) is a homeomorphism
of (X, T ) onto (ι(X),V|ι(X)), and

(iii) ι(X) is dense in (Y,V).

Theorem 7.1.2 (Urysohn’s Metrisability Theorem). Let X be a completely regular topo-
logical space. If X is second-countable, then it is metrisable.

For the proof of Urysohn’s Metrisability Theorem we refer to [20, Corollary 3.3.3].

Proposition 7.1.3. Let X be a separable metrisable space. Then X has a metrisable
compactification.

Proof. Let {xn : n ∈ N} be a countable dense subset of X, and d be a compatible metric
on X. Without loss of generality we can assume that d(x, y) ≤ 1 for all x, y ∈ X. We
set

ι :

{
X → [0, 1]N

x 7→ (d(x, xn))n∈N

If endowed with the product topology, [0, 1]N is a compact metrisable Hausdorff space.
It’s topology is induced by

d′(x, y) := sup
n∈N

1

n
|πn(x)− πn(y)|,

where πn : [0, 1]N → X denotes the canonical projection. ι(X) is a compact Hausdorff
space with the induced topology, hence normal and in particular completely regular.
Being a subspace of the countable product of the second-countable space [0, 1], it is also
second-countable. By Urysohn’s Metrisation Theorem 7.1.2, ι(X) is metrisable.

It is only left to show that ι is an embedding. For x 6= y there exists n ∈ N with
d(x, xn) ≤ 1

3d(x, y). Therefore, ι is injective. For every n ∈ N the composition πn ◦ ι is
continuous, hence ι is continuous. Take a convergent sequence (ι(xm))m∈N in ran(X).

17



7 ANALYTIC METRISABLE SPACES

We have (ι(xm))m∈N → ι(x) if and only if d(xm, xn) → d(x, xn) for all n ∈ N. Given
ε > 0 choose n ∈ N with d(x, xn) < ε

2 and M ∈ N with d(xm, xn) < ε
2 for all m ≥ M .

It follows d(xm, x) ≤ d(xm, xn) + d(x, xn) < ε for all m ≥M , hence xm → x. Thus, ι is
homeomorphism onto ι(X).

7.2 K-Analyticity of Analytic Metrisable Spaces

In order to proof the equivalence of K-analyticity and analyticity in metrisable spaces,
we will make use of different approaches to analytic sets.

Definition 7.2.1. A topological space is called analytic if it is the continuous image
of a Polish space. A subset of a topological space is analytic if it is analytic with the
induced topology.

Remark 7.2.2. Clearly, analytic spaces are separable, being continuous images of sep-
arable spaces.

Definition 7.2.3. [11, page 30] Let R := {Aα|n : α ∈ N , n ∈ N} be a systems of sets,
which are defined for every finite sequence α|n = (a1, . . . , an) of natural numbers. The
A -operation on R is defined by

A (R) :=
⋃
α∈N

⋂
n∈N

Aα|n

Lemma 7.2.4. Let X be a Polish space, and A ⊆ X. The following statements are
equivalent:

(i) A is analytic.

(ii) A is a continuous image of the Baire space N .

(iii) A is the projection of a closed subset of N ×X onto X.

Proof.
(i)⇒ (ii) : This is the conclusion of Theorem 3.5.

(ii)⇒ (iii) : Let f : N → A be a continuous surjection. As A is Hausdorff, graph(f) is
a closed subset of N ×X. It’s projection onto X is equal to A.

(iii) → (i) : N ×X is Polish, so every closed subset of N ×X is also Polish. Let S be
the closed subset N ×X which projects onto A. The projection onto X is continuous.
Thus, A is the continuous image of the Polish space S.

Lemma 7.2.5. Let X be a Polish space. If R := {Aα|n : α ∈ N , n ∈ N} consists of
closed subsets of X, then A (R) is analytic.

18



7 ANALYTIC METRISABLE SPACES

Proof. Clearly, x ∈ A (R) ⇔ ∃α ∈ N : x ∈ Aα|n for all n ∈ N. We therefore define a
relation S ⊆ N ×X by

(α, x) ∈ S :⇔ (∀n ∈ N : x ∈ Aαn).

Let ((αk, xk))k∈N be a sequence in S converging to (α, x). As (αk)k∈N → α, and the
topology on N is the product topology of the discrete topology on N, for every n ∈ N
there exists N ∈ N so that for all k ≥ N we have πn(αk) = πn(α). Therefore, for all
n ∈ N we have that xk ∈ Aα|n for all sufficiently large k. As Aα|n is closed, we obtain
x ∈ Aα|n for every n ∈ N, hence (α, x) ∈ S, and S is closed. It’s projection onto X is
equal to A (R). By Lemma 7.2.4, A (R) is analytic.

Remark 7.2.6. Actually, the converse is also true, see for example [11, §38, IX, The-
orem 4]. The original definition of analytic sets introduced by Andrei Suslin used this
characterisation. The A -operation is also called Suslin operation. It is a widely used
tool in descriptive set theory. For more information we refer to [9, Chapter III].

Theorem 7.2.7. [13, Theorem 2.3] A metrisable space is analytic if and only if it is
K-analytic.

Proof.
”⇒” Let X be a metrisable space, and T : N → X be a continuous surjection. For every
α ∈ N we set Aα := T ({β ∈ N : β ≤ α}). As {β ∈ N : β ≤ α} is a compact subset of
N , and T is continuous, Aα is compact for every α ∈ N , and we have found a family
of subsets satisfying conditions (A), (B), and (C) from (2). In a metrisable space every
countably compact subset is compact. Theorem 5.5 now gives us that X is K-analytic.

”⇐” Let {Aα : α ∈ N} be a family of subsets of X satisfying (A), (B), and (C) from
(2). By Corollary 4.7, X is Lindelöf, and therefore second-countable with Proposition
2.1.2. By Proposition 7.1.3, there exists a metrisable compactification (Y,V) of X. For
every α ∈ N and n ∈ N we set

Bα|n :=
⋃

β|n=α|n

Aβ
V
.

As compact metrisable spaces are always separable and complete, Y is a Polish Space.
Note that in particular Y is second-countable. By Lemma 7.2.5,

A ({Bα|n : α ∈ N , n ∈ N})

is analytic.

Clearly, X ⊆
⋃
α∈N

⋂
n∈NBα|n . For the converse suppose x ∈

⋂
n∈NBα|n for some

α ∈ N . Let {Un : n ∈ N} be a countable neighbourhood base for x ∈ Y satisfying
Un+1 ⊆ Un. By definition, for every n ∈ N there exists βn ∈ N with βn|n = α|n and
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8 METRISABILITY OF COMPACT TOPOLOGICAL SPACES

yn ∈ Aβn ∩ Un. For all k ∈ N we have πk(βn)→ πk(α), hence βn → α. Let γ = (cn)n∈N
be defined by

cn := max{πn(βk) : 1 ≤ k ≤ n}.

Then βn ≤ γ for all n ∈ N, which implies
⋃
n∈NAβn ⊆ Aγ , as well as yn ∈ Aγ for every

n ∈ N. Aγ is compact, and therefore closed. Because of yn → x, we obtain x ∈ Aγ ⊆ X.
We have now shown that X = A ({Bα|n : α ∈ N , n ∈ N}) is analytic, and the proof is
complete.

Corollary 7.2.8. Every Polish space is K-analytic.

As mentioned above, analytic sets form a very rich class in descriptive set theory. It
can be shown that analytic sets are Lebesgue measurable. Any Borel set is analytic, but
analytic sets need to be Borel. An example for a non-borelian analytic set is the set of
all closed uncountable sets in the space of closed subsets of the interval [0, 1], see for
example [11, §39].

8 Metrisability of Compact Topological Spaces

Theorem 5.5 gives topological spaces a K-analytic structure provided that the mapping
T is compact-valued. Making assumptions on the diagonal of a compact space K, we
can show that this is the case for the space C(K) of all real-valued continuous functions
on K. As a consequence, given a compact topological space, we will establish a couple
of conditions that are equivalent to the property of it being metrisable.

8.1 Preliminaries

The metrisability of a compact topological space K is linked to topological properties of
C(K).

Proposition 8.1.1. Let K be a compact topological space. Then K is metrisable if and
only if (C(K), ‖.‖)∞ is separable.

For the proof we will make use of the following theorem, whose proof can be found in
[2, Satz 1.5.2].

Theorem 8.1.2 (Stone-Weierstraß). Let K be a compact space, and A a point separating
algebra of continuous real-valued functions on K that vanishes nowhere. Then A is dense
in (C(K), ‖.‖)∞.

Proof of Proposition 8.1.1. Let d be a metric that metrises the topology on K. As
all compact metrisable spaces are separable, we may choose a countable dense subset
Y = (yn)n∈N. For every n ∈ N we define the continuous function

fn :

{
K → R
x 7→ d(x, yn).
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The family F := {fn : n ∈ N} is a countable subset of C(K). In order to see that it
is point separating, take any x 6= z ∈ K and choose n ∈ N with d(x, yn) ≤ 1

3d(x, z).
Clearly, d(x, yn) = fn(x) 6= fn(z) = d(z, yn). If K consists of more than one point, F
vanishes nowhere (if there is only one point, C(K) is equal to R, and therefore separable).

For a finite subset M of N we write FM :=
∏
n∈M fn. Let An be the set of all functions

f that can be written as

f =
N∑
i=1

qiFMi with qi ∈ Q, N ∈ N, Mi ⊆ {1, . . . , n}

By Stone-Weierstraß, the algebra defined by A :=
⋃
n∈NAn is dense in C(K). For

n,m ∈ N and qi ∈ Q, Mi ⊆ N as before, the set defined by

Amn :=

{
f ∈ An : f =

m∑
i=1

qiFMi

}
is countable. Since An =

⋃
m∈NAmn , we get that for every n ∈ N the set An is countable.

Thus implied is the countability of A. Therefore, C(K) is separable.

Conversely, let F be a countable dense subset of C(K). The family

B := {f−1((a, b)) : f ∈ F , a, b ∈ Q with a < b}

is countable and consists of open subsets of K. Let O ⊆ K be an arbitrary open set and
pick x ∈ U . Since {x}, as well as K \O are closed, using Urysohn’s Lemma 2.2.5 we find
a continuous function g : K → [0, 1] so that g(x) = 0 and g(K \O) = {1}. Clearly, g is
also continuous as function from K to R. As F is dense in C(K), we find f ∈ F that
satisfies ‖f − g‖∞ < 1

4 . Now, f−1((−1
2 ,

1
2)) ⊆ g−1([0, 3

4)) is an open neighbourhood of
x that is contained in U . Thus, B is a countable basis of the topology on K. Applying
Urysohn’s Metrisability Theorem 7.1.2, we receive that K is indeed metrisable.

We will also make use of the well-known theorem of Arzelà-Ascoli.

Definition 8.1.3. Let Φ be a family of real-valued functions on a topological space
(X, T ).

(i) Φ is called pointwise bounded if for all x ∈ X the set {|f(x)| : f ∈ Φ} is bounded
in R.

(ii) Φ is called equicontinuous if for all x ∈ X and ε > 0 there exists a neighbourhood
V ∈ U(x) so that |f(x)− f(z)| < ε for all z ∈ V and f ∈ Φ.

Theorem 8.1.4 (Arzelà-Ascoli). Let K be a compact topological space. A family of
continuous real-valued functions is totally bounded in (C(K), ‖.‖∞) if and only if it is
pointwise bounded and equicontinuous.

For the proof of the theorem of Arzelá-Ascoli we refer for example to [2, Satz 1.5.1].
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8.2 Application of K-Analyticity

The core of our study of metrisable compact spaces is Theorem 8.2.3. Preliminary work
includes the provision of conditions under which C(K) is K-analytic.

We want to introduce a new notion:

Definition 8.2.1. We say that a family F of compact subsets of a topological space
X swallows all compact subsets of X if for every K ∈ K(X) there exists F ∈ F with
K ⊆ F .

Let K be a topological space. We endow the product space K × K with its product
topology, and denote its diagonal by

∆ := {(x, x) : x ∈ K}.

Note that the diagonal of a Hausdorff-space K is always closed: For any x 6= y ∈ K
choose disjoint open neighbourhoods Ox ∈ U(x), and Oy ∈ U(y). Then Ox × Oy is an
open subset of K ×K that is disjoint from ∆. Therefore, (K ×K) \∆ is open.

If the diagonal of a compact topological space K holds certain properties, the mapping
T defined in Theorem 5.5 gives the space (C(K), ‖.‖∞) a K-analytic structure:

Proposition 8.2.2. Let K be a compact topological space, and {Aα : α ∈ N} be a family
of compact sets in (K ×K). If

(i) (K ×K) \∆ =
⋃
{Aα : α ∈ N},

(ii) Aα ⊆ Aβ for every α ≤ β, and

(iii) {Aα : α ∈ N} swallows all compact subsets of (K ×K) \∆,

then (C(K), ‖.‖∞) is a K-analytic space.

Proof. For every α ∈ N we define Oα := (K ×K) \Aα. Since every Aα is compact, and
therefore closed, all Oα are open sets. Let U ∈ U(∆) be an open neighbourhood of the
diagonal ∆. Being a closed subset of a compact space, its complement (K ×K) \ U is
compact, and is therefore swallowed by some Aα. We receive

U ⊇ (K ×K) \Aα = Oα.

Because of condition (i), Oα contains ∆, and we have shown that O := {Oα : α ∈ N} is
a basis of the neighbourhood filter of ∆.

If α ≤ β, condition (ii) implies Oα ⊇ Oβ. Given a sequence α = (an)n∈N ∈ N , and

m ∈ N we write α|m := (an)n≥m. We name B
‖.‖∞
r := {f ∈ C(K) : ‖f‖∞ < r}. Now

look at the family of functions defined by

Bα :=

{
f ∈ B‖.‖∞a1 : |f(x)− f(y)| ≤ 1

m
if (x, y) ∈ Oα|m for m ∈ N

}
.
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For each fixed α ∈ N the family Bα clearly is pointwise bounded. Pick any x ∈ X,
ε > 0, and choose m ∈ N with 1

m < ε. Since Oα|m is an open neighbourhood of ∆, we
find a neighbourhood V ∈ U(x) so that for all y ∈ V the tuple (x, y) is still contained
in Oα|m . By definition of Bα, we have |f(x) − f(y)| ≤ 1

m < ε for all y ∈ V . Thus, Bα
is equicontinuous. By the theorem of Arzelà-Ascoli, the family Bα is totally bounded.
Since it is closed, and C(K) is complete, it is compact in (C(K), ‖.‖∞).

We will now show that C(K) =
⋃
α∈N Bα. As the converse is clear, we only show that for

every f ∈ C(K) there exists α ∈ N such that f ∈ Bα. Choose M ∈ N with ‖f‖∞ ≤M .
Because O is a basis of the neighbourhood filter of ∆, for every m ∈ N we find a sequence
αm = (amn )n∈N so that if (x, y) ∈ Oαm , it follows that |f(x)− f(y)| ≤ 1

m . We put

a1 := max{a1
1,M}, and

an := max{a1
n, a

2
n−1, . . . , a

n
1} for n > 1.

With α := (an)n∈N we have found a sequence so that f ∈ Bα because for all m ∈ N we
get αm ≤ α|m, and therefore Oα|m ⊆ Oαm .

We have obtaind that (A) Bα is compact for every α ∈ N , and (C)
⋃
{Bα : α ∈ N} =

C(K). Clearly, also (B) α ≤ β implies that Bα ⊆ Bβ. Therefore, the family {Bα : α ∈
N}meets the assumptions of Theorem 5.5. As in metric spaces the concepts of countably
compactness and compactness coincide, by Theorem 5.5 item (ii), (C(K), ‖.‖∞) is a K-
analytic space.

The metrisability of a compact space K is not only equivalent to C(K) being separable,
but also to conditions of its own diagonal. The centrepiece of this section is to examine
those equivalences.

Theorem 8.2.3. [4, Theorem 2] Let K be a compact space. The following statements
are equivalent:

(i) K is metrisable.

(ii) (C(K), ‖.‖∞) is separable.

(iii) ∆ is a Gδ subset of K ×K, i.e. ∆ is the countable intersection of some open sets.

(iv) There exists a countable basis {Gn : n ∈ N} of open neighbourhoods of ∆ so that
∆ =

⋂
n∈NGn.

(v) There exists a countable family {Fn : n ∈ N} of compact subsets of (K ×K) \∆
with the property that Fn ⊆ Fm for any n ≤ m, and (K ×K) \∆ ⊆

⋃
n∈N Fn.

(vi) There exists a countable family {Fn : n ∈ N} of compact subsets of K × K that
swallows all the compact subsets of (K ×K) \∆, and (K ×K) \∆ ⊆

⋃
n∈N Fn.
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8 METRISABILITY OF COMPACT TOPOLOGICAL SPACES

(vii) There exists a family {Aα : α ∈ N} of compact subsets of K×K with the property
that it swallows all the compact subsets of (K ×K) \∆, it holds that Aα ⊆ Aβ for
any α ≤ β, and (K ×K) \∆ ⊆

⋃
n∈N Fn.

(viii) (K ×K) \∆ is Lindelöf.

Proof.
(i)⇔ (ii) This equivalence has been proved in Proposition 8.1.1.

(i) ⇒ (iii) Let d be a metric on K that induces the topology. For n ∈ N we define the
open set

Gn :=

{
{x, y} ∈ K ×K : d(x, y) <

1

n

}
,

and obtain ∆ =
⋂
n∈NGn.

(iii)⇒ (iv) First, note that every compact completely regular space (K, T ) is (T4): Take
two disjoint closed sets A,B ⊆ K. For any a ∈ A the singleton set {a} is closed, because
of (T1). With (T3), we find disjoint open sets Oa, Ua with a ∈ Oa and B ⊆ Ua. Being
a closed subset of a compact space, A is itself compact, and we find a finite number of
ai ∈ A so that A ⊆

⋃n
i=1Oai =: OA ∈ T . By OB :=

⋂n
i=1 Uai we have an open cover of

B that satisfies OA ∩OB = ∅.

Assume that ∆ =
⋃
n∈NGn with Gn ⊆ K×K open. The product space K×K endowed

with the product topology is a compact and completely regular space. Using Proposition
2.2.4, for every n ∈ N we find an open set Un ⊆ K ×K so that ∆ ⊆ Un ⊆ Un ⊆ Gn. We
define

On :=
n⋂
k=1

Uk.

Because of ∆ ⊆
⋂
n∈NOn ⊆

⋂
n∈NOn ⊆

⋂
n∈NGn = ∆ we have

∆ =
⋂
n∈N

On =
⋂
n∈N

On.

Consider an arbitrary open neighbourhood U ∈ U(∆), and the decreasing sequence
(Cn)n∈N defined by

Cn := On ∩ ((K ×K) \ U) .

Clearly, each Cn is closed. Recall that any intersection of a decreasing family of closed
subsets of a compact topological space is non-empty (see for instance [2, Satz 1.4.2]).
Therefore, if Cn was non-empty for all n ∈ N, we would have

⋂
n∈NCn 6= ∅, implying

∆ ∩ ((K ×K) \ U) =

(⋂
n∈N

On

)
∩ ((K ×K) \ U) 6= ∅.
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8 METRISABILITY OF COMPACT TOPOLOGICAL SPACES

This, however, contradicts the choice of U ⊇ ∆. Thus, for every open subset U contain-
ing ∆ there exists n ∈ N with On ⊆ On ⊆ U . We have hereby shown that {On : n ∈ N}
is a basis of the neighbourhood filter of ∆.

(iv)⇒ (iii) Obvious.

(iii)⇒ (v) If ∆ =
⋂
n∈NGn with Gn ⊆ K ×K open, the subsets

G̃n :=

n⋃
k=1

Gn

form a decreasing family of open subset while still satisfying ∆ =
⋂
n∈N G̃n. As the sets

Fn := (K×K)\ G̃n are closed subsets of a compact space, they are themselves compact,
and we have found an increasing family of compact sets with (K ×K) \∆ ⊆

⋃
n∈N Fn.

(v) ⇒ (iii) Obvious by setting Gn := (K × K) \ Fn, and using the fact that compact
subsets of a Hausdorff-space are closed.

(iv) ⇒ (vi) The subsets Fn := (K × K) \ Gn are closed, and therefore compact. Let
C ⊆ (K ×K) \∆ be compact. Then (K ×K) \ C is an open subset containing ∆. As
{Gn : n ∈ N} is a basis of open neighbourhoods, we find n ∈ N with Gn ⊆ (K ×K) \ C
or, equivalently, C ⊆ Fn.

(vi)⇒ (iv) Same argument as (iv)⇒ (vi).

(vi)⇒ (vii) For α = (an)n∈N ∈ N set Aα := Fa1 .

(vii)⇒ (ii) In Proposition 8.2.2 we have shown that if statement (vii) holds, (C(K), ‖.‖∞)
is K-analytic. By Corollary 4.7, every K-analytic space is Lindelöf. Since (C(K), ‖.‖∞)
is a metric space, and by Lemma 2.1.2 a metric space is Lindelöf if and only if it is
separable, it follows that (C(K), ‖.‖∞) is separable.

We have now shown that all statements from (i) to (vii) are equivalent.

(v) ⇒ (viii) By assumption, (K × K) \ ∆ is σ-compact i.e. has a countable cover
consisting of compact subsets. Let O = {Oi : i ∈ I} be an open cover of (K ×K) \∆ =⋃
n∈N Fn. In particular, O covers every compact Fn. For every n ∈ N let In be a finite

subset of I with Fn ⊆
⋃
k∈In Ok. We obtain

(K ×K) \∆ ⊆
⋃
n∈N

⋃
k∈In

Ok.

Thus, O admits a countable subcover, and (K×K)\∆ is Lindelöf (as is every σ-compact
topological space).
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9 WEAKLY COMPACTLY GENERATED BANACH SPACES

(viii) ⇒ (iii) Take any x, y ∈ K with x 6= y. Since {(x, y)} is closed, and contained in
the open set (K ×K) \∆, by Lemma 2.2.4 we find an open set Ux,y with

(x, y) ∈ Ux,y ⊆ Ux,y ⊆ (K ×K) \∆.

As {Ux,y : (x, y) ∈ (K ×K) \∆} is an open cover of (K ×K) \∆, which is Lindelöf by
assumption, we may choose countably many tuples (xn, yn) := (x, y)n ∈ (K × K) \ ∆
with

(K ×K) \∆ =
⋃
n∈N

Uxn,yn =
⋃
n∈N

Uxn,yn

Consequently, ∆ =
⋂
n∈N(K ×K) \ Uxn,yn is a Gδ set.

9 Weakly Compactly Generated Banach Spaces

According to Section 6, all Banach spaces are angelic in their weak topology. The aim of
the following section is to find a family of sets in a weakly compactly generated Banach
space so that Corollary 6.5 implies the space being K-analytic in its weak topology.

9.1 Preliminaries

We are going to sketch some of the most fundamental concepts used in functional analy-
sis, including topological vector spaces, special subsets of such, dual spaces, weak topolo-
gies, and some powerful properties of the latter. For a more thorough treatise on those
topics we refer to [3].

Definition 9.1.1. Let X be a vector space over the field C of all complex numbers. Let
T be a topology on X. We call (X, T ) topological vector space if the mapping

+ :

{
X ×X → X

(x, y) 7→ x+ y

is T × T -to-T continuous, and

· :

{
C×X → X

(λ, x) 7→ λx

is E ×T -to-T continuous (E denotes the Euklidean topology on C). We will furthermore
assume that all topological vector spaces are Hausdorff.

In particular, all normed spaces are topological vector spaces if endowed with the topol-
ogy induced by the norm.

Definition 9.1.2. A subset A of a vector space X is called

(i) convex if for all x, y ∈ A and t ∈ [0, 1] it holds that tx+ (1− t)y ∈ A.
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9 WEAKLY COMPACTLY GENERATED BANACH SPACES

(ii) balanced if for all x ∈ A and λ ∈ C with |λ| ≤ 1 it holds that λx ∈ A, or equivalently

A =
⋃
|λ|≤1

λA.

(iii) absolutely convex if A is both convex and balanced.

For a subset A ⊆ X we denote the convex hull (balanced hull), that is the the smallest
(with respect to ⊆) convex (balanced) subset of X that contains A, by co(A) (bal(A)).
Clearly, bal(A) =

⋃
|λ|≤1 λA.

The following lemma summarises some straightforward facts about convex and balanced
sets.

Lemma 9.1.3.

(i) A ⊆ X is convex if and only if for all x1, . . . , xn ∈ A and λ1, . . . , λn ≥ 0 such that∑n
i=1 λi = 1 also

∑n
i=1 λixi ∈ A.

(ii) A ⊆ X is absolutely convex if and only if for all m ∈ N, x1, . . . , xn ∈ A and
λ1, . . . , λn ∈ C with

∑n
i=1 |λi| ≤ m it holds that

∑n
i=1 λixi ∈ mA.

(iii) The closure of a convex (balanced) set it convex (balanced).

(iv) The balanced hull of a compact set is compact.

(v) The convex hull of a balanced set is absolutely convex.

Proof.

(i) For n = 1 the statement is clear. Now assume that the claim holds for n−1 and that
λi > 0 for all i. Let c :=

∑n−1
i=1 λi. Since

∑n−1
i=1

λi
c = 1 and therefore y :=

∑n−1
i=1

λi
c xi ∈ A

by assumption, it follows that

n∑
i=1

λixi = c
n−1∑
i=1

λi
c
xi + λnxn = cy + (1− c)xn ∈ A.

As the definition of convexity is the case n = 2, the converse of the statement is clear.

Note that it now follows that

co(E) =

{
n∑
i=1

λixi : n ∈ N, xi ∈ A, λi ∈ [0, 1],
n∑
i=1

λi = 1

}
. (3)

(ii) Let A ⊆ X be an absolutely convex set and m = 1. Define c := 1 −
∑n

i=1 λi ≥ 0
and ci := c

n , i.e.
∑n

i=1 |λi|+ ci = 1. Again assuming λi 6= 0 for all i, we have | λi
|λi|+ci | ≤ 1
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9 WEAKLY COMPACTLY GENERATED BANACH SPACES

and therefore, since A is balanced, yi := λi
|λi|+cixi ∈ A. Because of the convexity of A,

we now obtain

n∑
i=1

λixi =
n∑
i=1

(|λi|+ ci)
λi

|λi|+ ci
xi =

n∑
i=1

(|λi|+ ci)yi ∈ A.

By induction,
∑n

i=1 λixi ∈ mA for all m ∈ N. The converse of the statement is clear.

(iii) Let A be any subset of X. Because the vector space operations are continuous,
we have that αĀ + βĀ ⊆ αA+ βA for any α, β ∈ C. If we choose α, β ∈ [0, 1] with
α + β = 1 for the convex case, and |α| ≤ 1, β = 0 for the balanced case, we obtain
αĀ+ βĀ ⊆ αA+ βA ⊆ Ā, and therefore the desired statement.

(iv) Let A be a compact subset. K1 := {λ ∈ C : |λ| ≤ 1} is compact. As bal(A) = K1 ·A
is the image of a compact set under a continuous function, it is itself compact.

(v) Let A ⊆ X be balanced, x ∈ co(A), and λ ∈ C with |λ| ≤ 1. By definition of
the convex hull, we find a, b ∈ A, and t ∈ [0, 1] so that x = ta + (1 − t)b. Since A is
balanced, we obtain λx = t(λa) + (1− t)(λb) ∈ co(A). Therefore, co(A) is both convex
and balanced, hence absolutely convex.

By cobal(A) we denote the absolutely convex hull of a subset A. Note, that with Lemma
9.1.3 (v) we have shown that cobal(A) = co(bal(A)). However, cobal(A) 6= bal(co(A))
in general.

Definition 9.1.4. Let X be a vector space over the field C and Y be a point-separating
linear subspace of its algebraic dual space X∗, that is the space of all linear functionals
f : X → C. The weak topology on X induced by Y is the coarsest topology X making
all f ∈ Y continuous. It is denoted by σ(X,Y ).

A topological vector space is called locally convex if there exists a neighbourhood basis
of 0 consisting of convex sets. Note that all normed spaces (X, ‖.‖) are locally convex, as
the open balls Uε(0) := {x ∈ X : ‖x‖ < ε} with ε > 0 form a basis of the neighbourhood
filter of 0. For a locally convex topological vector space X its dual space X ′, that is
the space of all continuous linear functionals from X into the base field C, is a point-
separating subspace of the algebraic dual space X∗ [3, Korollar 5.2.7, (i)]. The initial
topology on X with respect to X ′ is called weak topology, and is denoted by σ(X,X ′).
(X,σ(X,X ′)) is again a locally convex topological vector space. For more information
on the weak topology we refer to [3, Chapter 5.3].

Let (X, ‖.‖) be a normed space. By ι : X → X ′′ : x 7→ ι(x) we denote the canonical
embedding defined by

ι(x) :

{
X ′ → C
f 7→ f(x)
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9 WEAKLY COMPACTLY GENERATED BANACH SPACES

It’s corestriction ι : X → ι(X) is a linear bijection. Analogously, we define ι1 : X ′ → X ′′′.
If X is equipped with its weak topology σ(X,X ′), and ι(X) is equipped with subspace
topology of the weak topology induced by the point-separating linear subspace ι1(X ′)
of the algebraic dual space of X ′′, namely σ(X ′′, ι1(X ′))|ι(X),

ι :
(
X,σ(X,X ′)

)
→
(
ι(X), σ(X ′′, ι1(X ′)

)
|ι(X) (4)

becomes a homeomorphism [3, Lemma 5.5.2 et. seq.].

Remark 9.1.5. The weak topology on X ′ induced by ι(X) is also called weak∗-topology,
and denoted by σ(X ′, X) := σ(X ′, ι(X)). In general, it holds that

σ(X ′, X) ⊆ σ(X ′, X ′′) ⊆ T‖.‖X′ .

Normed spaces (X, ‖.‖) for which X ′′ = ι(X) are called reflexive.

The proofs of the following two theorems may be found in [3, Satz 5.5.5] and [3, Satz
5.5.6], respectively.

Theorem 9.1.6 (Goldstine). Let (X, ‖.‖) be a normed space. We write KX
1 (0) := {x ∈

X : ‖x‖ ≤ 1} and KX′′
1 (0) := {f ∈ X ′′ : ‖f‖X′′ ≤ 1} for the closed unit balls in X and

X ′′, respectively. Then

ι(KX
1 (0))

σ(X′′,X′)
= KX′′

1 (0).

Theorem 9.1.7 (Banach-Alaoglu). Let (X, ‖.‖) be a normed space. Then KX′
1 := {f ∈

X ′ : ‖f‖X′ ≤ 1} is compact with respect to the weak∗-topology σ(X ′, X).

The result of the Theorem of Banach-Alaoglu is particularly interesting, as the closed
unit ball of a normed space is ‖.‖-compact if and only if the space is finite dimensional.

Definition 9.1.8. A subset of a locally convex topological space is called weakly compact
if it is compact with respect to the weak topology.

Clearly, if A is finite, because of (3) one can show – similarly to Lemma 9.1.3 (iv) –
that co(A) is compact, being a continuous image of compact subset. The theorem of
Krein-Smulian generalises this observation. For the proof of the theorem we refer to [5,
Theorem 13.4].

Theorem 9.1.9 (Krein-Smulian). Let X be a Banach space. If K ⊆ X is weakly
compact, then the closed convex hull co(K) of K is also weakly compact.

Remark 9.1.10. The closed convex hull co(K) i.e. the smallest closed convex set that
contains K, is equal to the closure of the convex hull co(K), as the closure of a convex
set is convex by Lemma 9.1.3 (iii).

29



9 WEAKLY COMPACTLY GENERATED BANACH SPACES

9.2 Application of K-Analyticity

The theory of K-analytic spaces allows us to deduce topological properties of topological
vector spaces. Concretely, we will now show that every weakly compactly generated
Banach space is Lindelöf in its weak topology.

Definition 9.2.1. A Banach space (X, ‖.‖) is called weakly compactly generated if there

exists a weakly compact set K in X so that X = span(K)
‖.‖

.

Theorem 9.2.2. [4, Theorem 4] Every weakly compactly generated Banach space X is
Lindelöf with respect to its weak topology.

Proof. Let X = span(K)
‖.‖

with K weakly compact. As (X,σ(X,X ′)) is a topological
vector space, bal(K) is weakly compact by Lemma 9.1.3 (iv). The Theorem of Krein-
Smulian 9.1.9 now gives us that co(bal(K)) is weakly compact. By Lemma 9.1.3 (v), we
have that co(bal(K)) is absolutely convex. As the closure of an absolutely convex set is
absolutely convex by Lemma 9.1.3 (iii), we can therefore assume without loss of general-

ity thatK is absolutely convex. Using Lemma 9.1.3 (ii), we now obtainX =
⋃
n∈N nK

‖.‖
.

We set B := ι−1(KX′′
1 (0)) ⊆ X. We will now show that the subsets Aα ⊆ X defined by

Aα :=
⋂
n∈N

anK +
1

n
B

for α = (an)n∈N ∈ N satisfy conditions (A), (B), and (C) from (2).

(A) As K is weakly compact, and scaling is a homeomorphism ([3, Lemma 2.1.3, (i)]),
the sets anK are weakly compact for every an ∈ N. By the Theorem of Banach-
Alaoglu 9.1.7, the closed unit ball KX′′

1 (0) is compact with respect to the weak∗-topology
σ(X ′′, X ′). Therefore, KX′′

1 (0) ∩ ι(X) is compact with respect to the subspace topol-
ogy σ(X ′′, X ′)|ι(X). As ι considered as in (4) is a homeomorphism, we obtain that

ι−1(KX′′
1 (0) ∩ ι(X)) = ι−1(KX′′

1 (0)) = B is weakly compact. Using that the addition is
continuous, and that any intersection of compact sets is again compact, we have that
Aα is weakly compact for every α = (an)n∈N ∈ N .

(B) Let α = (an)n∈N, β = (bn)n∈N ∈ N with an ≤ bn for every n ∈ N. As K is abso-
lutely convex, by Lemma 9.1.3 (ii) we obtain that anK ⊆ bnK for every n ∈ N. Hence,
Aα ⊆ Aβ for every α ≤ β, as required.

(C) Take any x ∈ X. As X =
⋃
n∈N nK

‖.‖
, for every m ∈ N we may choose nm ∈ N,

and y ∈ nmK so that ‖x− y‖ ≤ 1
m , hence

x ∈ 1

m
KX

1 (y) ⊆ nmK +
1

m
KX

1 (0).
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10 FRÉCHET-MONTEL SPACES

The Theorem of Goldstine 9.1.6 now gives us

B = ι−1(KX′′
1 (0)) = ι−1(ι(KX

1 (0))
σ(X′′,X′)

) ⊇ ι−1(ι(KX
1 (0))) = KX

1 (0),

and therefore x ∈ nmK + 1
mB. Choosing α := (nm)m∈N, we obtain x ∈ Aα, and

X =
⋃
α∈N Aα.

X is angelic in its weak topology. Therefore, (X,σ(X,X ′)) is K-analytic after Corollary
6.5. Since K-analytic spaces are Lindelöf by Corollary 4.7, X is Lindelöf with respect to
its weak topology.

In particular, all separable Banach spaces are weakly compactly generated. Less trivial
examples include all reflexive spaces i.e. normed spaces (X, ‖.‖) with X ′′ = ι(X), as well
as the function spaces L1(µ) for σ-finite measures µ.

10 Fréchet-Montel Spaces

Frèchet spaces are generalisations of Banach spaces. We show a sufficient condition
under which a Fréchet space is separable.

10.1 Preliminaries

For the proof of Theorem 10.2.2 we will have to use certain neighbourhoods of 0.

Definition 10.1.1. Let X be a topological vector space and A ⊆ X.

(i) A is said to be absorbing if for every x ∈ X there exists λ > 0 so that λx ∈ A.

(ii) A is called a barrel if it is absolutely convex, closed and absorbing.

(iii) X is a barrelled space if every barrel is a neighbourhood of 0.

(iv) A is bounded if for every V ∈ U(0) there exists λV > 0 so that A ⊆ λV V .

Lemma 10.1.2. [16] Let X be a topological vector space.

(i) If V is a neighbourhood base of 0, and A ⊆ X is a nonempty subset, then

Ā =
⋂
V ∈V

A+ V.

(ii) If V is a neighbourhood base of 0, then so is {V̄ : V ∈ V}.

(iii) If X is locally convex, it has a neighbourhood basis of 0 consisting of barrels.
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10 FRÉCHET-MONTEL SPACES

Proof.

(i) For every x ∈ X the set {x− V : V ∈ V} is a neighbourhood basis of x. Therefore,

x ∈ Ā⇔ ∀V ∈ V : (x− V ) ∩A 6= ∅ ⇔ ∀V ∈ V : x ∈ A+ V.

(ii) Because of the continuity of the addition, and item (i), for any V ∈ V there exists
U ∈ V with Ū ⊆ U + U ⊆ V .

(iii) For every convex 0-neighbourhood U there exists an absolutely convex and absorb-
ing open 0-neighbourhood V with V ⊆ U [3, Lemma 2.1.8]. Since X is locally convex, we
may choose a basis of the neighbourhood filter of 0 consisting of absolutely convex and
absorbing open subsets. As the closure of an absolutely convex and absorbing set is still
absolutely convex and absorbing, item (ii) implies the existence of a 0-neighbourhood
consisting of barrels.

10.2 Application of K-Analyticity

Again, we will build a family of subsets as required in Theorem 5.5. We will use that all
notions of compactness coincide in metric spaces, as do the concepts of separability and
the property of being Lindelöf.

Definition 10.2.1. A topological vector space is called Fréchet space if it is locally
convex and completely metrisable. A topological space is called Montel space if it is
barrelled and has the Heine-Borel property, that is every closed and bounded subset is
compact. A topological vector space is called Fréchet-Montel space if it is both Fréchet
and Montel.

Theorem 10.2.2. [4, Theorem 5] Every Fréchet-Montel space X is separable.

Proof. Let d be a compatible metric, and U1(0) := {x ∈ X : d(x, 0) < 1}. As the
set { 1

nU1(0) : n ∈ N} forms a countable basis of the neighbourhood filter of 0, X is
first-countable. Therefore, we may fix a bounded barrel V so that Vn := 1

nV for n ∈ N
defines a family that is a basis of the neighbourhood filter of 0 consisting of bounded
barrels. Given α = (an)n∈N ∈ N , we set

Aα :=
⋂
n∈N

anVn.

Again, we will show that the family (Aα)α∈N , fulfils the requirements of Theorem 5.5.

(A): Being an intersection of closed and bounded sets, Aα is closed and bounded for ev-
ery α ∈ N . Since a Montel space has the Heine-Borel property, Aα is therefore compact.
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(B): Since Vn is absolutely convex for every n ∈ N, we have that anVn ⊆ bnVn if an ≤ bn.
It follows that Aα ⊆ Aβ for every α ≤ β.

(C): Take x ∈ X. As Vn is absorbing, we find λn ∈ N so that x ∈ λnVn for every n ∈ N.
Consequently, x ∈ Aα for α := (λn)n∈N, so X =

⋃
α∈N Aα.

In metrisable spaces, the concepts of countable compactness and compactness coincide.
Theorem 5.5 gives us that X is K-analytic. By Corollary 4.7, X is Lindelöf, which is
equivalent to it being separable after Proposition 2.1.2.

An example for a Fréchet-Montel space is the space H(Ω) of holomorphic functions
for any open set Ω ⊆ C endowed with the compact-open topology. A subbasis of the
compact-open topology is given by sets of the form

N(K, ε, x0) := {f ∈ H(Ω) : f(K) ⊆ Uε(x0)}

for K ⊆ Ω compact, ε > 0, and x0 ∈ Ω.

11 Inductive Limits of Separable Fréchet-Spaces

This last section deals with an intersection of concepts in topology, functional analysis,
set theory, and algebra. Note that by Theorem 10.2.2, the conclusion of this section’s
central result, Theorem 11.3.1, holds in particular for strict inductive limits of Fréchet-
Montel spaces.

11.1 Inductive Limits

We start with a short foray into category theory. For more detailed information we refer
to [8, Chapter 2.2], and [12].

Definition 11.1.1. An inductive system (Ai, ei,j)i,j∈I is a system consisting of a directed
set (I,4), a family of objects (Ai)i∈I in a certain class, and morphisms ei,j : Ai → Aj
for i 4 j that satisfy

(i) ej,k ◦ ei,j = ei,k for i 4 j 4 k, and

(ii) ei,i = idAi .

A cone (B, fi)i∈I is an object B together with a family (fi)i∈I of morphisms fi : Ai → B,
which satisfy fi = fj ◦ ei,j for every i 4 j.

The inductive limit of the inductive system is a cone (lim−→Ai, ei)i∈I that has the following
universal property: If (B, fi)i∈I is any cone, then there exists a unique morphism f :
lim−→Ai → B so that the diagram below commutes for all indices.
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Ai
ei,j //

ei

!!

fi

  

Aj

ej

}}

fj

~~

lim−→Ai

f

��
B

An inductive system is called reduced, if all ei : Ai → lim−→Ai are injective.

Clearly, if an inductive limit exists, it is unique. In the following, we will consider the
category of all locally convex topological spaces with continuous linear mappings serving
as morphisms.

Lemma 11.1.2. [16, Proposition 7.9] Let E be a linear space and (Ei)i∈I be a family
of linear subspaces of E with E =

⋃
i∈I Ei. For every i ∈ I there is a topology Ti

given so that (Ei, Ti) is a locally convex topological space. Suppose that Ei ⊆ Ej for
i 4 j, and that the inclusion mappings ιi,j : (Ei, Ti) → (EjT j) are continuous. Then
the inductive limit lim−→Ei can be identified with (E, T ), where T is the finest topology on
E that makes E a locally convex topological vector space, and that makes all inclusion
mappings ιi : Ei → E continuous. The inductive system is reduced.

Proof. Trivially, all inclusion mappings are injective, thus the inductive system is re-
duced.

The topology T always exists, see for example [16, Proposition 6.8]. In order for all
inclusion mappings ιi : Ei → E to be continuous, the topology Tind on the inductive
limit has to be coarser than T . In order for the identity mapping id : (E, Tind)→ (E, T )
to be continuous, it must also be finer than T , hence Tind = T .

Let (F, fi)i∈I be a cone. As all fi are compatible with the inclusion, f : E → F defined
by f |Ei := fi is the well-defined unique morphism making the diagram commute.

Note that T is in general not the final topology with respect to all inclusion mappings
ιi : Ei → E, as the final topology with respect to a family of linear mappings from topo-
logical vector spaces into a linear space does not need to make it a topological vector
space. According to [1, page 43], this is however the case if I is countable.

From now on, we will restrict ourselves to countable inductive limits of locally convex
spaces. We will furthermore assume that (En)n∈N is an increasing sequence of locally
convex topological spaces so that each En is a subspace of En+1, and that all inclusion
mappings ιn,m = En → Em for n ≤ m are continuous. An inductive limit of a sequence
satisfying these conditions is said to be strict.
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Lemma 11.1.3. [15, Theorem 12.1.1] Let E =
⋃
n∈NEn be the strict inductive limit of

an increasing sequence of locally convex topological spaces (En)n∈N. Then the system U
consisting of all sets of the form

U = cobal(
⋃
n∈N

Un), (5)

where Un is a neighbourhood of 0 in En for every n ∈ N , is a neighbourhood base of 0
in E.

Proof. Any subset of E with the final topology is open if and only if its intersection
with En is open in En for every n ∈ N. Take U ∈ U . As U ∩ En contains Un, U is
absolutely convex neighbourhood of 0 in E. Conversely, for any absolutely convex 0-
neighbourhood V in E we find a 0-neighbourhood Un in En with Un ⊆ V ∩En. Therefore,⋃
n∈N Un ⊆ V . Since V was absolutely convex, we obtain cobal(

⋃
n∈N Un) ⊆ V . Thus, U

forms a neighbourhood base of 0.

Lemma 11.1.4. [16, Lemma 7.11] Let E be a locally convex topological vector space, M
a subspace of E, and U an absolutely convex 0-neighbourhood in M . Then there exists
an absolutely convex 0-neighbourhood V in E so that U = V ∩M .

Proof. As M is a subspace of E, we may choose an absolutely convex 0-neighbourhood
W in E with W ∩M ⊆ U . Set V := cobal(W ∪ U). Clearly, we have

V ∩M ⊇ (W ∩M) ∪ (U ∩M) ⊇ U.

Conversely, take x ∈ V ∩M . As W and U are absolutely convex, there exist α, β ∈ C
with |α| + |β| ≤ 1, and w ∈ W, u ∈ U so that z = αw + βu. Then αw = z − βu ∈ M .
Therefore, either α = 0 or w ∈M . Both imply z ∈ U . Thus, U = V ∩M .

Proposition 11.1.5. [16, Theorem 7.12] Let (E, T ) be the strict inductive limit of an
increasing sequence of locally convex topological spaces (En, Tn). Then every En is a
topological subspace of E, i.e. T induces the original topology Tn on every En.

Proof. As the inclusion ιn : (En, Tn)→ (E, T ) is continuous, Tn is finer than T |En . Let
Un ⊆ En be an absolutely convex 0-neighbourhood with respect to Tn. We show that
any absolutely convex 0-neighbourhood Un in En may be written in the form U ∩En for
some U ∈ U as defined in (5). As En is a subspace of En+1, Lemma 11.1.4 gives us an
absolutely convex 0-neighbourhood Un+1 in En+1 so that Un = Un+1 ∩En. Inductively,
for every k ∈ N we choose absolutely convex 0-neighbourhoods Un+k in En+k with

Un+k = Un+k+1 ∩ En+k.

Then U :=
⋃
k≥0 Un+k is absolutely convex. For every k ≥ 0 we have that

U ∩ En+k = Un+k.
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For m < n it holds that

U ∩ Em = U ∩ En ∩ Em = Un ∩ Em,

which is a 0-neighbourhood in Em. It follows U ∈ U . As U is a neighbourhood base, Tn
is also coarser than T |En .

Corollary 11.1.6. If E is the strict inductive limit of a sequence of separable locally
convex topological spaces, then E is separable.

Proof. For every n ∈ N fix a countable subset Xn ⊆ En with Xn
Tn

= En. Since En is a

subspace of E, we have Xn
Tn

= En ∩Xn
T

. The set X :=
⋃
n∈NXn is a countable subset

of E satisfying

X
T

=
⋃
n∈N

Xn

T
⊇
⋃
n∈N

Xn
T ⊇

⋃
n∈N

Xn
Tn

=
⋃
n∈N

En = E.

11.2 Topology of Compact Convergence

The weak∗-topology is generally not the only topology that makes the dual space of a
locally convex space locally convex. To this effect, we will briefly introduce a different
topology.

Definition 11.2.1. A dual pair (X,Y ) consists of a linear vector space X and a point-
separating linear subspace Y of the algebraic dual X∗. For x ∈ X and y ∈ Y we write

(x, y) := y(x).

Definition 11.2.2. Let (X, T ) be a topological space. A subset M ⊆ X is called
bounded if for every V ∈ U(0) there exists λV > 0 so that M ⊆ λV V .

Let (X,Y ) be a dual pair and M ⊆ P(X) be a family of σ(X,Y )-bounded subsets of
X. Then for every M ∈M the mapping

pM :

Y → [0,∞)

y 7→ sup
y∈M
|(x, y)|

defines a seminorm on Y . If additionally

span(
⋃

M∈M
M)

σ(X,Y )

= X,

the family (pM )M∈M induces a locally convex topology T on Y [3, Satz 5.1.4]. It holds
that

span(
⋃

M∈M
M) ⊆ (X, T )′.
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The induced topology T is called topology of uniform convergence on sets of M.

If (E, T ) is a locally convex topological vector space, the compact subsets of E form
a class of σ(X,Y )-bounded sets, which cover E. Therefore, the topology τc of uniform
convergence on the compact subsets of E is a locally convex topology on the dual space E′.

Definition 11.2.3. Let (X,Y ) be a dual pair and M ⊆ X. Its polar M◦ is defined by

M◦ := {y ∈ Y : |(x, y)| ≤ 1, x ∈M}.

Clearly, M1 ⊆M2 ⊆ X implies M◦2 ⊆M◦2 ⊆ Y .

The following theorem is a generalisation of the Theorem of Banach-Alaoglu 9.1.7.

Theorem 11.2.4. Let (E, T ) be a locally convex topological vector space, and U be a
neighbourhood of 0 with respect to T . Then U◦ is compact with respect to τc.

For the proof we refer to [10, §21.6(3)].

11.3 Application of K-Analyticity

With the background knowledge from above, we may now proceed to show a last appli-
cation of K-analytic spaces.

Theorem 11.3.1. Let E = lim−→En be the strict inducive limit of a sequence (En)n∈N of
separable Fréchet spaces. Then (E′, τc) is analytic.

Proof. For every n ∈ N fix a countable basis (Unk )k∈N of neighbourhoods of 0 consisting
of absolutely convex closed sets with Unk+1 ⊆ Unk for all k ∈ N. By Lemma 11.1.3, and
Lemma 10.1.2 (ii), the set U := {Uα | α = (ak)k∈N ∈ N} with

Uα := cobal
⋃
k∈N

Ukak

T

is a 0-basis in E. Clearly, Uβ ⊆ Uα for α ≤ β. By Theorem 11.2.4, the polars U◦α
are compact with respect to τc. We set Aα := U◦α. Then Aα ⊆ Aβ for α ≤ β, and
E′ =

⋃
α∈N Aα as for every f ∈ E′ we have f(0) = 0. By continuity, there exists α ∈ N

so that |f(x)| ≤ 1 for all x ∈ Uα. Therefore, the family (Aα)α∈N satisfies conditions
(A), (B), and (C) from (2).

As every En is separable, E is itself separable after Corollary 11.1.6. Let {xn : n ∈ N}
be a dense subset of E, and consider the linear mapping

ι :

{
E′ → CN

f 7→ (f(xn))n∈N.

37



11 INDUCTIVE LIMITS OF SEPARABLE FRÉCHET-SPACES

We endow CN with the product topology TΠ, and E′ with the initial topology Tι with
respect to ι. Since {xn : n ∈ N} is dense in E, f(xn) = g(xn) for all n ∈ N implies
f = g. Thus, ι is injective. (E′, Tι) is therefore a locally convex topological vector space
(see [3, Bemerkung 5.0.3 (ii)]). Countable products of metrisable spaces are metrisable.
Since ι : (E′, Tι) → (CN, TΠ) is an embedding, we receive that Tι is metrisable ([20,
Lemma 3.1.7]). Note that Tι ⊆ σ(E′, E), as ι : (E′, σ(E′, E))→ (CN, TΠ) is continuous.
Furthermore, σ(E′, E) ⊆ τc, as the weak∗-topology is determined by the evaluation-map
seminorms {f 7→ |f(x)| : x ∈ E}, and singleton-sets are compact.

As the identity mapping id : (E′, τc) → (E′, Tι) is an injective continuous map into an
angelic space, (E′, τc) is angelic, and thus K-analytic by Theorem 5.5. Furthermore,
(E, Tι) is analytic by Theorem 7.2.7. It follows that (E′, τc) is analytic1.

A classic example of a strict inductive limit is the space C∞c (Rn) of all infinitely dif-
ferentiable functions on Rn with compact support. A defining sequence is obtained by
Kn := {x ∈ Rn : ‖x‖ ≤ n}, as C∞c (Kn) is a Fréchet space for every n ∈ N.

1This fact is stated, but not proved in [4, Theorem 6].
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