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1 Introduction

In this Bachelor-Thesis we present some basics of C∗−algebra theory leading to the Gelfand-
Naimark Theorem. This theorem shows that every C∗−algebra can be identified as a
particular C∗−subalgebra of all bounded linear operators on some Hilbert space. The the-
orem uses the Gelfand-Naimark-Segal construction which provides an important tool in
C∗−algebra theory. The thesis is based on chapter 4 of ‘Fundamentals of the Theory of
Operator Algebras’ by Richard V. Kadison and John R. Ringrose [1].

We start in Chapter 2 by defining C∗−algebras and certain special elements like selfadjoint
elements of a C∗−algebra. Then we discuss some examples and generalise some facts about
operators on a Hilbert space to C∗−algebras. One of these is the functional calculus which
provides an important tool later.
In Chapter 3, we consider positive elements of a C∗−algebra. These behave like positive

semidefinite operators on a Hilbert space. We see that we can decompose every selfadjoint
element into a positive and negative part. Since we have a notion of positive elements, we
can use this to define a partial order structure on the selfadjoint elements of a C∗−algebra.
Chapter 4 is about linear functionals on a C∗−algebra. Just like positive elements, we

can consider positive linear functionals. If a positive linear functional has norm 1, we call
it a state. Extremal points of the set of states are called pure states. This is in some sense
the smallest subset of linear functionals we need to reconstruct all of them.
In Chapter 5, we want to represent a C∗−algebra on a Hilbert space. With the Gelfand-

Naimark-Segal construction, we can produce a Hilbert space and representation on that
Hilbert space from a state of a C∗−algebra. Using the sum of Hilbert spaces and the pure
states, we prove the Gelfand-Naimark Theorem which tells us that every C∗−algebra is
∗−isomorphic to a C∗−subalgebra of operators on a Hilbert space.

The reader is expected to have basic knowledge in functional analysis similar to the mate-
rial presented in the course ‘Funktionalanalysis 1’ at the Technical University of Vienna.
Any reference to functional analysis means that the result can be found in the lecture notes
written by Martin Blümlinger, Michael Kaltenbäck and Harald Woracek [2].
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2 Foundations

We use the same notation as in the lecture notes of ‘Funktionalanalysis 1’[2]. Therefore,
if A is an algebra, then Inv(A) are all invertible elements of A. For A ∈ A we consider
the spectrum σ(A) and the residue ρ(A). The unit in every unitary algebra is referred to
as I regardless of the surrounding space. By context, it is clear which unit is meant. For
complex numbers z, we denote the complex conjugate as z.

2.1 C∗−Algebras

2.1 Definition. Let A be a complex Banach algebra. A is a C∗−algebra if it has a
conjugate linear Involution ∗ which satisfies the following rules:

• ∀A,B ∈ A, s, t ∈ C : (sA+ tB)∗ = sA∗ + tB∗

• ∀A ∈ A : (A∗)∗ = A

• ∀A,B ∈ A : (AB)∗ = B∗A∗

• ∀A ∈ A : ∥A∗A∥ = ∥A∥2

Often we consider special elements of a C∗−algebra.

2.2 Definition. Let A be a C∗−algebra. A ∈ A is called

• normal if AA∗ = A∗A,

• selfadjoint if A = A∗, and

• unitary if AA∗ = A∗A = I.

2.3 Proposition. Let A be a C∗−algebra.

(i) For all A ∈ A, we have ∥A∥ = ∥A∗∥.

(ii) I∗ = I.

(iii) For A ∈ A, we find selfadjoint elements H,K ∈ A such that A = H + iK.

(iv) A ∈ A is invertible if and only if A∗ is invertible.

(v) σ(A∗) = {a : a ∈ σ(A)}.
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2 Foundations

Proof.

(i) Let A ∈ A. From Definition 2.1, we get

∥A∥2 = ∥A∗A∥ ≤ ∥A∗∥∥A∥ =⇒ ∥A∗∥ ≥ ∥A∥.

We can use the same inequality with A∗ and get ∥A∗∥ ≤ ∥A∥. Therefore, ∥A∗∥ = ∥A∥.

(ii)

I = (I∗)∗ = (I∗I)∗ = I∗(I∗)∗ = I∗.

(iii) We define H := 1
2(A + A∗),K := 1

2 i(A
∗ − A). Obviously they satisfy the conditions

from (iii).

(iv) If A is invertible with inverse A−1, we get

A∗(A−1)∗ = (A−1A)∗ = I∗ = I = (AA−1)∗ = (A−1)∗A∗.

Therefore, A∗ is invertible with (A∗)−1 = (A−1)∗. If A∗ is invertible, then we already
know that A = (A∗)∗ is invertible.

(v) We know from (iv)

aI −A ∈ Inv(A) ⇐⇒ aI −A∗ ∈ Inv(A).

By negating both sides, we get a ∈ σ(A) ⇐⇒ a ∈ σ(A∗).

■

Proposition 2.3 shows that in a C∗−algebra ∗ is isometric (and since it is conjugate linear
therefore continuous). Furthermore, I is selfadjoint und unitary. Every element in A is
a linear combination of two selfadjoint elements. We call them real and imaginary part.
From (v) we also get that the spectral radii of A and A∗ are the same.

2.4 Definition. Let A,B be two C∗−algebras.
Φ : A → B is called a C∗−homomorphism if

• ∀A,B ∈ A, s, t ∈ C : Φ(sA+ tB) = sΦ(A) + tΦ(B),

• ∀A,B ∈ A : Φ(AB) = Φ(A)Φ(B),

• Φ(I) = I and

• ∀A ∈ A : Φ(A∗) = Φ(A)∗.

Φ is a C∗−isomorphism if Φ is a bijective C∗−homomorphism.

We specify certain subsets of a C∗−algebra.

3



2 Foundations

2.5 Definition. Let A be a C∗−algebra. A subset B ⊆ A is called

• selfadjoint if B is closed under ∗,

• a ∗−subalgebra if B is selfadjoint and a subalgebra, and

• a C∗−subalgebra if B is a closed ∗−subalgebra and contains the unit I.

If B ⊆ A is a C∗−subalgebra of a C∗−algebra A, then B is also a C∗−algebra.

2.6 Example. The most elementary example of a C∗−algebra is the set of all linear and
bounded operators B(H) of a Hilbert spaceH, where T ∗ is the Hilbert adjoint of an operator
T ∈ B(H). Every closed subalgebra of B(H) with I is also a C∗−algebra. We will show
with the GNS-construction that for every C∗−algebra we find a C∗−isomorphism onto a
C∗−subalgebra of B(H) for some Hilbert space H.

2.7 Example. Other important examples are sets of complex valued functions where the
operation ∗ is defined by f∗(x) = f(x) = f(x) which is pointwise complex conjugation. For
a compact Hausdorff space X, the set C(X) of all continuous functions from X to C is a
C∗−algebra. Other examples include all bounded functions ℓ∞(M) ⊆ CM on an arbitrary
set M , as well as L∞(Ω) which are all essentially bounded functions on a measure space Ω
which are C∗−algebras.

2.2 Functional calculus

In this section we prove generalisations of some standard facts about operators on a Hilbert
space to C∗−algebras.

2.8 Proposition. Let A be a C∗−algebra and A ∈ A.

(i) If A is normal, then r(A) = ∥A∥.

(ii) If A is selfadjoint, then σ(A) ⊆ R and contains one or both of ∥A∥, −∥A∥.

(iii) If U ∈ A is unitary, then ∥U∥ = 1 and σ(U) is part of the unit circle {z ∈ C : |z| = 1}.

Proof.

(i) For normal A ∈ A, we have∥∥A2
∥∥2 = ∥∥(A2)∗A2

∥∥ = ∥A∗(A∗A)A∥
= ∥A∗(AA∗)A∥ = ∥(A∗A)∗(A∗A)∥
= ∥A∗A∥2 = (∥A∥2)2.

Therefore,
∥∥A2

∥∥ = ∥A∥2 and by induction we get
∥∥∥A2k

∥∥∥ = ∥A∥2
k

for all k ∈ N. Then,

r(A) = lim
n→∞

∥∥∥Ak
∥∥∥ 1

k
= lim

k→∞

∥∥∥A2k
∥∥∥ 1

2k = ∥A∥ .
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2 Foundations

(ii) Let A be selfadjoint, then σ(A) is compact and if σ(A) ⊆ R, then it contains a scalar
with absolute value r(A) = ∥A∥ which are only ∥A∥ or −∥A∥. Therefore, we only
need to show σ(A) ⊆ R. Let a+ ib ∈ σ(A). We define Bn := A−aI+ inbI for n ∈ N.
Then we get with the spectral mapping theorem for polynomials

i(n+ 1)b = a+ ib− a+ inb ∈ σ(Bn).

Then,

(n2 + 2n+ 1)b2 = |i(n+ 1)b|2 ≤ (r(Bn))
2 ≤ ∥Bn∥2 = ∥B∗

nBn∥
= ∥(A− aI − inbI)(A− aI + inbI)∥ =

∥∥(A− aI)2 + n2b2I
∥∥

≤ ∥A− aI∥2 + n2b2.

For n ∈ N, we get the inequality (2n+1)b2 ≤ ∥A− aI∥2 which means b must be zero.
Therefore, σ(A) ⊆ R.

(iii) For unitary U , we get

∥U∥2 = ∥U∗U∥ = ∥I∥ = 1.

If z ∈ σ(U), then z−1 ∈ σ(U−1) = σ(U∗). We get

|z| ≤ ∥U∥ = 1 ∧ |z|−1 ≤ ∥U∗∥ = 1.

Therefore, |z| = 1.

■

Later we will need the following corollary for normal elements.

2.9 Corollary. Let A ∈ A be normal and A a C∗−algebra. If there exists k ∈ N, k ≥ 1
such that Ak = 0, then A = 0.

Proof. We get An = 0 for all n ≥ k and therefore ∥A∥ = r(A) = limn→∞ ∥An∥
1
n = 0. ■

Next, we discuss the functional calculus. From functional analysis, we know the spectral
theorem for selfadjoint operators A on a Hilbert space H. There we proved that we find
a C∗−homomorphism from C(σ(A)) to B(H) which maps the identity on σ(A) to A. The
argument also works for general C∗−algebras and is the foundation for many properties of
selfadjoint elements in a C∗−algebra.

2.10 Theorem. Let A be a C∗−algebra. For selfadjoint A ∈ A, there exists an injective
C∗−homomorphism Φ : C(σ(A)) → A, f 7→ Φ(f) with Φ(ι) = A where ι is the identity on
σ(A), which means that ι : σ(A) → σ(A), a 7→ a.

Proof. For polynomials p(x) ∈ C[x], we can consider p(A) in the C∗−algebra. Then we
know

∀p(x), q(x) ∈ C[x], s, t ∈ C :s · p(A) + t · q(A) = (s · p(x) + t · q(x))(A)
p(A)q(A) = (p(x) · q(x))(A)
p(A)∗ = p(A).

5



2 Foundations

Here p(x) is the polynomial with complex conjugated coefficients. Since σ(A) ⊆ R, we get
p(a) = p(a) for all a ∈ σ(A). Therefore, all polynomial functions on σ(A) are a separating
subalgebra of C(σ(A)) which contains the unit and is closed under complex conjugation.
Using the Stone-Weierstrass theorem, we know that they are everywhere dense in C(σ(A)).
Since p(A) is normal, we can use Proposition 2.8 (i). Together with the spectral mapping
theorem for polynomials we get

∥p(A)∥ = r(p(A)) = max{|z| : z ∈ σ(p(A))} = max{|p(a)| : a ∈ σ(A)}.

From this, we get that for every polynomial function p(x) on σ(A) the expression p(A) is
welldefined and that p(x) 7→ p(A) is isometric and injective. Since all polynomial functions
on σ(A) are everywhere dense in C(σ(A)), we can find an unique extension Φ : C(σ(A)) →
A which is also injective. It satisfies Φ(p(x)) = p(A) and therefore also Φ(ι) = ι(A) = A.
With continuity, all calculation rules are extended from the polynomials to Φ. Then Φ is
a C∗−homomorphism with Φ(ι) = A. ■

It is clear that Φ with these properties is unique. Therefore, we write f(A) instead of
Φ(f) for f ∈ C(σ(A)). From the proof, we know that f(A) is the limit of a sequence of
polynomial evaluations pn(A) whence pn converge uniformly to f on σ(A). Since pn(A) is
normal, the limit f(A) is also normal.

2.3 Further results

With the functional calculus, we can show the following corollary.

2.11 Corollary. Let A be a C∗−algebra, B ⊆ A a C∗−subralgebra and A ∈ B. Then
σA(A) = σB(A). The spectrum is therefore independent of the surrounding C∗−algebra.

Proof. If aI − A is invertible in B, then aI − A is also invertible in A. Therefore, we get
σA(A) ⊆ σB(A). For the converse implication, it is sufficient to show that if A ∈ B has an
inverse A−1 in A then A−1 ∈ B. First, we show this for selfadjoint elements.
Let A ∈ B be selfadjoint and assume that there exists A−1 ∈ A. Since then 0 /∈ σA(A),
we know that f(a) = 1

a is a continuous function on σ(A). We can therefore consider f(A).
Since f(a)a = 1 for all a ∈ σ(A), we get f(A)A = I and analogously Af(A) = I. Thus,
f(A) = A−1. Choose a sequence of polynomials pn(x) which converge uniformly to f on
σ(A). Then pn(A) → f(A), and since B is a closed subalgebra A−1 = f(A) ∈ B.
Now we need to show the same thing for arbitrary A ∈ B. Let A ∈ B and A−1 ∈ A. Then
A∗ ∈ B is also invertible in A and furthermore A∗A ∈ B is also invertible. C = A∗A ∈ B is
selfadjoint and has an inverse C−1 ∈ A. From before C−1 ∈ B. Then

C−1A∗A = I =⇒ A−1 = C−1A∗ ∈ B.

That shows σA(A) = σB(A). ■

In the course of this corollary, we have also shown that for a selfadjoint invertible element
A we can find polynomials pn such that pn(A) converges to A−1. We can even show that
the pn can be chosen in a way that the constant term of every pn is zero. For that, we

6



2 Foundations

consider a bounded interval that contains σ(A) und 0 and a continuous function f on I
such that f(a) = 1

a for all a ∈ σ(A) and f(0) = 0. Then we can find polynomials qn(x)
which converge to f uniformly on I. Then qn(0) → f(0) = 0. Therefore, we can define
pn(x) := qn(x)− qn(0) and pn converges to f uniformly on I in particular on σ(A). Then
pn(A) tend to A−1 and the constant terms of the pn are zero.

2.12 Proposition. Let A,B be C∗−algebras, φ : A → B a C∗−homomorphism and A ∈ A.

(i) σ(φ(A)) ⊆ σ(A) and ∥φ(A)∥ ≤ ∥A∥. In particular φ is continuous.

(ii) For f ∈ C(σ(A)), there is φ(f(A)) = f(φ(A)).

(iii) If φ is an injective C∗−homomorphism, then σ(φ(A)) = σ(A) and ∥φ(A)∥ = ∥A∥.
Furthermore, φ(A) is a C∗−subalgebra.

Proof.

(i) First, we show σ(φ(A)) ⊆ σ(A). Let a /∈ σ(A), then aI − A ∈ Inv(A). Therefore,
aI − φ(A) = φ(aI −A) ∈ Inv(B) and a /∈ σ(φ(A)). This proves σ(φ(A)) ⊆ σ(A).
Since A∗A is selfadjoint, φ(A∗A) is selfadjoint as well and both are normal. Then we
can use Proposition 2.8 and get

∥A∗A∥ = r(A∗A), ∥φ(A∗A)∥ = r(φ(A∗A)).

We also know σ(φ(A∗A)) ⊆ σ(A∗A) which means r(φ(A∗A)) ≤ r(A∗A). All in all,
we get

∥φ(A)∥2 = ∥(φ(A))∗φ(A)∥ = ∥φ(A∗A)∥ = r(φ(A∗A)) ≤ r(A∗A) = ∥A∗A∥ = ∥A∥2.

Then ∥φ(A)∥ ≤ ∥A∥.

(ii) Let f ∈ C(σ(A)) and pn be a sequence of polynomials which converge to f uniformly
on σ(A). From (i) we know that pn also converge to f uniformly on σ(φ(A)) ⊆ σ(A).
Then pn(φ(A)) → f(φ(A)) and φ(pn(A)) → φ(f(A)) since φ is continuous. Since φ is
a homomorphism, pn(φ(A)) = φ(pn(A)) and by taking the limit, we get the equality
f(φ(A)) = φ(f(A)).

(iii) Let φ be an injective C∗−homomorphism and B ∈ A selfadjoint. Suppose σ(φ(B)) ⊊
σ(B). Then there exists a continuous function f ∈ C(σ(B)) such that f is not
constant 0 but f |σ(φ(B)) ≡ 0. We also get with (ii)

f(B) ̸= 0 ∧ φ(f(B)) = f(φ(B)) = 0.

That is a contradiction to φ being injective. Thus, σ(φ(B)) = σ(B).
With B = A∗A, we get analogously to (i) r(φ(B)) = r(B) and ∥φ(A)∥ = ∥A∥.
Therefore, φ is isometric. φ(A) is the image of an isometry and therefore closed. The
other properties of a C∗−subalgebra follow since φ is a C∗−homomorphism. Because
of Corollary 2.11 and since φ is a bijective homomorphism from A to φ(A), we get
σB(φ(A)) = σφ(A)(φ(A)) = σA(A). ■

7



2 Foundations

2.13 Proposition. Let A,B be C∗−algebras and φ : A → B a C∗−homomorphism. Then
φ(A) is a C∗−subalgebra of B.
Proof. It is clear that φ(A) is a selfadjoint subalgebra of B with I ∈ φ(A). Therefore, we
only need to show that φ(A) is closed. Now let An be a sequence in A with φ(An) → B
and B ∈ B. We have to show B ∈ φ(A). For the real parts, we have

φ(
1

2
(An +A∗

n)) =
1

2
(φ(An) + φ(An)

∗) → 1

2
(B +B∗).

Analogously the imaginary parts of φ(An) converge to the imaginary part of B. Obviously
it is sufficient to show that the real and imaginary part of B are in φ(A) to get that B
is in φ(A). By considering real and imaginary part, we can suppose that An and B are
selfadjoint without loss of generality. Furthermore, by considering a subsequence of An, we
can assume that ∥φ(An+1)− φ(An)∥ < 2−n.
Now for n ∈ N, we consider the function

fn : R → R, x 7→


−2−n x < −2−n

x −2−n ≤ x ≤ 2−n

2−n x > 2−n.

Since r(φ(An+1) − φ(An)) < 2−n, we get that fn is the identity on σ(φ(An+1) − φ(An)).
With Proposition 2.12 (ii), we have

φ(fn(An+1 −An)) = fn(φ(An+1)− φ(An)) = φ(An+1)− φ(An)

Furthermore, ∥fn∥∞ ≤ 2−n and therefore ∥fn(An+1 − An)∥ ≤ ∥fn∥∞ ≤ 2−n. Then the
series A1 +

∑∞
n=1 fn(An+1 − An) is absolutely convergent and also convergent because of

the completeness of A. Let A ∈ A be the limit of the series. Then

φ(A) = lim
m→∞

(
φ(A1) +

m−1∑
n=1

φ(fn(An+1 −An))

)

= lim
m→∞

(
φ(A1) +

m−1∑
n=1

φ(An+1)− φ(An)

)
= lim

m→∞
φ(Am) = B

This means B ∈ φ(A) and φ(A) is closed. ■

Using the functional calculus, we can show a spectral mapping theorem for continuous
functions.

2.14 Theorem. Let A be a C∗−algebra, A ∈ A selfadjoint and f ∈ C(σ(A)). Then

σ(f(A)) = {f(a) : a ∈ σ(A)}.

Proof. The function g 7→ g(A) is an injective C∗−homomorphism from C(σ(A)) to A.
Then we derive from Proposition 2.12 (iii) that

σA(f(A)) = σC(σ(A))(f) = {f(a) : a ∈ σ(A)}.

■
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3 Order structure

3.1 Positive elements

We extend the concept of positive operators or functions to general C∗−algebras.

3.1 Definition. Let A be a C∗−algebra and A ∈ A selfadjoint. We call A positive, if
σ(A) ⊆ R+

0 , and denote set of all positive elements in A as A+.

For a C∗−algebra A and a C∗−subalgebra B ⊆ A, we already know that the spectrum
of B ∈ B is independent of the surrounding C∗−algebra (Corollary 2.11). Therefore, the
property whether B ∈ B is positive is also independent of the surrounding C∗−algebra.
Thus, we have B+ = B∩A+. For another C∗−algebra C and a C∗−homomorphism Φ from
A to C, we know that for every A ∈ A the spectrum σ(φ(A)) ⊆ σ(A) (Proposition 2.12
(i)). Therefore, if A ∈ A is positive, then φ(A) is positive in C.
3.2 Example. If H is a Hilbert space and A ∈ B(H), then A is positive semidefinite if
⟨Ax, x⟩ ≥ 0 for every x ∈ H. In functional analysis, we proved that this is equivalent to
σ(A) ⊆ R+

0 . Therefore, A is positive in the sense of C∗−algebras if and only if A is positive
semidefinite in the sense of operators on a Hilbert space.

3.3 Lemma. Let A be a C∗−algebra, A ∈ A selfadjoint, a ∈ R and a ≥ ∥A∥. Then
A ∈ A+ if and only if ∥A− aI∥ ≤ a.

Proof. We have

∥A− aI∥ = r(A− aI) = sup
t∈σ(A)

|t− a| = sup
t∈σ(A)

(a− t).

and hence ∥A− aI∥ ≤ a if and only if σ(A) ⊆ R+
0 which is what we wanted to show. ■

3.4 Proposition. Let A be a C∗−Algebra.

(i) A+ is closed.

(ii) For A ∈ A+ and a ∈ R+
0 , we have aA ∈ A+.

(iii) If A,B ∈ A+, then A+B ∈ A+.

(iv) If A ∈ A+ and −A ∈ A+, then A = 0.

Proof.

(i) Because of Lemma 3.3, we can characterise A+ as

A+ = {A ∈ A : A = A∗ ∧ ∥A− ∥A∥I∥ ≤ ∥A∥}.

The norm and ∗ are continuous which shows that A+ is closed.

9



3 Order structure

(ii) For A ∈ A+, a ∈ R+
0 , we get

σ(aA) = {at : t ∈ σ(A)} ⊆ R+
0 .

(iii) Using Lemma 3.3 for A,B ∈ A+, we get

∥A− ∥A∥I∥ ≤ ∥A∥ ∧ ∥B − ∥B∥I∥ ≤ ∥B∥.

Therefore,

∥A+B − (∥A∥+ ∥B∥)I∥ ≤ ∥A− ∥A∥I∥+ ∥B − ∥B∥I∥ ≤ ∥A∥+ ∥B∥.

By Lemma 3.3 with a = ∥A∥+ ∥B∥ ≥ ∥A+B∥, we have A+B ∈ A+.

(iv) Let A,−A ∈ A+. By Definition 3.1, A is selfadjoint and σ(A) ⊆ R+
0 ∩ R−

0 = {0}.
Using Proposition 2.8 (i) we have ∥A∥ = r(A) = 0.

■

3.2 Decomposition

3.5 Proposition. Let A be a C∗−algebra and A ∈ A selfadjoint.

(i) For f ∈ C(σ(A)), we have f(A) ∈ A+ if and only if f(a) ≥ 0 for all a ∈ σ(A).

(ii) ∥A∥I ±A ∈ A+.

(iii) We can find A+, A− ∈ A+ with A = A+ −A− and A+A− = A−A+ = 0. A+, A− are
uniquely defined by these properties and ∥A∥ = max(∥A+∥, ∥A−∥).

Proof.

(i) Using Theorem 2.14, we know σ(f(A)) = {f(a) : a ∈ σ(A)}. If f(A) ∈ A+, there
is immediately f(a) ≥ 0 for all a ∈ σ(A). Inversely, if f(a) ≥ 0 for all a ∈ σ(A),
then f(A) is selfadjoint because f(A)∗ = f(A) = f(A). From knowing the spectrum
σ(f(A)) = {f(a) : a ∈ σ(A)}, we can follow that f(A) is positive.

(ii) We define f : σ(A) → R, a 7→ ∥A∥ ± a. Then f ∈ C(σ(A)) and f(a) ≥ 0 for all
a ∈ σ(A). Therefore, ∥A∥I ±A = f(A) ∈ A+ from (i).

(iii) We define the continuous functions u, u+, u− from R to R by

u(t) = t, u+(t) = max{t, 0}, u−(t) = max{−t, 0}.

Then

u = u+ − u−, u+u− = u−u+ = 0. (3.2.1)

We define A+ := u+(A), A− := u−(A), then (3.2.1) implies

A = u(A) = u+(A)− u−(A) = A+ −A−, A+A− = A−A+ = 0.

10



3 Order structure

Since u+(a) ≥ 0, u−(a) ≥ 0 for all a ∈ σ(A), we have A+, A− ∈ A+ by (i). They
satisfy the expected conditions. Furthermore, we get

∥u∥∞ = max{∥u+∥∞, ∥u−∥∞}

and then ∥A∥ = max{∥A+∥, ∥A−∥}.
We only need to show that they are unique. Let B,C ∈ A+ with A = B − C and
BC = CB = 0. Then by induction, we get

∀n ≥ 1 : An = Bn + (−C)n.

This means that p(A) = p(B)+p(−C) for all polynomials with constant term 0. Since
u+(0) = 0, we find a sequence of polynomials pn which converge to u+ uniformly on
σ(A) ∪ σ(B) ∪ σ(−C) and the constant term of each pn is 0. Then

u+(A) = lim
n→∞

pn(A),= lim
n→∞

(pn(B) + pn(−C)) = u+(B) + u+(−C).

Since σ(B) ⊆ R+
0 and σ(−C) ⊆ R−

0 , we have

∀b ∈ σ(B) : u+(b) = b =⇒ u+(B) = B,

∀c ∈ σ(−C) : u+(c) = 0 =⇒ u+(−C) = 0.

Then A+ = u+(A) = u+(B)+u+(−C) = B and therefore C = B−A = A+−A = A−.
We have shown that A+, A− are unique.

■

Proposition 3.5 (iii) shows that for every selfadjoint element we find an unique decom-
position into a positive and a negative part.

3.6 Corollary. Let A be a C∗−algebra. Then every element A ∈ A is the linear combina-
tion of 4 elements in A+.

Proof. Every element A ∈ A has a decomposition into real and imaginary part, which are
the difference of two elements in A+ because of Proposition 3.5 (iii). ■

3.7 Lemma. Let A be a C∗−algebra. For A ∈ A with −A∗A ∈ A+, we have A = 0.

Proof. First we prove that for every A,B ∈ A we have σ(AB)∪{0} = σ(BA)∪{0}. This
is equivalent to ρ(AB)\{0} = ρ(BA)\{0} and because of the symmetry it is sufficient to
show that one is a subset of the other. Therefore, let λ ̸= 0 and λ /∈ σ(AB) which means
that AB − λI is invertible. Then I − (λ−1A)B is invertible. Let C = λ−1A

(I −BC)(B(I − CB)−1C + I) = B(I − CB)−1C + I −BCB(I − CB)−1C −BC

= B
(
(I − CB)−1 − CB(I − CB)−1

)
C + I −BC

= B(I − CB)(I − CB)−1C + I −BC

= BC −BC + I = I

11



3 Order structure

This shows that B(I −CB)−1C + I is the right inverse of I −BC. A similar computation
shows that it is the left inverse, too. Thus I−BC = I−B(λ−1A) is invertible. This shows
that BA− λI is invertible and λ /∈ σ(BA) ∪ {0}. Therefore, σ(AB) ∪ {0} = σ(BA) ∪ {0}.
Now we can prove the lemma. Let A ∈ A with −A∗A ∈ A+. We split A into real
part H and imaginary part K. This means A = H + iK with H,K selfadjoint. Since
σ(H2) = {h2 : h ∈ σ(H)} ⊆ R+

0 , we have that H2 and similarly K2 are positive. From
before we have σ(−AA∗) ⊆ σ(−A∗A) ∪ {0} ⊆ R+

0 and since AA∗ is also selfadjoint −AA∗

is positive. Then we get

A∗A+AA∗ = (H − iK)(H + iK) + (H + iK)(H − iK) = 2H2 + 2K2

=⇒ A∗A = 2H2 + 2K2 + (−AA∗)

Thus A∗A is the sum of three positive elements and therefore positive as well. Then A∗A
and −A∗A are positive which means that A∗A = 0 using Proposition 3.4 (iv). Then also
∥A∥2 = ∥A∗A∥ = 0 and A = 0. ■

3.8 Theorem. Let A be a C∗−Algebra and A ∈ A. Then the following statements are
equivalent:

(i) A ∈ A+

(ii) There exists H ∈ A+ with A = H2.

(iii) There exists B ∈ A with A = B∗B.

If the conditions (i)-(iii) are satisfied, the element H in (ii) is unique.

Proof. (i) =⇒ (ii): f(t) = t
1
2 is for t ∈ σ(A) ⊆ R+

0 well defined and continuous. We
define H := f(A). Since f(a) ≥ 0 for all a ∈ σ(A), we get that the element H is positive.
Since f(t)2 = t, we get H2 = A.
(ii) =⇒ (iii): We set B = H and with H∗ = H we get B∗B = H2 = A.
(iii) =⇒ (i): We have A = B∗B with B ∈ A. Obviously A is selfadjoint therefore by
Proposition 3.5 (iii) we get A = A+ − A− with the properties from there. Let C := BA−

then we have

C∗C = A−B∗BA− = A−(A+ −A−)A− = −(A−)3.

A− is in A+ therefore −C∗C = (A−)3 ∈ A+ as well. From Lemma 3.7, we know C = 0,
whereas (A−)3 = 0 follows. With Corollary 2.9, we get A− = 0 and A = A+ ∈ A+.

Now we only need to show thatH is unique. Let A ∈ A+, f(t) = t
1
2 on σ(A), H = f(A) and

K ∈ A+ with K2 = A. We want to show H = K. Let (pn) be a sequence of polynomials
which converge uniformly on σ(A) to f . We define qn(x) := pn(x

2). Since we know that
σ(A) = σ(K2) = {x2 : x ∈ σ(K)}, the limits are

lim
n→∞

qn(x) = lim
n→∞

pn(x
2) = f(x2) = x

uniformly for x ∈ σ(K). Then

K = lim
n→∞

qn(K) = lim
n→∞

pn(K
2) = lim

n→∞
pn(A) = f(A) = H.

Therefore, we proved that H is unique. ■
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3 Order structure

We call the element H from statement (ii) of Theorem 3.8 the positive square root of

A. We also reference it by A
1
2 . Analogously, we can define fα(a) = aα for α > 0 and get

Aα := fα(A). Then we have fα(a)fβ(a) = fα+β(a) and f1(a) = a for all a ∈ σ(A). From
this we get AαAβ = Aα+β, A1 = A. If A is invertible, then we can also consider fα and
Aα = fα(A) for α ≤ 0. Then we get A0 = I and the inverse of A as A−1 = f−1(A). We see
that Aα has the elementary meaning for integer values of α.

3.9 Corollary. Let A be a C∗−algebra, A ∈ A+ and B ∈ A. Then B∗AB ∈ A+.

Proof. Since B∗AB = (A
1
2B)∗A

1
2B, we get B∗AB by Theorem 3.8. ■

3.3 Order structure

Now we can define a partial order for the selfadjoint elements of a C∗−algebra.

3.10 Definition. Let A be a C∗−algebra. We define Ah as the set of all selfadjoint
elements of A. Furthermore, we define the relation ≤ by

∀A,B ∈ Ah : A ≤ B : ⇐⇒ B −A ∈ A+.

3.11 Proposition. Let A be a C∗−algebra.

(i) Ah is closed.

(ii) ≤ is a partial order.

(iii) A+ = {A ∈ Ah : A ≥ 0}.

(iv) For all A ∈ Ah, there is −∥A∥I ≤ A ≤ ∥A∥I.

(v) ∥A∥ = inf{a ≥ 0 : −aI ≤ A ≤ aI}.

(vi) For A,B,A′, B′ ∈ Ah with A ≤ B and A′ ≤ B′, it follows that A+B ≤ A′ +B′.

(vii) For A,B ∈ Ah, a ≥ 0 with A ≤ B the inequality aA ≤ aB also holds.

(viii) For A,B ∈ Ah, a ≤ 0 with A ≤ B, the inequality changes directions to aB ≤ aA.

(ix) For (An), (Bn) sequences of elements in Ah and An → A ∈ Ah, Bn → B ∈ Ah with
An ≤ Bn for all n ∈ N, there is also A ≤ B.

(x) For A,B ∈ Ah and C ∈ A with A ≤ B, there is C∗AC ≤ C∗BC.

(xi) A ∈ A+ is invertible if and only if there exists a > 0 such that A ≥ aI.

Proof.

(i) This follows immediately from the fact that ∗ is continuous.

13



3 Order structure

(ii) ≤ is transitive: Let A,B,C ∈ Ah with A ≤ B,B ≤ C. Then B − A,C − B ∈ A+.
From Proposition 3.4 (iii), we get C −A = (C −B) + (B −A) ∈ A+ and A ≤ C.
≤ is reflective: σ(0) = {0} ⊆ R+

0 . Therefore, for all A ∈ Ah, we get A−A = 0 ∈ A+

and A ≤ A.
≤ is antisymmetric: Let A,B ∈ Ah with A ≤ B,B ≤ A. Then of course B − A and
−(B − A) = A − B are in A+. From Proposition 3.4 (iv), we get B − A = 0 and
A = B.
Therefore, ≤ is a partial order on Ah.

(iii) For A ∈ Ah we have

A ∈ A+ ⇐⇒ A− 0 ∈ A+ ⇐⇒ A ≥ 0.

(iv) This follows immediately from Proposition 3.5 (ii) ∥A∥I ±A ∈ A+ for all A ∈ Ah.

(v) We have

∥A∥ = inf{a ≥ 0 : ∀t ∈ σ(A) : −a ≤ t ≤ a}.

With Proposition 3.5 (i), we can see that we can use functional calculus here and get

∥A∥ = inf{a ≥ 0 : −aI ≤ A ≤ aI}.

(vi) Let A,B,A′, B′ ∈ Ah with A ≤ B,A′ ≤ B′. Now we have

(B +B′)− (A+A′) = (B −A) + (B′ −A′) ∈ A+

from Proposition 3.4 (iii). Therefore, A+A′ ≤ B +B′.

(vii) For A,B ∈ Ah, a ≥ 0 with A ≤ B, we can use Proposition 3.4 (ii) where we know
that aB − aA = a(B −A) ∈ A+ which implies aA ≤ aB.

(viii) Let A,B ∈ Ah, a ≤ 0 with A ≤ B. Now we use Proposition 3.4 (ii) with −a to get
aA− aB = (−a)(B −A) ∈ A+ which means aB ≤ aA.

(ix) This follows from the fact that A+ is closed.

(x) For A,B ∈ Ah and C ∈ A with A ≤ B, we can use Corollary 3.9 to know that
C∗BC − C∗AC = C∗(B −A)C ∈ A+. This means C∗AC ≤ C∗BC.

(xi) Let A ∈ A+. Then A is invertible if and only if 0 /∈ σ(A) which is equivalent to
σ(A) ⊆ [a,∞) for some a > 0 since the spectrum is compact. However, σ(A) ⊆ [a,∞)
is equivalent to the statement that the function t 7→ t − a is positive on σ(A). By
Proposition 3.5 (i), we know that this happens if and only if A− aI ≥ 0. This proves
the equivalence.

■

We see that this partial order behaves much in the same way as the order of real numbers.
We can add inequalities and multiply with a positive integer. If we multiply with a negative
integer, the sign changes direction and we can take limits.
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4 Linear functionals

4.1 Hermitian linear functionals

Now we consider linear functionals on selfadjoint subspaces M of a C∗−algebra A which
contain the unit I. We refer to the set of all selfadjoint elements of M as Mh. The set
of all positive elements of M is called M+ which satisfies M+ = M∩A+. If B ⊆ A is a
C∗−subalgebra and M ⊆ B, then M∩ B+ = M∩ B ∩ A+ = M∩A+ which shows that
M+ is independent of the surrounding C∗−algebra. M contains real and imaginary part
of every A ∈ M. Selfadjoint elements A ∈ M are the difference of two positive elements
∥A∥I ±A ∈ M+ which shows that M is the linear span of M+.

4.1 Definition. Let A be a C∗−algebra and M be a selfadjoint subspace of A. For every
linear functional ρ on M, we can define ρ∗ : M → C, A 7→ ρ(A∗) which is also a linear
functional. Then we call ρ hermitian if ρ = ρ∗.

4.2 Proposition. Let A be a C∗−algebra, M a selfadjoint subspace of A and ρ a linear
functional on M.

(i) ρ is hermitian if and only if ρ(H) is real for every selfadjoint H ∈ H.

(ii) ρ can be expressed uniquely in the form ρ = ρ1+ iρ2 with hermitian linear functionals
ρ1, ρ2 on M.

(iii) If ρ is bounded and hermitian, then ∥ρ∥ = sup{ρ(H) : H = H∗, H ∈ M}.

Proof.

(i) Let A ∈ M and A = H + iK with selfadjoint H,K ∈ Mh. Then

ρ(A) = ρ(H + iK) = ρ(H) + iρ(K),

ρ∗(A) = ρ∗(H) + iρ∗(K) = ρ(H) + iρ(K).

We see that ρ(A) = ρ∗(A) for every A ∈ M if and only if ρ(H) = ρ(H) for every
H ∈ Mh which is exactly when ρ(H) is real for every selfadjoint H ∈ M.

(ii) We only need to define ρ1 =
1
2(ρ+ ρ∗), ρ2 =

1
2 i(ρ

∗ − ρ).

(iii) Suppose ρ is bounded and hermitian. We note that sup{ρ(H) : H = H∗, H ∈ M} is
well defined because ρ(H) is real and bounded by ∥ρ∥ for every selfadjoint H ∈ M.
Therefore, sup{ρ(H) : H = H∗, H ∈ M} ≤ ∥ρ∥. For every ε > 0, we can find
A ∈ M such that ∥A∥ ≤ 1 and |ρ(A)| > ∥ρ∥ − ε. Now we choose a ∈ C such that
aρ(A) = |ρ(A)| and get

∥ρ∥ − ε < |ρ(A)| = ρ(aA) = ρ(aA) = ρ((aA)∗)
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4 Linear functionals

since ρ is hermitian. We define H0 := 1
2(aA + (aA)∗) ∈ Mh as the real part of

aA and get ρ(H0) = 1
2(ρ(aA) + ρ((aA)∗)) = |ρ(A)| > ∥ρ∥ − ε. This shows that

∥ρ∥ ≤ sup{ρ(H) : H = H∗, H ∈ M} which proves that they are equal.

■

4.3 Definition. Let A be a C∗−algebra, M a selfadjoint subspace of A and ρ a linear
functional on M. If ρ(A) ≥ 0 for every A ∈ M+ then ρ is called positive.

4.4 Proposition. Let A be a C∗−algebra, M a selfadjoint subspace of A and ρ a positive
linear functional on M. Then ρ is hermitian.

Proof. For every selfadjoint A ∈ M, the elements ∥A∥I ± A are positive. Therefore, we
know that ρ(∥A∥I ± A) ≥ 0 and ρ(A) = 1

2(ρ(∥A∥I + A) − ρ(∥A∥I − A)) is real. Then
Proposition 4.2 (i) implies that ρ is hermitian. ■

4.5 Proposition. Let A be a C∗−algebra and ρ a positive linear functional on A. Then
⟨·, ·⟩ : A × A → C, (A,B) 7→ ⟨A,B⟩ := ρ(B∗A) defines a positive semi-definite hermitian
sesquilinear form and

∀A,B ∈ A : |ρ(B∗A)|2 ≤ ρ(A∗A)ρ(B∗B). (4.1.1)

Proof. We see immediately that ⟨·, ·⟩ is sesquilinear. For every A,B ∈ A,

⟨A,B⟩ = ρ(B∗A) = ρ((A∗B)∗) = ρ(A∗B) = ⟨B,A⟩

because ρ is hermitian which shows that ⟨·, ·⟩ is symmetric. Now for every A ∈ A, the
element A∗A is positive and, since ρ is positive, we get ⟨A,A⟩ = ρ(A∗A) ≥ 0. Therefore,
⟨·, ·⟩ is a positive semi-definite hermitian sesquilinear form. Then it satisfies the Cauchy-
Schwarz inequality which yields

|ρ(B∗A)|2 = |⟨A,B⟩|2 ≤ ⟨A,A⟩⟨B,B⟩ = ρ(A∗A)ρ(B∗B)

for all A,B ∈ A. ■

This proposition shows that for every positive functional ρ on a C∗−algebra A we can
define a corresponding positive semi-definite hermitian sesquilinear form on A. Then we
refer to (4.1.1) as the Cauchy-Schwarz inequality for ρ.

4.6 Theorem. Let A be a C∗−algebra and A a selfadjoint subspace of M containing I.
A linear functional ρ on M is positive if and only if ρ is bounded and ρ(I) = ∥ρ∥.

Proof. First let ρ be a positive linear functional on M and A ∈ M. Then we choose a ∈ C
with |a| = 1 such that aρ(A) = |ρ(A)| and define H = 1

2(aA+ (aA)∗) the real part of aA.
We see ∥H∥ ≤ ∥A∥ and

H ≤ ∥H∥I ≤ ∥A∥I =⇒ ∥A∥ρ(I)− ρ(H) = ρ(∥A∥I −H) ≥ 0.

Since ρ is hermitian, we get

|ρ(A)| = ρ(aA) = ρ(aA) = ρ((aA)∗)
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4 Linear functionals

which shows

|ρ(A)| = ρ

(
1

2
(aA+ (aA)∗)

)
= ρ(H) ≤ ∥A∥ρ(I).

This proves that ρ is bounded and ρ(I) ≥ ∥ρ∥. Since ρ(I) = |ρ(I)| ≤ ∥ρ∥, we have
∥ρ∥ = ρ(I).
For the other implication, suppose ρ is a bounded linear functional with ρ(I) = ∥ρ∥.
Without loss of generality, we can suppose ∥ρ∥ = 1. Let A ∈ M+ and ρ(A) = a+ ib with
real a, b. We want to show a ≥ 0 and b = 0. Since σ(A) ⊆ R+

0 , we get for 0 < s ≤ 1
∥A∥

σ(I − sA) = {1− st : t ∈ σ(A)} ⊆ [0, 1].

Then ∥I − sA∥ = r(I − sA) ≤ 1. Therefore,

1− sa ≤ |1− s(a+ ib)| = |ρ(I − sA)| ≤ 1.

This shows a ≥ 0. We define Bn := A− aI + inbI for every n ∈ N and get

∥Bn∥2 = ∥B∗
nBn∥ = ∥(A− aI − inbI)(A− aI + inbI)∥

= ∥(A− aI)2 + n2b2I∥
≤ ∥A− aI∥2 + n2b2.

Then with ρ(Bn) = i(n+ 1)b, we have

(n2 + 2n+ 1)b2 = |ρ(Bn)|2 ≤ ∥Bn∥2 ≤ ∥A− aI∥2 + n2b2.

We see b = 0 and therefore ρ is positive. ■

4.2 States

4.7 Definition. Let A be a C∗−algebra and M a selfadjoint subspace of A containing I.
A linear functional ρ on M is called a state of M if ρ is positive and ρ(I) = 1. We denote
the set of all states of M as S(M). We call S(M) the state space of M.

4.8 Example. Given a Hilbert space H and x ∈ H, we define a linear functional on B(H)
with ωx : B(H) → C, T 7→ ⟨Tx, x⟩. This linear functional is positive because for every
T ∈ B(H)+ we have ωx(T ) = ⟨Tx, x⟩ ≥ 0. We see ωx(I) = ∥x∥2 and therefore ωx is a state
if ∥x∥ = 1. For a C∗−subalgebra A ⊆ B(H) and M a selfadjoint subspace of A which
contains I, we call ωx|M a vector state if ∥x∥ = 1.

The next Proposition shows that the state space with the weak∗ topology is a compact
Hausdorff space.

4.9 Proposition. Let A be a C∗−algebra and M a selfadjoint subspace of A containing
I. Then S(M) is part of {ρ ∈ M′ : ∥ρ∥ = 1} where M′ is the Banach dual space of M.
Furthermore, S(M) is convex and weak∗-compact.
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Proof. Theorem 4.6 shows that, for every state ρ ∈ S(M), we know that ρ ∈ M′ and
∥ρ∥ = 1. We also get the characterisation

S(M) = {ρ ∈ M′ : ρ(I) = 1 ∧ ∀A ∈ M+ : ρ(A) ≥ 0}.

From this, we immediately see that S(M) is convex and weak∗-closed. Since the unit ball
in M′ is weak∗-compact by the Banach-Alaoglu Theorem, we know that S(M) is also
weak∗-compact. ■

4.10 Proposition. Let A be a C∗−algebra and M a selfadjoint subspace of A containing
I. For every A ∈ M and a ∈ σ(A), we find a state ρ of M with ρ(A) = a.

Proof. Let A ∈ M and a ∈ σ(A). We define

ρ0 : {bA+ cI : b, c ∈ C} → C, bA+ cI 7→ ba+ c

Then ρ0 is obviously linear and since ba + c ∈ σ(bA + cI) for b, c ∈ C, we can see that
|ρ0(bA+ cI)| ≤ r(bA+ cI) ≤ ∥bA+ cI∥. Therefore, ρ0 is bounded and since also ρ0(I) = 1,
we know ∥ρ0∥ = 1. Using the Hahn-Banach Theorem, we can extend ρ0 from the subspace
{bA + cI : b, c ∈ C} of M to a bounded linear functional ρ on M. Then ρ satisfies
∥ρ∥ = ∥ρ0∥ = 1 = ρ0(I) = ρ(I) and ρ(A) = ρ0(A) = a. From Theorem 4.6, we get that ρ
is a state of M with ρ(A) = a. ■

4.11 Theorem. Let A be a C∗−algebra and M a selfadjoint subspace of A containing I
and A ∈ M.

(i) A = 0 if ρ(A) = 0 for every state ρ of M.

(ii) A is selfadjoint if ρ(A) is real for every state ρ of M.

(iii) A ∈ M+ if ρ(A) ≥ 0 for every state ρ of M.

(iv) If A is normal, we find a state ρ of M with |ρ(A)| = ∥A∥.

Proof.

(i) First, we assume A is selfadjoint and ρ(A) = 0 for every state ρ of M. Using
Proposition 4.10, we get σ(A) = {0} and ∥A∥ = r(A) = 0.
Now, for the general case let A ∈ M with ρ(A) = 0 for every state ρ of M. Let
A = H + iK with the selfadjoint real and imaginary part H and K. Then we get
ρ(A) = ρ(H) + iρ(K) = 0 with ρ(H), ρ(K) real for every state ρ of M. Therefore,
we see ρ(H) = ρ(K) = 0 for every state ρ of M. From before we know H = K = 0
and A = H + iK = 0.

(ii) Suppose ρ(A) is real for every state ρ of M. Then for every state ρ of M

ρ(A−A∗) = ρ(A)− ρ(A) = 0.

From (i) we get A−A∗ = 0 and A is selfadjoint.
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(iii) If ρ(A) ≥ 0 for every state ρ of M, we already know that A is selfadjoint. By
Proposition 4.10, we know that σ(A) ⊆ R+

0 and therefore A is positive.

(iv) If A is normal, we know r(A) = ∥A∥ which means we find a ∈ σ(A) with |a| = ∥A∥.
Using Proposition 4.10, we find a state ρ such that |ρ(A)| = |a| = ∥A∥.

■

4.3 Decomposition

Just like we found a decomposition for selfadjoint elements of a C∗−algebra into positive
and negative part, we can find a decomposition for bounded hermitian linear functionals
into positive and negative part. To prove this, we need the following two lemmas first.

4.12 Lemma. Let A be a C∗−algebra, M a selfadjoint subspace of A which contains I
and S0 a set of states of M. If for every selfadjoint H ∈ M

∥H∥ = sup{|ρ(H)| : ρ ∈ S0}

then the set co(S0 ∪ −S0) is the set of all bounded hermitian linear functionals on M with
norm less than or equal to 1 where co(S0 ∪ −S0) is the weak

∗-closed convex hull of S0∪−S0.

Proof. The set of all bounded hermitian linear functionals on M with norm smaller or
equal than 1 is convex and weak∗-closed and since it contains S0 ∪ −S0 we know that it
contains co(S0 ∪ −S0). Now we only need to show that every bounded hermitian linear
functional on M with norm smaller or equal than 1 is an element of co(S0 ∪ −S0). Suppose
there is a bounded hermitian linear functional ρ0 with ∥ρ0∥ ≤ 1 that is not element of
co(S0 ∪ −S0). By the Hahn-Banach Theorem, we find a continuous (in respect to the weak∗

topology) linear functional onM′ which separates ρ0 and co(S0 ∪ −S0). By definition of the
weak∗ topology, all continuous linear functionals on M′ can be represented by an element
in M. Therefore, we find A ∈ M and a ∈ R such that

Reρ0(A) > a ∧ ∀ρ ∈ co(S0 ∪ −S0) : Reρ(A) ≤ a.

Let H be the real part of A, then we get for a hermitian linear functional ρ on M

ρ(H) =
1

2
(ρ(A) + ρ(A∗)) =

1

2
(ρ(A) + ρ(A)) = Reρ(A).

Therefore, we have ρ0(H) > a and ρ(H) ≤ a for every ρ ∈ co(S0 ∪ −S0). In particular, we
have |ρ(H)| ≤ a for every ρ ∈ S0. Then we see

a < ρ0(H) ≤ ∥H∥ = sup{|ρ(H)| : ρ ∈ S0} ≤ a.

This is a contradiction. ■

4.13 Lemma. Let A be a C∗−algebra and M a selfadjoint subspace of A containing I.
Then

co(S(M) ∪ −S(M)) = {aσ − bτ : σ, τ ∈ S(M), a, b ∈ R+
0 , a+ b = 1}
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4 Linear functionals

Proof. Let S0 be the right-hand set. It is obvious that S0 ⊆ co(S(M) ∪ −S(M)). We want
to show that they are equal. First, we show that S0 is convex. Let aσ− bτ, a′σ′ − b′σ′ ∈ S0

and a+ b = a′ + b′ = c+ d = 1 with a, b, a′, b′, c, d ∈ R+
0 and σ, σ′, τ, τ ′ ∈ S(M). We have

to differentiate three cases:

1. case (a > 0∨ a′ > 0)∧ (b > 0∨ b′ > 0): Let λ := ac+ a′d > 0, µ := bc+ b′d > 0. Then
λ + µ = 1. We define ρ := 1

λ(acσ + a′dσ′) and ν := 1
µ(bcτ + b′dτ ′). Then we know

since S(M) is convex that ρ and ν are states of M. Therefore,

c(aσ − bτ) + d(a′σ′ − b′τ ′) = λρ− µν ∈ S0.

2. case (a = 0 ∧ a′ = 0): Now we see that b = b′ = 1 and because S(M) is convex
cτ + dτ ′ ∈ S(M). Then

c(aσ − bτ) + d(a′σ′ − b′τ ′) = 0− 1 · (cτ + dτ ′) ∈ S0.

3. case (b = 0 ∧ b′ = 0): Now we see that a = a′ = 1 and cσ + dσ′ ∈ S(M). Then

c(aσ − bτ) + d(a′σ′ − b′τ ′) = 1 · (cσ + dσ′)− 0 ∈ S0.

Therefore, S0 is convex. Since S0 is the range of the continuous function

F : S(M)× S(M)× [0, 1] → M′, (σ, τ, a) 7→ aσ − (1− a)τ

and S(M) × S(M) × [0, 1] is weak∗-compact (Proposition 4.9), we know that S0 is also
weak∗-compact. Since S0 is convex, weak∗-closed and contains S(M) ∪ −S(M), we know
S0 = co(S(M) ∪ −S(M)). ■

Now we can prove the decomposition of bounded hermitian linear functionals.

4.14 Theorem. Let A be a C∗−algebra and M be a selfadjoint subspace of A which
contains I and ρ a bounded hermitian linear functional on M. Then we find two positive
linear functionals ρ+, ρ− on M which satisfy ρ = ρ+ − ρ− and ∥ρ∥ = ∥ρ+∥ + ∥ρ−∥. In
the case that M is the whole C∗−algebra A, then ρ+, ρ− are uniquely determined by these
conditions.

Proof. We assume without loss of generality ∥ρ∥ = 1. For every selfadjoint A ∈ M,
Theorem 4.11 (iv) tells us that

∥A∥ = sup{|τ(A)| : τ ∈ S(M)}

since |τ(A)| ≤ ∥A∥ for every state τ of M. Therefore, the state space S(M) satisfies
the conditions of Lemma 4.12 and we know ρ ∈ co(S(M) ∪ −S(M)). Using Lemma 4.13,
we know ρ = aσ − bτ with σ, τ ∈ S(M), a, b ∈ R+

0 and a + b = 1. Then we define
ρ+ = aσ, ρ− = bτ . Then we have ρ = ρ+ − ρ− and

∥ρ∥ = 1 = a+ b = ∥ρ+∥+ ∥ρ−∥.
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4 Linear functionals

Now we need to show that for M = A the decomposition is unique. Therefore, we assume
from now on M = A and let µ, ν be positive linear functionals on A which satisfy ρ = µ−ν
and ∥ρ∥ = 1 = ∥µ∥ + ∥ν∥ just like ρ+, ρ−. Let ε > 0. Then we find a selfadjoint H ∈ A
with ∥H∥ ≤ 1 and ρ(H) > ∥ρ∥ − 1

2ε
2. We define K := 1

2(I −H). Since −I ≤ H ≤ I, we
know 0 ≤ K ≤ I and therefore K, I −K ∈ A+. Then

µ(I) + ν(I) = ∥µ∥+ ∥ν∥ = ∥ρ∥ < ρ(H) +
1

2
ε2 = µ(H)− ν(H) +

1

2
ε2

=⇒ µ(I −H) + ν(I +H) <
1

2
ε2 =⇒ µ(K) + ν(I −K) <

1

4
ε2

=⇒ 0 ≤ µ(K) <
1

4
ε2 ∧ 0 ≤ ν(I −K) <

1

4
ε2

because µ, ν are positive linear functionals. Now let A ∈ A and with the Cauchy-Schwartz
inequality for µ and ν we get

|µ(KA)|2 = |µ(K
1
2K

1
2A)|2 ≤ µ(K)µ(A∗KA) ≤ 1

4
ε2∥K

1
2A∥2 ≤ 1

4
ε2∥A∥2,

|ν((I −K)A)| ≤ ν(I −K)ν(A∗(I −K)A) ≤ 1

4
ε2∥A∥2.

We can use the same argument for ρ+, ρ− and get

|µ(KA)| ≤ ε

2
∥A∥, |ρ+(KA)| ≤ ε

2
∥A∥

|ν((I −K)A)| ≤ ε

2
∥A∥, |ρ−((I −K)A)| ≤ ε

2
∥A∥.

From ρ = ρ+ − ρ− = µ− ν, we get µ− ρ+ = ν − ρ−. Then we have

µ(A)− ρ+(A) = ν(A)− ρ−(A) + µ(KA)− ρ+(KA)− ν(KA) + ρ−(KA)

= µ(KA)− ρ+(KA) + ν((I −K)A)− ρ−((I −K)A).

Therefore, |µ(A)−ρ+(A)| < 2ε∥A∥ for every ε > 0. Then we know µ = ρ+ and ν = ρ−. ■

4.15 Corollary. Let A be a C∗−algebra and M be a selfadjoint subspace of A which
contains I and ρ a bounded linear functional on M. Then ρ is the linear combination of
four states of M.

Proof. By Proposition 4.2 (ii), we find σ, τ bounded hermitian linear functionals on M
such that ρ = σ + iτ with . Theorem 4.14 shows that we can find σ+, σ−, τ+, τ− positive
linear functionals on M such that σ = σ+−σ−, τ = τ+− τ− which implies ρ = σ+−σ−+
iτ+− iτ−. Every positive linear functional on M is a scalar multiple of a state of M which
proves that every bounded linear functional on M is a linear combination of four states of
M. ■

4.4 Pure states

4.16 Definition. LetA be a C∗−algebra andM a selfadjoint subspace ofA which contains
I. We call ρ a pure state of M if ρ is an extreme point of S(M). We define P(M) as the
set of all pure states of M. Then the weak∗ closure P(M) is called the pure state space.
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4 Linear functionals

From the Krein-Milman Theorem, we know that S(M) is weak∗-closed convex hull of
P(M).

4.17 Theorem. Let A be a C∗−algebra and M a selfadjoint subspace of A which contains
I and A ∈ M.

(i) A = 0 if ρ(A) = 0 for every pure state ρ of M.

(ii) A is selfadjoint if ρ(A) is real for every pure state ρ of M.

(iii) A is positive if ρ(A) ≥ 0 for every pure state ρ of M.

(iv) If A is normal, there exists a pure state ρ0 of M with |ρ0(A)| = ∥A∥

Proof. All the properties of (i)-(iii) are extended to weak∗ limits of convex combinations
of pure states. Since we know S(M) = co(P(M)), the statements (i)-(iii) are proven by
the corresponding statements in Theorem 4.11.
For (iv) let A be normal. Using Theorem 4.11, we know that there exists a state τ such that
τ(A) = c and |c| = ∥A∥. Now let a ∈ C be such that τ(aA) = ac = ∥A∥ and |a| = 1. We
consider the set S0 := {ρ ∈ S(M) : Reρ(aA) = ∥A∥}. We see that S0 is convex, compact
and nonempty since τ ∈ S0. From the Krein-Milman theorem, we know that there exists an
extreme point ρ0 of S0. We prove that ρ0 is a pure state. Let 0 < t < 1, ρ1, ρ2 ∈ S(M) with
(1− t)ρ1+ tρ2 = ρ0. We know Reρ1(aA) ≤ |ρ1(aA)| ≤ ∥A∥ and similarly Reρ2(aA) ≤ ∥A∥.
We also know

(1− t)Reρ1(aA) + tReρ2(aA) = Re(1− t)ρ1(aA) + tρ2(aA) = Reρ0(aA) = ∥A∥.

Then we see Reρ1(aA) = Reρ2(aA) = ∥A∥ and ρ1, ρ2 ∈ S0. Since ρ0 is an extreme point of
S0, we know ρ1 = ρ2 = ρ0 and ρ0 is a pure state. Furthermore, we get

∥A∥ = Reρ0(aA) ≤ |ρ0(A)| ≤ ∥A∥.

Therefore, |ρ0(A)| = ∥A∥. ■

4.18 Theorem. Let A be a C∗−algebra and M a selfadjoint subspace of A which contains
I and S0 a subset of the state space S(M). Then these four conditions are equivalent:

(i) A is positive if ρ(A) ≥ 0 for every ρ ∈ S0.

(ii) For every selfadjoint H ∈ M, there is ∥H∥ = sup{|ρ(H)| : ρ ∈ S0}.

(iii) co(S0) = S(M).

(iv) P(M) ⊆ S0.

Proof. (i) =⇒ (ii): Let H ∈ M be selfadjoint. We define a = sup{|ρ(H)| : ρ ∈ S0}. Then
we know a ≤ ∥H∥ and

∀ρ ∈ S0 : ρ(aI ±H) = a± ρ(H) ≥ 0.
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4 Linear functionals

From (i), we know aI ±H ∈ M+ and −aI ≤ H ≤ aI which implies ∥H∥ ≤ a because of
Proposition 3.11 (v). Therefore, ∥H∥ = sup{|ρ(H)| : ρ ∈ S0}.
(ii) =⇒ (iii): We define S1 = co(S0). Now we know S1 ⊆ S(M). Therefore, from (ii) we
also get ∥H∥ = sup{|ρ(H)| : ρ ∈ S1}. Lemma 4.12 tells us that co(S1 ∪ −S1) is the set of
all hermitian linear functionals which are bounded by 1. Of course S(M) is a part of this.
We define

S2 := {aσ − bτ : σ, τ ∈ S1, a, b ∈ R+
0 , a+ b = 1}.

Just like in Lemma 4.13, we get that S2 is convex and weak∗-compact because S1 is convex
and weak∗-compact. Since it also contains S1 ∪ −S1, we know that S2 = co(S1 ∪ −S1).
Therefore, for every state ρ of M, we find σ, τ ∈ S1,a, b ∈ R+

0 with ρ = aσ − bτ and
a+ b = 1. Then

1 = ρ(I) = aσ(I)− bτ(I) = a− b = 1− 2b.

This shows b = 0 and ρ = σ ∈ S1. This shows S(M) = S1.
(iii) =⇒ (iv): From functional analysis, we know since co(S0) = S(M) is compact that all
extremal points of S(M) are contained in S0. This means P(M) ⊆ S0.
(iv) =⇒ (i): If ρ(A) ≥ 0 for every ρ in S0, then it is also true for ρ ∈ S0. Since the pure
states are contained in S0, Theorem 4.17 (iii) implies that A is positive. ■

4.19 Corollary. Let H be a Hilbert space and H ∈ B(H) a selfadjoint operator. Then

∥H∥ = sup{|⟨Hx, x⟩| : x ∈ H, ∥x∥ = 1}.

For a selfadjoint subspace M of B(H) which contains I the set S0 of all vector states of M
satisfies P(M) ⊆ S0 and S(M) = co(S0).

Proof. If there is A ∈ M with ρ(A) ≥ 0 for every ρ ∈ S0, we have ⟨Ax, x⟩ ≥ 0 for every
x ∈ H. Then A is positive by definition. Therefore, we immediately get from Theorem
4.18 that S(M) = co(S0) and P(M) ⊆ S0. If we set M = B(H), we get

∥H∥ = sup{|⟨Hx, x⟩| : x ∈ H, ∥x∥ = 1}

for every selfadjoint H ∈ B(H). ■
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5 GNS construction

5.1 Representations

5.1 Definition. If A is a C∗−algebra and H is a Hilbert space, then a C∗−homomorphism
φ from A to B(H) is called a representation of A on H. If further φ is injective, then it is
called a faithful representation of A on H.

The objective in this chapter is to show that every C∗−algebra has a faithful represen-
tation on some Hilbert space.

5.2 Definition. Let A be a C∗−algebra, H be a Hilbert space and φ be a representation
of A on H. If φ(A)x = {φ(A)x : A ∈ A} is everywhere dense in H for x ∈ H, we call φ a
cyclic representation and x a cyclic vector (or generating vector) for φ.

We will see that there is a connection between states of a C∗−algebra A and cyclic
representations.

5.3 Example. Let H be a Hilbert space and A ⊆ B(H) a C∗−subalgebra of B(H).
The first and most simple example of a representation is the inclusion mapping of A on
B(H). The inclusion mapping is obviously an injective C∗−homomorphism and therefore
a faithful representation of A on H.
If K ⊆ H is a closed subspace of H and K is invariant under every operator of A, then we
can define the compression φ : A → B(K), A 7→ A|K. We know

∀A ∈ A∀x, y ∈ K : ⟨Ax, y⟩ = ⟨x,A∗y⟩.

This shows (A|K)∗ = A∗|K for every A ∈ A. The other properties of a C∗−homomorphism
are apparent for φ. Thus, we know that the compression φ is a representation of A on K.

5.4 Example. Let again H be a Hilbert space and A ⊆ B(H) a C∗−subalgebra of B(H).
We can use the construction from the last example to construct a cyclic representation.
We consider Ax := {Ax : A ∈ A} for x ∈ H. Then Ax is invariant under each operator in
A wherefore the same is true for its closure Ax. We have seen before that the compression
φ : A → B(Ax), A 7→ A|Ax is a representation. Since Ax is everywhere dense in Ax, we
know that φ is a cyclic representation with cyclic vector x.

5.5 Example. For other types of C∗−algebras we can also find representations. In Chapter
1 we have discussed that L∞ is a C∗−algebra for a measure space (Ω,A , µ). For every
f ∈ L∞ we can define the multiplication operator Mf : L2 → L2, g 7→ fg. This is well-
defined since f is essentially bounded. Mf is linear and bounded by ∥f∥∞. The function
φ : L∞ → B(L2), f 7→Mf is linear and multiplicative. For f ∈ L∞, g, h ∈ L2, we have

⟨Mf (g), h⟩ = ⟨fg, h⟩ =
∫
Ω
fgh dµ =

∫
Ω
g(fh) dµ = ⟨g, fh⟩ = ⟨g,Mf (h)⟩.
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5 GNS construction

Since f∗ = f in L∞, we see that φ is a representation. It is faithful since fg = 0 for every
g ∈ L2 implies that f = 0 almost everywhere. Similarly, if X is a compact interval of R,
then C(X) is a C∗−subalgebra of L∞ with the Lebesgue measure on X. Thus restricting
φ to C(X) that is φ|C(X) : C(X) → B(L2), f 7→Mf yields a faithful representation as well.

5.2 The Gelfand-Naimark-Segal construction

5.6 Proposition. Let A be a C∗−algebra and ρ a state of A. Then

Lρ := {A ∈ A : ρ(A∗A) = 0}

is a closed left ideal in A and there is ρ(B∗A) = 0 if A ∈ Lρ and B ∈ A. Furthermore, we
define

⟨A+ Lρ, B + Lρ⟩ := ρ(B∗A)

where ⟨·, ·, ⟩ is an inner product on the quotient linear space A/Lρ.

Proof. ρ is positive and using Proposition 4.5 we know that

⟨A,B⟩0 := ρ(B∗A)

defines a positive semi-definite hermitian sesquilinear form on A. Then Lρ = {A ∈ A :
ρ(A∗A) = 0} is a linear subspace of A. For A,B ∈ Lρ and s, t ∈ C, we have

⟨sA+ tB, sA+ tB⟩0 = ss⟨A,A⟩0 + st⟨A,B⟩0 + ts⟨A,B⟩0 + tt⟨B,B⟩0 = 2Re st⟨A,B⟩0.

Proposition 4.5 shows that |⟨A,B⟩0|2 = |ρ(B∗A)|2 ≤ ρ(A∗A)ρ(B∗B) = 0 and therefore
⟨sA+ tB, sA+ tB⟩0 = 0. Then sA+ tB ∈ Lρ and Lρ is indeed a linear subspace of A.
If A ∈ Lρ and B ∈ A, we also have |⟨A,B⟩0|2 = |ρ(B∗A)|2 ≤ ρ(A∗A)ρ(B∗B) = 0 which
shows ⟨A,B⟩0 = ρ(B∗A) = 0. This means that

⟨A+ Lρ, B + Lρ⟩ := ⟨A,B⟩0 = ρ(B∗A)

is well-defined for A,B ∈ A and an inner product on the quotient linear space A/Lρ. If
A ∈ Lρ and B ∈ A, we know from before

ρ((BA)∗BA) = ρ((B∗BA)∗A) = 0

which means BA ∈ Lρ. Therefore, Lρ is a left ideal and closed since ρ is continuous. ■

We call Lρ the left kernel of ρ for a state ρ of a C∗−algebra.

5.7 Theorem. Let A be a C∗−algebra and ρ a state of A. Then there exists a cyclic
representation πρ of A on a Hilbert space Hρ and a unit cyclic vector xρ for πρ that satisfies
ρ = ωxρ ◦ πρ which means

∀A ∈ A : ρ(A) = ⟨πρ(A)xρ, xρ⟩.
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Proof. By Proposition 5.6, we know that for the left kernel Lρ of ρ there is an inner
product on A/Lρ defined by

⟨A+ Lρ, B + Lρ⟩ = ρ(B∗A)

for A,B ∈ A. Thus, A/Lρ is a pre-Hilbert space which means that its completion Hρ is a
Hilbert space.
Let A,B1, B2 ∈ A with B1 + Lρ = B2 + Lρ. We know B1 − B2 ∈ Lρ and therefore
A(B1 −B2) ∈ Lρ since Lρ is a left ideal of A. Therefore, the operator

π(A) : A/Lρ → A/Lρ, B + Lρ 7→ AB + Lρ

is well-defined and we see that it is linear as well. Using Proposition 3.5 (ii), we get

∥A∥2I −A∗A = ∥A∗A∥I −A∗A ∈ A+.

Corollary 3.9 tells us B∗(∥A∥2I −A∗A)B is also positive. Then

∥A∥2∥B + Lρ∥2 − ∥π(A)(B + Lρ)∥2 = ∥A∥2∥B + Lρ∥2 + ∥AB + Lρ∥2

= ∥A∥2⟨B + Lρ, B + Lρ⟩ − ⟨AB + Lρ, AB + Lρ⟩
= ∥A∥2ρ(B∗B)− ρ(B∗A∗AB)

= ρ(B∗(∥A∥2I −A∗A)B) ≥ 0.

This shows that π(A) is a bounded linear operator on A/Lρ with ∥π(A)∥ ≤ ∥A∥. Therefore,
π(A) extends uniquely to a bounded linear operator πρ(A) on Hρ with ∥πρ(A)∥ ≤ ∥A∥ as
well.
π(I) is the identity operator on A/Lρ which means πρ(I) must be the identity operator on
Hρ. If we have A,B,C ∈ A and s, t ∈ C, then

πρ(sA+ tB)(C + Lρ) = (sA+ tB)C + Lρ

= s(AC + Lρ) + t(BC + Lρ)

= (sπρ(A) + tπρ(B))(C + Lρ),

πρ(AB)(C + Lρ) = ABC + Lρ = πρ(A)(BC + Lρ)

= πρ(A)πρ(B)(C + Lρ),

⟨πρ(A)(B + Lρ), C + Lρ⟩ = ⟨AB + Lρ, C + Lρ⟩ = ρ(C∗AB)

= ρ((A∗C)∗B) = ⟨B + Lρ, A
∗C + Lρ⟩

= ⟨B + Lρ, πρ(A
∗)(C + Lρ)⟩.

Since A/Lρ is everywhere dense in Hρ, we get

πρ(sA+ tB) = sπρ(A) + tπρ(B),

πρ(AB) = πρ(A)πρ(B),

πρ(A)
∗ = πρ(A

∗).
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This shows that πρ is representation of A on H indeed.
We define xρ := I + Lρ ∈ Hρ. Then

π(A)xρ = {πρ(A)xρ : A ∈ A} = {πρ(A)(I + Lρ) : A ∈ A} = {A+ Lρ : A ∈ A} = A/Lρ.

Therefore, π(A)xρ = A/Lρ is everywhere dense in Hρ which means that xρ is a cyclic
vector of the cyclic representation πρ. For A ∈ A, we have

⟨πρ(A)xρ, xρ⟩ = ⟨A+A/Lρ, I +A/Lρ⟩ = ρ(A)

which shows ρ = ωxρ ◦ πρ and ∥xρ∥2 = ρ(I) = 1. ■

This method used in Theorem 5.7 to get a cyclic representation from a state is called
the Gelfand-Naimark-Segal construction or in short GNS construction. It is an important
tool in C∗−algebra theory. Based on the GNS construction, we can explore a few further
results.

5.3 Further results

5.8 Proposition. Let A be a C∗−algebra and ρ a state of A. Let Hρ, πρ and xρ be the
Hilbert space, cyclic representation and unit cyclic vector from the GNS construction. If
π is a cyclic representation of A on a Hilbert space H with ρ = ωx ◦ π for x a unit cyclic
vector of π, then we find an isomorphism U from Hρ to H with

x = Uxρ ∧ ∀A ∈ A : π(A) = Uπρ(A)U
∗.

Proof. If A ∈ A, then

∥π(A)x∥2 = ⟨π(A)x, π(A)x⟩ = ⟨π(A∗A)x, x⟩
= ρ(A∗A) = ⟨πρ(A∗A)xρ, xρ⟩ = ∥πρ(A)xρ∥2.

Now for A,B ∈ A with πρ(A)xρ = πρ(B)xρ, we use the above statement for A−B and get
π(A)x = π(B)x. Therefore,

U0 : πρ(A)xρ → π(A)x, πρ(A)xρ 7→ π(A)x

is well-defined. We immediately see that U0 is linear and norm-preserving. Since πρ(A)xρ
is everywhere dense in Hρ and π(A)x is everywhere dense in H, we can extend U0 to an
isometric isomorphism from Hρ to H. We get

Uxρ = U0πρ(I)xρ = π(I)x = x

and for A,B ∈ A

Uπρ(A)πρ(B)xρ = Uπρ(AB)xρ = π(AB)x = π(A)π(B)x = π(A)Uπρ(B)xρ.
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Since the set πρ(A)xρ = {πρ(B)xρ : B ∈ A} is everywhere dense in Hρ, we know Uπρ(A) =
π(A)U from which we follow π(A) = Uπρ(A)U

−1. Since U is norm-preserving, U−1 is norm-
preserving as well and because of the parallelogram rule, we know that U−1 is preserving
the inner product as well. Then we see for x ∈ Hρ, y ∈ H

⟨Ux, y⟩ = ⟨U−1Ux,U−1y⟩ = ⟨x, U−1y⟩.

This shows U−1 = U∗ and π(A) = Uπρ(A)U
∗ for every A ∈ A. ■

5.9 Definition. Let A be a C∗−algebra, H,K Hilbert spaces and φ and ψ a representation
of A on H and K, respectively. We call φ and ψ (unitarily) equivalent if there exists an
isomorphism U from H to K such that ψ(A) = Uφ(A)U∗ for every A ∈ A.

Proposition 5.8 tells us that if π is a representation of a C∗−algebra A on a Hilbert
space H, ρ a state of A and x ∈ H a unit cyclic vector of π with ρ = ωx ◦ π then π and πρ
given by the GNS construction are equivalent. For the element xρ obtained by the GNS
construction, we can choose the isomorphism U for the equivalence such that Uxρ = x.
The following corollary is a special case of this property.

5.10 Corollary. Let H be a Hilbert space, A a C∗−subalgebra of B(H), x ∈ H a unit vector
and ρ := ωx|A the vector state to x. Then the representation πρ from the GNS construction
is (unitarily) equivalent to the representation A 7→ A|Ax of A on Ax. The isomorphism U
that achieves the equivalence can be chosen so that Uxρ = x with xρ the unit cyclic vector
of πρ from the GNS construction.

Proof. x is a unit cyclic vector for the representation π : A → B(Ax), A 7→ A|Ax of A on
Ax and we have ρ = ωx ◦π. Proposition 5.8 tells us that πρ and π are (unitarily) equivalent
with the isomorphism U that satisfies Uxρ = x. ■

5.4 The Gelfand-Naimark Theorem

In the next proposition we prove that the representations obtained via the GNS construction
from pure states of a C∗−algebra are enough to separate the elements of A.

5.11 Proposition. Let A be a C∗−algebra and A ∈ A with A ̸= 0. Then we find a pure
state of A such that πρ(A) ̸= 0 with πρ the representation in the GNS construction.

Proof. Let πρ, xρ be the representation and unit cyclic vector given by the GNS con-
struction. Theorem 4.17 (i) tells us that there is a pure state ρ of A which satisfies
⟨πρ(A)xρ, xρ⟩ = ρ(A) ̸= 0. Therefore, πρ(A) ̸= 0. ■

Now we will recount the definition of a sum of Hilbert spaces.

5.12 Definition. Let B be a set and (Hb)b∈B a family of Hilbert spaces. Then we define

∑
b∈B

Hb :=

{
(xb)b∈B ∈

∏
b∈B

Hb :
∑
b∈B

∥xb∥2 <∞

}
.
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If (Tb)b∈B is a family of uniformly bounded linear operators with Tb ∈ B(Hb), then we can
define ∑

b∈B
Tb :

∑
b∈B

Hb →
∏
b∈B

Hb, (xb)b∈B 7→ (Tbxb)b∈B.

5.13 Proposition. Let B be a set and (Hb)b∈B a family of Hilbert spaces. Then
∑

b∈BHb

is a Hilbert space with the inner product

⟨(xb)b∈B, (yb)b∈B⟩ :=
∑
b∈B

⟨xb, yb⟩

for (xb)b∈B, (yb)b∈B ∈
∑

b∈BHb. For (Tb)b∈B a family of uniformly bounded linear operators
with Tb ∈ B(Hb) the function

∑
b∈B Tb is a bounded linear operator on

∑
b∈BHb. Also there

is
(∑

b∈B Tb
)∗

=
∑

b∈B T
∗
b .

Proof. In the same way that ℓ2(B) is a Hilbert space we see that
∑

b∈BHb is a Hilbert
space with the given inner product. If (Tb)b∈B is a family of uniformly bounded linear
operators with Tb ∈ B(Hb), we have C > 0 such that ∥Tbxb∥ ≤ C∥xb∥ for all b ∈ B and
xb ∈ Hb. Then we know for (xb)b∈B ∈

∑
b∈BHb that

∥(
∑
b∈B

Tb)((xb)b∈B)∥2 = ∥(Tbxb)b∈B∥2 =
∑
b∈B

∥Tbxb∥2 ≤
∑
b∈B

C2∥xb∥2 = C2∥(xb)b∈B∥.

This shows that
∑

b∈B Tb is a function from
∑

b∈BHb to
∑

b∈BHb and bounded (by the
uniform bound of the Tb). It is linear since Tb is linear for every b ∈ B. Therefore,

∑
b∈B Tb

is a bounded linear operator on
∑

b∈BHb. Now let (xb)b∈B, (yb)b∈B ∈
∑

b∈BHb. Then〈
(
∑
b∈B

Tb)((xb)b∈B), (yb)b∈B

〉
= ⟨(Tbxb)b∈B, (yb)b∈B⟩ =

∑
b∈B

⟨Tbxb, yb⟩

=
∑
b∈B

⟨xb, T ∗
b yb⟩ = ⟨(xb)b∈B, (T ∗

b yb)b∈B⟩

=

〈
(xb)b∈B, (

∑
b∈B

T ∗
b )((yb)b∈B)

〉
.

This shows
(∑

b∈B Tb
)∗

=
∑

b∈B T
∗
b . ■

5.14 Definition. Let A be a C∗−algebra, B a set, (Hb)b∈B a family of Hilbert spaces and
(φb)b∈B a family where φb is a representation of A on Hb for b ∈ B. Then we define∑

b∈B
φb : A →

∑
b∈B

, A 7→
∑
b∈B

φb(A))

and we call
∑

b∈B φb the direct sum of the family (φb)b∈B of representations of A.

5.15 Proposition. Let A be a C∗−algebra, B a set, (Hb)b∈B a family of Hilbert spaces
and (φb)b∈B a family where φb is a representation of A on Hb for b ∈ B. Then

∑
b∈B φb is

a representation of A on
∑

b∈BHb.
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5 GNS construction

Proof. Let φ :=
∑

b∈B φb. Since ∥φb(A)∥ ≤ ∥A∥ for every A ∈ A, b ∈ B, we know that
(φb(A))b∈B is a family of uniformly bounded (by ∥A∥) linear operators with φb(A) ∈ B(Hb)
for every b ∈ B and therefore φ(A) =

∑
b∈B φb(A) is a bounded (by ∥A∥) linear operator

on
∑

b∈BHb. For A,B ∈ A, s, t ∈ C and (xb)b∈B ∈
∑

b∈BHb, we have

φ(sA+ tB)((xb)b∈B) = (
∑
b∈B

φb(sA+ tB))(xb)b∈B = (φb(sA+ tB)(xb))b∈B

= s(φb(A)(xb))b∈B + t(φb(B)(xb))b∈B

= s(
∑
b∈B

φb(A))(xb)b∈B + t(
∑
b∈B

φb(B))(xb)b∈B

= (sφ(A) + tφ(B))((xb)b∈B),

φ(AB)((xb)b∈B) = (
∑
b∈B

φb(AB))(xb)b∈B = (φb(AB)(xb))b∈B

= (φb(A)φb(B)(xb))b∈B = (
∑
b∈B

φb(A))(φb(B)(xb))b∈B

= (
∑
b∈B

φb(A))(
∑
b∈B

φb(B))(xb)b∈B = φ(A)φ(B)(xb)b∈B,

φ(A∗) =
∑
b∈B

φb(A
∗) =

∑
b∈B

φb(A)
∗ =

(∑
b∈B

φb(A)

)∗

= φ(A)∗,

φ(I)((xb)b∈B) = (
∑
b∈B

φb(I))((xb)b∈B) = (
∑
b∈B

I)((xb)b∈B) = (xb)b∈B.

Therefore, we see that φ is a C∗−homomorphism from A to B(
∑

b∈BHb) which means φ
is a representation of A on

∑
b∈BHb. ■

5.16 Theorem (The Gelfand-Naimark Theorem). Every C∗−algebra has a faithful repre-
sentation.

Proof. Let A be a C∗−algebra and S0 a set of states containing all pure states. Let Hρ and
πρ be the Hilbert space and representation obtained by the GNS construction for every state
ρ ∈ S0. Let φ =

∑
ρ∈S0

πρ be the direct sum of the family (πρ)ρ∈S0 of representations, hence
φ is a representation of A on

∑
ρ∈S0

Hρ. Let A ∈ A with φ(A) = 0. Then
∑

ρ∈S0
πρ(A) = 0

from which we see that πρ(A) = 0 for every ρ ∈ S0. By Proposition 5.11 we get A = 0.
Therefore, φ is injective and a faithful representation of A on

∑
b∈BHb. ■

If φ is a faithful representation of a C∗−algebra A on some Hilbert space H, we know
from Proposition 2.13 that φ(A) is a C∗−subalgebra of B(H). With Theorem 5.16 we
have shown that such a faithful representation exists. Therefore, we proved that every
C∗−algebra A is C∗−isomorphic to a C∗−subalgebra of B(H) for some Hilbert space H.

5.17 Definition. Let A be a C∗−algebra and S(A) its state space. Let Hρ and πρ be
the Hilbert space and representation obtained by the GNS construction for every state
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5 GNS construction

ρ ∈ S(A). Then the faithful representation

Φ :=
∑

ρ∈S(A)

πρ

of A on HΦ :=
∑

ρ∈S(A)Hρ is called the universal representation of A.

5.18 Proposition. Let A be a C∗−algebra and Φ its universal representation on HΦ.
Then every state of A has the form ωy ◦ Φ for a unit vector y ∈ HΦ and every state of
Φ(A) ⊆ B(HΦ) is a vector state.

Proof. Let S be the state space of A and σ ∈ S be a state of A. Let Hρ, πρ and xρ be
the Hilbert space, representation and unit vector given by the GNS construction for ρ ∈ S.
Then we know σ = ωxσ ◦ πσ. We define

y := (yρ)ρ∈S ∈ HΦ, yρ :=

{
xσ, if ρ = σ

0, if ρ ̸= σ.

Then ∥y∥2 =
∑

ρ∈S ∥yρ∥2 = ∥xσ∥2 = 1 which shows y is a unit vector. For A ∈ A, we have

σ(A) = (ωxσ ◦ πρ)(A) = ⟨πσ(A)xσ, xσ⟩

=
∑
ρ∈S

⟨πρ(A)yρ, yρ⟩ = ⟨(πρ(A)yρ)ρ∈S , (yρ)ρ∈S⟩

= ⟨Φ(A)(yρ)ρ∈S , (yρ)ρ∈S⟩ = (ωy ◦ Φ)(A).

This shows σ = ωy ◦ Φ.
If τ is a state of Φ(A), then τ ◦ Φ is a state of A. From before we know there is a unit
vector y ∈ HΦ such that τ ◦ Φ = ωy ◦ Φ. By using Φ−1 from the right on both sides, we
know τ = ωy and therefore τ is a vector state. ■
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