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1 Introduction

In this paper we deal with the approximation of approximation numbers of bounded
linear operators on a infinite dimensional separable Hilbert space. The kth approx-
imation number s;(7) of an operator T describes the distance from T to the subset
of all bounded linear operators with an at most k£ —1-dimensional image. A central
fact for this paper is a theorem, that proves the convergence of a sequence sx(7},),
n € N to the kth approximation number s, (7). The proof of this statement is
rather easy and the natural question occurs, if there may be a weakening of the
requirements without loosing the results. In this paper we discuss the following
two generalized settings:

e First we consider the following situation: Let T': X — Y be a linear and
bounded Operator, where X is a separable and Y is a reflexive vector space.

e Second we assume that the codomain Y is not reflexive but a dual space of
a separable normed linear space, Y = X'.






2 Approximation numbers on
separable Hilbert spaces

In this chapter we discuss the approximation of the approximation numbers on
separable Hilbert spaces. Let B.(X,Y) denote the set of all bounded linear oper-
ators T : X — Y. Our sources for this chapter are Chapter 1 in [I], Lemma 4.12
in [2] and Chapter 1 in [3].

2.1 The approximation of approximation numbers
on separable Hilbert spaces

First we introduce the term of an approximation number:

Definition 2.1 Let XY be normed linear spaces. For T € Br(X,Y) and k € N
the kth approximation number si(T') is defined by

sp(T) :=inf{||T — A||: Ae BL(X,Y),rank A < k — 1}. (2.1)
Hence s1(T) = ||T].

As {Ae By :rank A <k —1} < {Ae B : rank A < k} for k € N it follows that
$1(T) = s2(T') = ... = 0. Let us now formulate the first version of the Theorem of
approximation numbers.

Theorem 2.2 Let Hq, Hy be separable Hilbert spaces and P, : Hy — Hy, Q, :
Hy — Hy be linear projections with ||P,|| = ||Qn|| = 1 and Yz € H, : P,x — «x,
Yy e Hy : Quy — y. Let T € Br(Hy, Hy) and T, := Q, TP, for all n € N. Then
for all k e N,

lim sx(75,) = sk(T). (2.2)

n—00

Before we prove this theorem let us formulate a lemma, that will help us with
that:

Lemma 2.3 Let (Ap)nen € Br(Hi, Ha) be a sequence of uniformly bounded Op-
erators. For all n € N let rank A,, < k for a k € N. Then there exists an oper-
ator A € Br(Hy, Hy) with rank A < k and for oll v € Hy, y € Hy the sequence
(y, An)nen has a convergent subsequence such that lim;,«(y, An,z) = (y, Ax).



Proof:
As (Ap)nen is uniformly bounded, there exists a M > 0 with [|A,|| < M. As

for all n e N rank A, < k there exist orthonormal sets &, = {¢\”, ....e\”} = H,
Fn = {f1 , f,g")} C H, and numbers w(") . ,g") such that we can express the

operator A, for all x € Hy as

A = 33" () £,
It follows for n € N, that

M = |A,]| = sup [[Auz| = ||Anel]| =

|zf[<1

k
(zw%w">wszn¢mw»/Ww%@wwﬂzmm
j=1

(2.3)
Let Ki" = {x e Hy : ||z|]| <1}, K? == {x e Hy : ||z|]| < 1} and K, := {\ €
C : |A] < M}. We now consider the elements x € H; as elements of a dual space
r € G’ = H; according to the mapping ¢ : H; — G',x — & with Z(y) := (x,y).
As a subset of the normed space G, K is according to the Theorem of Banach-
Alaoglu (see Theorem 5.5.6 in [0]) compact in respect to the weak-+-Topology. The
same way follows, that leIQ is compact with respect to the weak-#-topology. As
K§, is compact in C according to the Theorem of Tychonoff (see Theorem 1.3.1 in
[6]) the set

k k k
D := nlC(f X HIC]?; X H]Cff
i=1 j=1 1=1
is compact. Therefore th (n) (n) _(n) (n) (n) n)
pact. erefore the sequence (Y1, ..., e1”,...,ep, fi 7y, fo )nen has

a convergent subsequence, that converges to (i1, ..., Yk, €1, ..., €k, f1, o, f) € D
We now define

A H1—>H2,

k
- Yutecos

It is clear, that A is bounded. As (é””)neN and (fi("l))neN are convergent with
respect to the weak-+-topology, it follows that for x € Hy, y € Hy

(y.e) — (y,e;) and (z, ) — (z, f)-



Since z/1§"l) — 1), it follows that

(Y, An) = (3, 20 00 (2, e ) o (v, X5 il e) £i) = (y, Ax).

[ |
Now we can prove Theorem 2.2 with help of Lemma 2.3

Proof 2.4 of Theorem 2.2:

First we will show, that limsup sx(7},) < si(T).

n—a0
As s (T') := inf{||T — A|| : A€ BL(H,, Hy),rank A < k — 1} there exists for every
e >0an A, € Bp(Hy, Hy) with rank A, < k — 1 such that || — A|| < sx(T) + €.
Since for all n € N rank Q, AP, < k — 1 and ||Q,|| = ||P.|| = 1 it follows that

su(Tn) < |1 — QuAP|| = [|QuT P — QuAL|| < [|Qull - [|T = Ac]] - || Pa]| =
T — A|| < sx(T) + €.

As e > 0 was arbitrary it follows that

lim sup sx(T,,) < si(T). (2.4)

n—0o0

Now we show liminf s;(7},) = s (7).
n—00

Let us assume, that liminf, .. si(7T},) < sp(T). As sg(T,) = 0 we can assume,
that six(T") > 0. Hence there has to exist a § € (0, sx(7T")) such that for every ng € N
there exists a n € N with n = ng, such that

Sk(Tn) < Sk(T) — 0.

According to the definition of s(7},) for every € € (0,s£(7) — ) we can find a
Ac € Br(Hy, Hy) with rank A, < k — 1 such that

T, — Acl| = ||P. TP, — A|| < sp(T) — 0 + €.

Now according to Lemma 2.3 there exists an Operator A € Br(H) with rank A <
k — 1 such that A is a limit of a subsequence of (Ac)ce(o,s,(1)—5) that enjoys the
following property

Vo e H\Vy € Hy limo(y, A z) = (y, Ax). (2.5)
€j—
Let x € Hy, y € Hy such that ||z|| = |ly|| = 1. Then follows that

As the inner product of Hy is continuous, this implies, that



((y, Tx) — (y, Az)| = lim, o |(y, Tox) — (y, Ae,x)| < 5x(T) — 6 + €.

Hence ||T — A|| < sx(T) — 0 + € and therefore s,(T') < s,(T) — 0 + € < s,(T). This
is a contradiction, so the assumption liminf,, . sx(T},) < sx(T) was wrong. Hence

liminf s,(7),) = s (7). (2.6)

n—0o0

Together with equation (2.4) it follows that

Vk e N: lim sgx(T},) = sx(T).

n—o0



3 Approximation under reflexivity
assumption

As we now got a first answer of how we can approximate the approximation num-
bers of a linear bounded operator, we now want to evolve these results to a more
general setting. Instead of Hilbert spaces we want to consider normed spaces X, Y
and a linear bounded mapping 7' : X — Y. In addition we want to have weaker
requirements to the sequence (7, )neny € Br(X,Y) that converges to T for ap-
proximating s (7). As we will see, we need to assume one more condition to the
codomain of the Operator 7T'. In this chapter we will assume, that X is a separable
and Y is a reflexive normed space. First we will introduce terms of topology, in
order to formulate the final theorem of this chapter. Second we will prove some
lemmas, that will help us for our further conclusions and finally we will prove the
main theorem of this chapter.

3.1 The weak and the weak-* topology

We now will introduce the terms of the weak and the weak-#-topology. This section
follows the thoughts of Chapter 5.3 in [6].

Definition 3.1 Let X be a vector space and Y be a point separating linear sub-
space of the algebraic Dual space X™*. The weak topology with respect to'Y on X
is defined as the nitial topology with respect to all functions y € Y. This means,
that the weak topology on X is the coarsest topology such that all y € Y are con-
tinuous. The weak topology on X denotes the weak topology on X with respect to
the topological dual space X'.

Definition 3.2 Let X and Y are normed spaces. We consider the set
Z :=span{T — ¢(T(z)) :x € X,p e Y'}.

It is clear, that Z is a point separating subspace of the algebraic Dual space
of BL(X,Y). The weak topology on Br(X,Y) with respect to Z is called the
weak operator topology and is denoted by T,.

Remark 3.3 Hence for a sequence (T),)nen < Br(X,Y) holds that



(T)nen = T in T, ©Vre XVopeY : ¢(T,x) — ¢(Tx).

Let X be a vector space and Y be a subspace of X*. Let us consider the mapping
t: X — Y* with «(x) : Y — C,(z)(y) := y(x). Then +(X) is a point separating
subspace of Y*. Therefore the following definition is well defined:

Definition 3.4 Let X be a vector space and v be defined as in Remark 3.5. The
weak topology on X' with respect to «(X) is called the weak-*-topology on X' and
1s denoted by T x.

Remark 3.5 Let X and Y be normed linear spaces. Let (T,)nen be a sequence
with T,, € Br(X,Y"). The sequence (T,)nen converges to T with respect to the
weak-+ operator topology if

Vee XVyeY : T,a(y) - Tx(y) as n — 0.

It follows that strong operator convergence implies weak operator convergence and
weak operator convergence implies weak-+ operator convergence.

3.2 The approximation under reflexivity
assumption

Now we will formulate the theorem of approximation under the reflexivity assump-
tion. Before we prove this theorem, we will discuss two lemmas, that will help us
with that. This section follows Chapter 2 of [3].

Theorem 3.6 Let X be a separable normed linear space and Y be a reflexive
Banach space. In addition let T € Br(X,Y) and (Py)nen < Br(X), (Qn)nen <
BL(Y) be sequences of operators with ¥n € N ||P,|| < 1,||Qn|| < 1. We define
T, :=Q, TP, IfT,, > T in T, as n — o, then holds that

Vk e N lim s¢(T},) = si(T).

n—o0

The first of the two lemmas is the following:

Lemma 3.7 Let X,Y be normed linear spaces and T € Br(X,Y) with rankT = k
for a k € N. Then holds that there exists a basis {b1,...,b} of T(X) €Y and a set
{61, .., o} < X with ¥y e {1, ...k} ||b;]| =1 and ||¢;]| < ||T|, such that

k
Vee X : Tz = Z ¢;(x)b;.

j=1



Proof:
As T(X) is the image of a linear space under a linear mapping with rank = k we

can find a basis {ay, ..., a;} of T(X) with Vj : ||a;|| = 1. Let ICiF(X) ={yeT(X):
lly|] < 1}. As ICiF(X) is closed, it follows that

k
T(X
i=1
is closed. Let us consider the mapping det : K — C. According to linear algebra
we know, that this mapping is continuous and

det(xq,...,xx) > 0 < (1,..., 1) is linear independent.

Since K is closed and det is continuous there exists a maximum in K. Let this
maximum be denoted by (b1, ..., bg). As (b1, ...,b;) € K it holds that Vj € {1,..., k} :
|6;]] < 1. Being the maximum on K in follows that det(by,...,b;) = 1, because
det(aq, ...,ar) = 1. In particular follows, that all b; # 0. It holds that

Vi€ {1, k) det(by, ..., by) = det(br, ooy i, oo, b) = Sihett)

and therefore Vj € {1,...,k} : ||b;|| = 1. Together follows, that
Vie{l, ...k} :|b]| = 1. (3.1)

Let for all ¢ U; := span({by, ..., b }\{b;}). Then b; ¢ U; and we see, that dist(b;, U;) <
1 and for every u € U;, that ||b; — u|| > 0. Considering

L= det(by, ..., bp) = det(br, ..o, biy, 1=, biga, oy by) = So5Gee)

we see, that ||b; —u|| = 1 for all uw € U;. In conclusion follows, that dist(b;, U;) = 1.
Let us for j € {1,...,k} define f; : span{b;} — C, f;(vb;) := . Then follows, that
|| f;]| = 1. According to the Theorem of Hahn-Banach (see Theorem 5.2.3 in [6])
there exist Vj € {1,...,k} an extension F : X — C, Fj|spanp;y = f; with Fj € X,
||F;|| = 1 and Fj|y, = 0. Since I} is an extension of f; it follows that

VZ,] S {1, ,k’} : Fj(bz) = 5”
As (b1, ..., by) is a basis of T(X) we can describe every = € T(X) as © = YF, 7ib.

In conclusion it holds, that

VyeT(X):y= Z Ej(y)b;.

7j=1



Let us now for all j € {1, ..., k} define
B+ X = C,0,(x) i= Fy(Ta). (32)

Then ¢; € X" and it follows, that ||¢;|| = ||F; o T|| < ||F;l| - |IT|] = ||T'|| and

Tz = Z ¢;(x)b;. (3.3)

[ |
Let us now formulate a second lemma, that corresponds to Lemma 2.3 before we
will start with the proof of Theorem 3.6 (see Lemma 2.4 in [3]).

Lemma 3.8 Let X be a separable normed linear space, Y be a reflexive Banach
space and (Ap)nen < Br(X,Y) a sequence of uniformly bounded operators with
Vn e N :rank(A,) < k. Then there exists an operator A € Br(X,Y) with rank A <
k and a subsequence (Ay,)jen such that

Ap, = Ain T,

Proof:
Since (A, )nen is uniformly bounded, there exists a M > 0 with Vn e N : ||A, || <
M. Asforallne N: A, € B,(X,Y) and rank A,, < k by a consequence of Lemma

2.3 there exist b, ..., 0" € A,(X) and ¢, ..., ¢\ € X with
VneNVie {1,...k}:|[B"™] = 1 and ||¢\™|] < ||An|| < M such that
k
Vre X : A= ¢ (x)bf".

1=1

According to the Theorem Banach-Alaoglu (see Theorem 5.5.6 in [6]) for every i

there exists a subsequence (gzﬁl(-"j))n].eN, that converges in 7« to ¢; € X'. Since Y
is a reflexive Banach space by consequence of the Eberlein-Smulian Theorem for
every ¢ there exists a subsequence (bl(-nj)

Theorem 8.25 in [5]). Let us define

)n;en, that converges in 7, to b; € Y (see

k
A: X ->Y VreX :szZngi(x)b,». (3.4)
i—1
It is clear, that rank A < k and A € B,(X,Y'). Hence Vf € Y’ holds that
k

lim f(Ay, ) = lim 336" (@) (") = 3 6i()f () = f(Ax).

| —00
J i=1

10
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Let us now prove Theorem 3.6 with help of Lemma 3.8. This proof is inspired
of theorem 2.8 in [3]. The main idea is similar to the proof of Theorem 2.2, that
corresponds with Theorem 3.6.

Proof of Theorem 3.6:

As in proof 2.4 we will first show, that limsup,, ., sr(Ty) < s,(T) and then with
a contradiction, that liminf, o sx(7},) = sk (7).

Similar to proof 2.4 for all £k € N and every € > 0 there exists an A, € B,(X,Y)
with rank A, < k — 1 and ||T — A.|| < sx(T) + €. Then for all n € N holds that

sk(Tn) < [|QuT Py = QnAcb|| < [|Qul] - [IT = Al - [|Pal| < [IT" = Ael] < s4(T) + €.
Since € was arbitrary, we get

lim sup s (77,) < s (7). (3.5)

n—eo

Now we proof the other inequality. The conclusion holds if s,(7) = 0. Again
as in proof 2.4 we now assume, that s;(7) > 0 and limin f,esk(T,) < si(T).
Therefore it follows, that

de € (0,s,(T))Vn e NIn, = n : s (Ty,) < sx(T) — €.

Hence for every [ € N there exists an A, € B.(X,Y) with rank 4,, < k — 1 such
that
| T, — A || < sk(T) —e. (3.6)

Therefore holds that
A || < [|An, = To, || + [T || < sk(T) + [|T1]].

Thus the sequence (A, )en is uniformly bounded and the assumptions of Lemma
3.8 are fulfilled. Therefore there exists a subsequence (4;)jen S (An,)ien and an
operator A : X — Y such that rank A <k —1and A; > Ain 7, as j — oo. Let
z € X and f € Y’ be arbitrary with ||z]| < 1 and ||f|] < 1. We want to get the
following term small:

VjieN:[f(Tr)—f(Az)| < If(Tx)—f(zj)lJr|f(Tj~"6‘)—f(AjfE)lJrlf(ij)—f(f(l;)?I)-
First we see, that |

[ (Tix) = F(A2) < (11T = Al < si(T) — e

As (A;))jen — A it follows that there exists a jo € N such that for all j > jj

11



|f(Ajz) — f(Ax)| < 5.
Since (Ty,)nen — T in T, there exists a j; € N such that for all j > j;

|f(Tx) = f(Tjz)| < 3.

In conclusion follows, as x € X with ||z|| < 1 and f € Y’ with [|y|]| < 1 were
arbitrary

se(T) < |IT = All < s1(T) — 35

This is a contradiction, hence

liminf s,(7},) = s (T). (3.8)

n—ao

Together with (3.5) it follows, that
lim s (T,) = si(T).

n—o0

Remark 3.9 According to Eberlein’s Theorem (see Theorem 16.5 in [4)]) and propo-
sition 2.7 in [3] if Y is a non-reflexive space, then there has not to be a subsequence
of (T} nen, that is convergent in the weak operator topology. Therefore the demand,
that Y is a reflexive space, is necessary.

3.3 Additional thoughts

In this section we want to discuss whether the approximation number of an oper-
ator sx(7") is a minimum or not. At the very end of this chapter we add one last
version of the approximation under reflexivity assumption. This section follows
2.5 and 2.9 in [3].

Corollary 3.10 Let X be a separable normed linear space .Y be a reflexive Banach
space and T € Br(X,Y), k € N. Then there exists an operator A € Br(X,Y),
rank A < k — 1 with

se(T) = |IT' = Al|

Proof:
According to the definition of s;(T) for every n € N there exists an A, € B.(X,Y)
with rank 4, <k —1 and

1
T — A, <sk(T)+H (3.9)

12



and therefore |[A,|| < ||T]|+se(T)+ = < ||T]]+sx(T) +1. As (Ay)nen is uniformly
bounded by consequence of Lemma 3.8 there exists an A € B, (X,Y), rank A <
k —1 and a subsequence (A,,)en with

(Ap,)ien — Ain 7T,

Let € > 0, x € X with ||z|| <1 and f € Y’ with ||f|| < 1 be arbitrary. Let n. € N
be such that for all n; = n. holds

nil < 5 and |[f(Az) — f(A,2)] < 5.
Together it follows that

[f(T) — f(Ax)| < |f(Tw) = f(An)| + | f(An2) — f(Az)] <
ATl (17 = Anll + § < se(T) + 52+ 5 < (D) +e

As x, f and € were arbitrary, it follows
1T — Al < s,(T). (3.10)

By consequence of the definition of s,(T) follows, that ||[T — A|| = sp(T) and
together with (3.10) we get

T = All = si(T).

[ |
Last we add a corollary, that gives one more version of the approximation of the
approximation numbers under reflexivity assumption.

Corollary 3.11 Let X be a separable normed linear space Y be a reflexive Banach
space and T € B(X,Y), k€ N. Let (Py)neny € BL(X) and (Qn)nen S BL(Y') such
that ||P,|| < 1 withVr € X : Pox — x and ||Q,|| < 1 withVy eY : Quy — y in
T.,. Then holds that

Vk e N: sp(T},) — s1(T) for n — .

Proof:
We have to show, that T}, := Q, TP, — T in 7T,. Therefore let z € X and f e Y’
be arbitrary. AsVere X : P,x >z and Vye Y : Q,y — y in T, follows

|f (Toz) — f(T)| < [f(@uT Pox) — f(QuTx)| + [f(QuTx) — f(Tx)] <
AL N@all - IIT] - [P — 2] + [f(@nTx) = f(Tx)] — 0 as n — 0.

Hence T,, — T in 7T, and therefore the conclusion follows from Theorem 3.6.
[ |

13






4 Approximation under duality
assumption

In the last chapter we discussed the approximation of approximation numbers of
a linear bounded operator 7' : X — Y on normed spaces under the assumption,
that Y is a reflexive space. We now want to show a second possibility to proof
the approximation on normed spaces under slightly different conditions. The main
difference will be, that we assume, that the codomain Y of T is not necessarily
reflexive but the dual space of a separable normed linear space. In addition we will
slightly change the assumptions on the sequence of operators (7, ),en. In corollary
3.11, our final version of the approximation in the last chapter, we asked for the
two sequences (Py,)nen, (Qn)nen for (P,)aen point wise convergence and for (Q,,)nen
convergence in the weak operator topology. Now we even want to weaken that,
namely that T}, := Q,, TP, is just convergent in the weak-* operator topology. In
the first section of this chapter we will first prove a lemma, similar to Lemma
3.8, that will help us to prove the main theorem of this chapter. That we will do
right after discussing this lemma. In the second section of this chapter we will
discuss, if the approximation number of an operator si(7") is a minimum or not
under the duality assumption. Finally, we will give one very last version of the
approximation and sum up all three versions we proofed.

4.1 The approximation under duality assumption

Let us now formulate a lemma, that corresponds to Lemma 3.8. This section
follows Lemma 3.1 and Theorem 3.3 in [3].

Lemma 4.1 Let X, 7 be separable normed linear spaces and Y = Z', k € N.
Let (Ay)nen € Br(X,Y) be a sequence of uniformly bounded operators such that
Vn € N : rank A, < k. Then there exists a subsequence (Ay,)ien and an operator
Ae BL(X,Y) with rank A < k such that

A, — Ain Ty asn — oo.

Proof:
By consequence of Lemma 3.7 for every n € N there exist a basis (b§”>, ...,b;n))

15



of A(X) €Y with Vj € {1,...,k} : [|b;]| = 1 and (¢\",...,6{) = X' with Vj €
{1, k} = ||6{™]] < |IT]| such that

k
Vre X : Az =) o ()b},
j=1
Since X’ and Y are dual spaces of separable normed spaces, according to the
Theorems of Banach-Alaoglu and Tychonoff (see Theorem 5.5.6 and Theorem 1.3.1

in [6]), the sequences (5", ..., b ) ey and (¢, ..., ¢ e have weak-* convergent
subsequences. Hence there exist (by,...,b) and (¢1, ..., ¢x) such that

Vee X (" (@), ..., 0" (x)) > (1(), ..., px(z)) and
Vee Z: (00 (2), .., b0 (2)) = (bi(2), ..., bi(2)) as n — oo,

let us now define, as in Lemma 3.8

k
Vee X : Ax := Z ¢;(x)b;

j=1

It is clear, that A € B.(X,Y') with rank A < k. Hence for every z € X and z € Z
follows, that

kol

— n ) (n )
llgg A, z(2) Zhjg Z ¢ V()b Z = Ax(2).

[ |
Let us now formulate the main theorem of this chapter. It proves the approxima-
tion of the approximation numbers under the duality assumption.

Theorem 4.2 Let X, Z be separable normed linear spaces andY := Z', k € N. Let
T e BL(X,Y) and (P,)nen € Br(X), (Qn)nen S BL(Y) be sequences of operators
withVne N:||P,|| < 1, ||@Qn|| €1 such that T, := Q,TP, — T in Ty« as n — o0.
Then holds

lim s (7T,,) = sp(T).

n—o

Proof:

As in the proof of Theorem 3.3 we again show first limsup,,_,, sx(7}.) < si(T") and
then liminf, . si(T},) = sx(T). The first inequality can be absolutely similarly
shown as in Theorem 3.3. So we have

lim sup sx(T,,) < si(T). (4.1)

n—oo
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Again we want to prove lim inf,, o si(7,,) = s,(T) by contradiction. So we assume,
that liminf, o sx(7,) < si(T). In consequence there exist an € > 0 and infinitely
many n; € N with s;(7,,) < s,(T) — €. Therefore we find a sequence of operators
(Ap Jnen € Br(X,Y) with VI € N : rank A,, < k — 1 such that ||A4,, — T,,|| <
sk(T) — €. It follows, that

Vie N [Ay || < |[An = To |l + 1T [| < s#(T) — € + [|T].

As (A, )nen is uniformly bounded by consequence of Lemma 4.1 there exist a
subsequence (A;)jen S (Ay,)ien and an operator A € B (X,Y) such that

(Aj)jeN — Ain 7;*

Let z € X and z € Z with ||z|| < 1 and ||z||] < 1. We want to get the following
term small:

[Ta(2) = Av(2)] < [Ta(2) = Tiz(2)| + [Tjz(2) — Aje(2)] + [Aj2(2) — Az (2)]. (4.2)
Now first we see, that
Vj e N Tja(z) - Aga(2)] < 1T — Ayl < silT) — e
Second, by weak-*-convergence of (T}),eny and (A;) en there exists a j. such that

Tz (z) —Tj,2(2)| < 5 and
<.

<3
|Ax(2) — Aja(2)

Hence |Tz(z) — Az(z)| < sp(T) — 5. Asx e X and z € Z with ||z]| < 1 and

||z|| <1 were arbitrary it follows that

su(T) < |IT = Al < u(T) - 5.

We have reached a contradiction. Hence

liminf s,(77,) = s (7). (4.3)

n—0

Together with (4.1) we have

lim s (7,) = si(T).

n—ao
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4.2 Additional remarks

Similar to section 3.3 we now want to show, that under the duality assumption the
approximation numbers are minima, so for every k € N there exists an operator
A : X — Y such that s,(T) = ||T — Al||. Last we give one final version of the
approximation of the approximation numbers under the duality assumption. This
section follows Corollary 3.2 and Corollary 3.4 in [3].

Corollary 4.3 Let X, Z be separable normed linear spaces and Y := Z', k € N.
Let T € BL(X,Y). Then there exists an operator A € Bp(X,Y') withrank A < k—1
such that

se(T) = ||IT = All.

Proof:
Similar to the proof of Corollary 3.10, according to the definition of s, (T") for every
n € N there exists an A,, € B.(X,Y) with rank A, < k — 1 and

1
T — A, <5k(T)+ﬁ (4.4)

and therefore ||Ay|| < ||T||+se(T)+ = < [|T]]+sx(T) +1. As (Ay)nen is uniformly
bounded by consequence of Lemma 4.1 there exists an A € B,(X,Y), rank A <
k —1 and a subsequence (A, )neny With

(Am)neN — A iIl 7;*

Let € >0, 2z € X, z€ Z with ||z|]| <1 and ||z]| < 1. Let n. € N be such that for
all n; = n, holds that

n% < 5 and [Ax(z) — A, z(2)] < 5.

Together follows that

T (2) — Ax(2)| < [T2(2) — An2(2)| +1|Amfﬁ(2) — Az(z)] <
[zl - [l [T = An [l + 5 < s1(T) + 52+ 5 < se(T) + e

As z, z and € were arbitrary, it follows
1T — Al < si(T). (4.5)

By consequence of the definition of s,(T") follows, that ||T" — A|| = s,(T") and
together with (4.5) we get

1T = All = si(T).

18



[ |
Last we name a corollary, that gives one very last version of the approximation of
the approximation numbers under duality assumption.

Corollary 4.4 Let X,Z be separable normed linear spaces and Y = Z', k €
N. Let T € BL(X,Y) and (Pp)neny S Br(X), (Qn)nen S Br(Y) be sequences of
operators with ¥Yn € N : || P,|| < 1 such that Vx € X : Pyx — x and ||Qy|| < 1 with
YyeY : Qny — y in T+ as n — oo. Then holds that

lim s;(7,) = sk(T).

n—0oo

Proof:
We want to use Theorem 4.2. Therefore we have to show, that T,, := Q, TP, —» T
in T« asn—>0w. AsVre X: Por—>zandVyeY : Q,y — y in T« it follows

|Thx(z) — Tx(2)| < |QnTPox(z) — QuTx(2)| + |QnTx(2) — Tx(2)| <
Qull - T[] - || Poe — || - ||2]] + [@nT2(2) — Tx(2)] — 0 as n — co.

Hence T,, — T in T+ and therefore the conclusion follows from Theorem 4.2. W

4.3 Conclusion

Let us now formulate a theorem that sums up all three versions of the approxima-
tion of the approximation numbers.

Theorem 4.5 (Approximation of approximation numbers) Let X and Y
be normed spaces and T € Br(X,Y). Furthermore let (P,)neny € Br(X), (Qn)nen S
BL(Y) be sequences of Operators with ||P,|| < 1, ||@Qn]| < 1 for all n € N. Let
Vn e NT,, := Q,TP,. If one of the following statements

o X andY are Hilbertspaces. P, and @, are linear projections with P, — idx
and @, — idy.

e X is a separable, Y a reflexive Banachspace and T,, — T in T,,.
e X and Z are separable normed spaces, Y = Z" and T,, — T in T =.
15 true, then holds that

lim s;(7,) = sk(T).

n—aoo
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