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1 Introduction

In this paper we deal with the approximation of approximation numbers of bounded
linear operators on a in�nite dimensional separable Hilbert space. The kth approx-
imation number skpT q of an operator T describes the distance from T to the subset
of all bounded linear operators with an at most k�1-dimensional image. A central
fact for this paper is a theorem, that proves the convergence of a sequence skpTnq,
n P N to the kth approximation number skpT q. The proof of this statement is
rather easy and the natural question occurs, if there may be a weakening of the
requirements without loosing the results. In this paper we discuss the following
two generalized settings:

� First we consider the following situation: Let T : X Ñ Y be a linear and
bounded Operator, where X is a separable and Y is a re�exive vector space.

� Second we assume that the codomain Y is not re�exive but a dual space of
a separable normed linear space, Y � X 1.

1





2 Approximation numbers on

separable Hilbert spaces

In this chapter we discuss the approximation of the approximation numbers on
separable Hilbert spaces. Let BLpX, Y q denote the set of all bounded linear oper-
ators T : X Ñ Y . Our sources for this chapter are Chapter 1 in [1], Lemma 4.12
in [2] and Chapter 1 in [3].

2.1 The approximation of approximation numbers

on separable Hilbert spaces

First we introduce the term of an approximation number:

De�nition 2.1 Let X, Y be normed linear spaces. For T P BLpX, Y q and k P N
the kth approximation number skpT q is de�ned by

skpT q :� inft||T � A|| : A P BLpX, Y q, rankA ¤ k � 1u. (2.1)

Hence s1pT q � ||T ||.

As tA P BL : rankA ¤ k � 1u � tA P BL : rankA ¤ ku for k P N it follows that
s1pT q ¥ s2pT q ¥ ... ¥ 0. Let us now formulate the �rst version of the Theorem of
approximation numbers.

Theorem 2.2 Let H1, H2 be separable Hilbert spaces and Pn : H1 Ñ H1, Qn :
H2 Ñ H2 be linear projections with ||Pn|| � ||Qn|| � 1 and @x P H1 : Pnx Ñ x,
@y P H2 : Qny Ñ y. Let T P BLpH1, H2q and Tn :� QnTPn for all n P N. Then
for all k P N,

lim
nÑ8

skpTnq � skpT q. (2.2)

Before we prove this theorem let us formulate a lemma, that will help us with
that:

Lemma 2.3 Let pAnqnPN � BLpH1, H2q be a sequence of uniformly bounded Op-
erators. For all n P N let rankAn ¤ k for a k P N. Then there exists an oper-
ator A P BLpH1, H2q with rankA ¤ k and for all x P H1, y P H2 the sequence
py, AnxqnPN has a convergent subsequence such that limlÑ8py, Anlxq � py, Axq.
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Proof :
As pAnqnPN is uniformly bounded, there exists a M ¡ 0 with ||An|| ¤ M . As

for all n P N rankAn ¤ k there exist orthonormal sets En � te
pnq
1 , ..., e

pnq
k u � H1,

Fn � tf
pnq
1 , ..., f

pnq
k u � H2 and numbers ψ

pnq
1 , ..., ψ

pnq
k such that we can express the

operator An for all x P H1 as

Anx �
ķ

i�1

ψ
pnq
i px, e

pnq
i qf

pnq
i .

It follows for n P N, that

M ¥ ||An|| � sup
||x||¤1

||Anx|| ¥ ||Ane
pnq
i || �

gffe� ķ

j�1

ψ
pnq
j pe

pnq
i , e

pnq
j qf

pnq
j ,

ķ

j�1

ψ
pnq
j pe

pnq
i , e

pnq
j qf

pnq
j

	
�

c�
ψ
pnq
i f

pnq
i , ψ

pnq
i f

pnq
i

	
� |ψ

pnq
i |.

(2.3)
Let KH1

1 :� tx P H1 : ||x|| ¤ 1u, KH2
1 :� tx P H2 : ||x|| ¤ 1u and KC

M :� tλ P
C : |λ| ¤ Mu. We now consider the elements x P H1 as elements of a dual space
x P G1 � H1 according to the mapping φ : H1 Ñ G1, x ÞÑ x̂ with x̂pyq :� px, yq.
As a subset of the normed space G1, KH1

1 is according to the Theorem of Banach-
Alaoglu (see Theorem 5.5.6 in [6]) compact in respect to the weak-�-Topology. The
same way follows, that KH2

1 is compact with respect to the weak-�-topology. As
KC
M is compact in C according to the Theorem of Tychono� (see Theorem 1.3.1 in

[6]) the set

D :�
k¹
i�1

KC
1 �

k¹
j�1

KH1
M �

k¹
l�1

KH2
M

is compact. Therefore the sequence pψ
pnq
1 , ..., ψ

pnq
k , e

pnq
1 , ..., e

pnq
k , f

pnq
1 , ..., f

pnq
k qnPN has

a convergent subsequence, that converges to pψ1, ..., ψk, e1, ..., ek, f1, ..., fkq P D.
We now de�ne

A : H1 Ñ H2, Apxq :�
ķ

i�1

ψipx, eiqfi.

It is clear, that A is bounded. As pe
pnlq
i qnPN and pf

pnlq
i qnPN are convergent with

respect to the weak-�-topology, it follows that for x P H1, y P H2

py, e
pnq
i q Ñ py, eiq and px, f

pnq
i q Ñ px, fiq.
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Since ψ
pnlq
i Ñ ψi it follows that

py, Anlxq �
�
y,
°k
i�1 ψ

pnlq
i px, e

pnlq
i qf

pnlq
i

�
Ñ
�
y,
°k
i�1 ψipx, eiqfi

�
� py, Axq.

�
Now we can prove Theorem 2.2 with help of Lemma 2.3

Proof 2.4 of Theorem 2.2:

First we will show, that lim sup
nÑ8

skpTnq ¤ skpT q.

As skpT q :� inft||T � A|| : A P BLpH1, H2q, rankA ¤ k � 1u there exists for every
ε ¡ 0 an Aε P BLpH1, H2q with rankAε ¤ k � 1 such that ||T � Aε||   skpT q � ε.
Since for all n P N rankQnAεPn ¤ k � 1 and ||Qn|| � ||Pn|| � 1 it follows that

skpTnq ¤ ||Tn �QnAεPn|| � ||QnTPn �QnAεPn|| ¤ ||Qn|| � ||T � Aε|| � ||Pn|| �
||T � Aε||   skpT q � ε.

As ε ¡ 0 was arbitrary it follows that

lim sup
nÑ8

skpTnq ¤ skpT q. (2.4)

Now we show lim inf
nÑ8

skpTnq ¥ skpT q.

Let us assume, that lim infnÑ8 skpTnq   skpT q. As skpTnq ¥ 0 we can assume,
that skpT q ¡ 0. Hence there has to exist a δ P p0, skpT qq such that for every n0 P N
there exists a n P N with n ¥ n0, such that

skpTnq ¤ skpT q � δ.

According to the de�nition of skpTnq for every ε P p0, skpT q � δq we can �nd a
Aε P BLpH1, H2q with rankAε ¤ k � 1 such that

||Tn � Aε|| � ||PnTPn � Aε||   skpT q � δ � ε.

Now according to Lemma 2.3 there exists an Operator A P BLpHq with rankA ¤
k � 1 such that A is a limit of a subsequence of pAεqεPp0,skpT q�δq that enjoys the
following property

@x P H1@y P H2 lim
εjÑ0

py, Aεjxq � py, Axq. (2.5)

Let x P H1, y P H2 such that ||x|| � ||y|| � 1. Then follows that

|py,QnTPnxq � py, Aεxq| ¤ ||QnTPn � Aε||   skpT q � δ � ε.

As the inner product of H2 is continuous, this implies, that
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|py, Txq � py, Axq| � limεjÑ0 |py, Tnxq � py, Aεjxq| ¤ skpT q � δ � ε.

Hence ||T �A|| ¤ skpT q� δ� ε and therefore skpT q ¤ skpT q� δ� ε   skpT q. This
is a contradiction, so the assumption lim infnÑ8 skpTnq   skpT q was wrong. Hence

lim inf
nÑ8

skpTnq ¥ skpT q. (2.6)

Together with equation (2.4) it follows that

@k P N : lim
nÑ8

skpTnq � skpT q.

�
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3 Approximation under re�exivity

assumption

As we now got a �rst answer of how we can approximate the approximation num-
bers of a linear bounded operator, we now want to evolve these results to a more
general setting. Instead of Hilbert spaces we want to consider normed spaces X, Y
and a linear bounded mapping T : X Ñ Y . In addition we want to have weaker
requirements to the sequence pTnqnPN � BLpX, Y q that converges to T for ap-
proximating skpT q. As we will see, we need to assume one more condition to the
codomain of the Operator T . In this chapter we will assume, that X is a separable
and Y is a re�exive normed space. First we will introduce terms of topology, in
order to formulate the �nal theorem of this chapter. Second we will prove some
lemmas, that will help us for our further conclusions and �nally we will prove the
main theorem of this chapter.

3.1 The weak and the weak-* topology

We now will introduce the terms of the weak and the weak-�-topology. This section
follows the thoughts of Chapter 5.3 in [6].

De�nition 3.1 Let X be a vector space and Y be a point separating linear sub-
space of the algebraic Dual space X�. The weak topology with respect to Y on X
is de�ned as the initial topology with respect to all functions y P Y . This means,
that the weak topology on X is the coarsest topology such that all y P Y are con-
tinuous. The weak topology on X denotes the weak topology on X with respect to
the topological dual space X 1.

De�nition 3.2 Let X and Y are normed spaces. We consider the set

Z :� spantT ÞÑ φpT pxqq : x P X,φ P Y 1u.

It is clear, that Z is a point separating subspace of the algebraic Dual space
of BLpX, Y q. The weak topology on BLpX, Y q with respect to Z is called the
weak operator topology and is denoted by Tω.

Remark 3.3 Hence for a sequence pTnqnPN � BLpX, Y q holds that
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pTnqnPN Ñ T in Tω ô @x P X@φ P Y : φpTnxq Ñ φpTxq.

Let X be a vector space and Y be a subspace of X�. Let us consider the mapping
ι : X Ñ Y � with ιpxq : Y Ñ C, ιpxqpyq :� ypxq. Then ιpXq is a point separating
subspace of Y �. Therefore the following de�nition is well de�ned:

De�nition 3.4 Let X be a vector space and ι be de�ned as in Remark 3.3. The
weak topology on X 1 with respect to ιpXq is called the weak-*-topology on X 1 and
is denoted by Tω�.

Remark 3.5 Let X and Y be normed linear spaces. Let pTnqnPN be a sequence
with Tn P BLpX, Y 1q. The sequence pTnqnPN converges to T with respect to the
weak-� operator topology if

@x P X@y P Y : Tnxpyq Ñ Txpyq as nÑ 8.

It follows that strong operator convergence implies weak operator convergence and
weak operator convergence implies weak-� operator convergence.

3.2 The approximation under re�exivity

assumption

Now we will formulate the theorem of approximation under the re�exivity assump-
tion. Before we prove this theorem, we will discuss two lemmas, that will help us
with that. This section follows Chapter 2 of [3].

Theorem 3.6 Let X be a separable normed linear space and Y be a re�exive
Banach space. In addition let T P BLpX, Y q and pPnqnPN � BLpXq, pQnqnPN �
BLpY q be sequences of operators with @n P N ||Pn|| ¤ 1,||Qn|| ¤ 1. We de�ne
Tn :� QnTPn. If Tn Ñ T in Tω as nÑ 8, then holds that

@k P N lim
nÑ8

skpTnq � skpT q.

The �rst of the two lemmas is the following:

Lemma 3.7 Let X, Y be normed linear spaces and T P BLpX, Y q with rankT � k
for a k P N. Then holds that there exists a basis tb1, ..., bku of T pXq � Y and a set
tφ1, ..., φku � X 1 with @j P t1, ..., ku : ||bj|| � 1 and ||φj|| ¤ ||T ||, such that

@x P X : Tx �
ķ

j�1

φjpxqbj.
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Proof :
As T pXq is the image of a linear space under a linear mapping with rank � k we

can �nd a basis ta1, ..., aku of T pXq with @j : ||aj|| � 1. Let KT pXq
1 :� ty P T pXq :

||y|| ¤ 1u. As KT pXq
1 is closed, it follows that

K :�
k¹
i�1

KT pXq
1

is closed. Let us consider the mapping det : K Ñ C. According to linear algebra
we know, that this mapping is continuous and

detpx1, ..., xkq ¡ 0ô px1, ..., xkq is linear independent.

Since K is closed and det is continuous there exists a maximum in K. Let this
maximum be denoted by pb1, ..., bkq. As pb1, ..., bkq P K it holds that @j P t1, ..., ku :
||bj|| ¤ 1. Being the maximum on K in follows that detpb1, ..., bkq ¥ 1, because
detpa1, ..., akq � 1. In particular follows, that all bj � 0. It holds that

@j P t1, ..., ku : detpb1, ..., bkq ¥ detpb1, ...,
bj
||bj ||

, ..., bkq �
detpb1,...,bkq

||bj ||

and therefore @j P t1, ..., ku : ||bj|| ¥ 1. Together follows, that

@j P t1, ..., ku : ||bj|| � 1. (3.1)

Let for all i Ui :� spanptb1, ..., bkuztbiuq. Then bi R Ui and we see, that distpbi, Uiq ¤
1 and for every u P Ui, that ||bi � u|| ¡ 0. Considering

1 � detpb1, ..., bkq ¥ detpb1, ..., bi�1,
bi�u
||bi�u||

, bi�1, ..., bkq �
detpb1,...,bkq
||bi�u||

we see, that ||bi�u|| ¥ 1 for all u P Ui. In conclusion follows, that distpbi, Uiq � 1.
Let us for j P t1, ..., ku de�ne fj : spantbju Ñ C, fjpγbjq :� γ. Then follows, that
||fj|| � 1. According to the Theorem of Hahn-Banach (see Theorem 5.2.3 in [6])
there exist @j P t1, ..., ku an extension Fj : X Ñ C, Fj|spantbju � fj with Fj P X

1,
||Fj|| � 1 and Fj|Uj � 0. Since Fj is an extension of fj it follows that

@i, j P t1, ..., ku : Fjpbiq � δij.

As pb1, ..., bkq is a basis of T pXq we can describe every x P T pXq as x �
°k
i�1 γibi.

In conclusion it holds, that

@y P T pXq : y �
ķ

j�1

Fjpyqbj.
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Let us now for all j P t1, ..., ku de�ne

φj : X Ñ C, φjpxq :� FjpTxq. (3.2)

Then φj P X
1 and it follows, that ||φj|| � ||Fj � T || ¤ ||Fj|| � ||T || � ||T || and

Tx �
ķ

j�1

φjpxqbj. (3.3)

�
Let us now formulate a second lemma, that corresponds to Lemma 2.3 before we
will start with the proof of Theorem 3.6 (see Lemma 2.4 in [3]).

Lemma 3.8 Let X be a separable normed linear space, Y be a re�exive Banach
space and pAnqnPN � BLpX, Y q a sequence of uniformly bounded operators with
@n P N : rankpAnq ¤ k. Then there exists an operator A P BLpX, Y q with rankA ¤
k and a subsequence pAnjqjPN such that

Anj Ñ A in Tω

Proof :
Since pAnqnPN is uniformly bounded, there exists a M ¡ 0 with @n P N : ||An|| ¤
M . As for all n P N : An P BLpX, Y q and rankAn ¤ k by a consequence of Lemma

2.3 there exist b
pnq
1 , ..., b

pnq
k P AnpXq and φ

pnq
1 , ..., φ

pnq
k P X 1 with

@n P N@i P t1, ..., ku : ||bpnqi || � 1 and ||φ
pnq
i || ¤ ||An|| ¤M such that

@x P X : Anx �
ķ

i�1

φ
pnq
i pxqb

pnq
i .

According to the Theorem Banach-Alaoglu (see Theorem 5.5.6 in [6]) for every i

there exists a subsequence pφ
pnjq
i qnjPN, that converges in Tω� to φi P X

1. Since Y
is a re�exive Banach space by consequence of the Eberlein-Smulian Theorem for

every i there exists a subsequence pb
pnjq
i qnjPN, that converges in Tω to bi P Y (see

Theorem 8.25 in [5]). Let us de�ne

A : X Ñ Y, @x P X : Ax �
ķ

i�1

φipxqbi. (3.4)

It is clear, that rankA ¤ k and A P BLpX, Y q. Hence @f P Y 1 holds that

lim
jÑ8

fpAnjxq � lim
jÑ8

ķ

i�1

φ
pnjq
i pxqfpb

pnjq
i q �

ķ

i�1

φipxqfpbiq � fpAxq.
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�
Let us now prove Theorem 3.6 with help of Lemma 3.8. This proof is inspired
of theorem 2.8 in [3]. The main idea is similar to the proof of Theorem 2.2, that
corresponds with Theorem 3.6.

Proof of Theorem 3.6:
As in proof 2.4 we will �rst show, that lim supnÑ8 skpTnq ¤ skpT q and then with
a contradiction, that lim infnÑ8 skpTnq ¥ skpT q.
Similar to proof 2.4 for all k P N and every ε ¡ 0 there exists an Aε P BLpX, Y q
with rankAε ¤ k � 1 and ||T � Aε||   skpT q � ε. Then for all n P N holds that

skpTnq ¤ ||QnTPn �QnAεPn|| ¤ ||Qn|| � ||T �Aε|| � ||Pn|| ¤ ||T �Aε||   skpT q � ε.

Since ε was arbitrary, we get

lim sup
nÑ8

skpTnq ¤ skpT q. (3.5)

Now we proof the other inequality. The conclusion holds if skpT q � 0. Again
as in proof 2.4 we now assume, that skpT q ¡ 0 and liminfnÑ8skpTnq   skpT q.
Therefore it follows, that

Dε P p0, skpT qq@n P NDnl ¥ n : skpTnlq   skpT q � ε.

Hence for every l P N there exists an Anl P BLpX, Y q with rankAnl ¤ k � 1 such
that

||Tnl � Anl ||   skpT q � ε. (3.6)

Therefore holds that

||Anl || ¤ ||Anl � Tnl || � ||Tnl ||   skpT q � ||T ||.

Thus the sequence pAnlqlPN is uniformly bounded and the assumptions of Lemma
3.8 are ful�lled. Therefore there exists a subsequence pAjqjPN � pAnlqlPN and an
operator A : X Ñ Y such that rankA ¤ k � 1 and Aj Ñ A in Tω as j Ñ 8. Let
x P X and f P Y 1 be arbitrary with ||x|| ¤ 1 and ||f || ¤ 1. We want to get the
following term small:

@j P N : |fpTxq�fpAxq| ¤ |fpTxq�fpTjxq|�|fpTjxq�fpAjxq|�|fpAjxq�fpAxq|.
(3.7)

First we see, that

|fpTjxq � fpAjxq| ¤ ||f || � ||Tj � Aj||   skpT q � ε.

As pAjqjPN Ñ A it follows that there exists a j0 P N such that for all j ¡ j0
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|fpAjxq � fpAxq|   ε
3
.

Since pTnqnPN Ñ T in Tω, there exists a j1 P N such that for all j ¡ j1

|fpTxq � fpTjxq|  
ε
3
.

In conclusion follows, as x P X with ||x|| ¤ 1 and f P Y 1 with ||y|| ¤ 1 were
arbitrary

skpT q ¤ ||T � A|| ¤ skpT q �
ε
3
.

This is a contradiction, hence

lim inf
nÑ8

skpTnq ¥ skpT q. (3.8)

Together with (3.5) it follows, that

lim
nÑ8

skpTnq � skpT q.

�

Remark 3.9 According to Eberlein's Theorem (see Theorem 16.5 in [4]) and propo-
sition 2.7 in [3] if Y is a non-re�exive space, then there has not to be a subsequence
of pTnqnPN, that is convergent in the weak operator topology. Therefore the demand,
that Y is a re�exive space, is necessary.

3.3 Additional thoughts

In this section we want to discuss whether the approximation number of an oper-
ator skpT q is a minimum or not. At the very end of this chapter we add one last
version of the approximation under re�exivity assumption. This section follows
2.5 and 2.9 in [3].

Corollary 3.10 Let X be a separable normed linear space ,Y be a re�exive Banach
space and T P BLpX, Y q, k P N. Then there exists an operator A P BLpX, Y q,
rankA ¤ k � 1 with

skpT q � ||T � A||

Proof :
According to the de�nition of skpT q for every n P N there exists an An P BLpX, Y q
with rankAn ¤ k � 1 and

||T � An|| ¤ skpT q �
1

n
(3.9)

12



and therefore ||An|| ¤ ||T ||�skpT q�
1
n
  ||T ||�skpT q�1. As pAnqnPN is uniformly

bounded by consequence of Lemma 3.8 there exists an A P BLpX, Y q, rankA ¤
k � 1 and a subsequence pAnlqlPN with

pAnlqlPN Ñ A in Tω.

Let ε ¡ 0, x P X with ||x|| ¤ 1 and f P Y 1 with ||f || ¤ 1 be arbitrary. Let nε P N
be such that for all nl ¥ nε holds

1
nl
  ε

2
and |fpAxq � fpAnlxq|  

ε
2
.

Together it follows that

|fpTxq � fpAxq| ¤ |fpTxq � fpAnlxq| � |fpAnlxq � fpAxq| ¤
||f || � ||x|| � ||T � Anl || �

ε
2
  skpT q �

1
nε
� ε

2
  skpT q � ε.

As x, f and ε were arbitrary, it follows

||T � A|| ¤ skpT q. (3.10)

By consequence of the de�nition of skpT q follows, that ||T � A|| ¥ skpT q and
together with (3.10) we get

||T � A|| � skpT q.

�
Last we add a corollary, that gives one more version of the approximation of the
approximation numbers under re�exivity assumption.

Corollary 3.11 Let X be a separable normed linear space ,Y be a re�exive Banach
space and T P BLpX, Y q, k P N. Let pPnqnPN � BLpXq and pQnqnPN � BLpY q such
that ||Pn|| ¤ 1 with @x P X : Pnx Ñ x and ||Qn|| ¤ 1 with @y P Y : Qny Ñ y in
Tω. Then holds that

@k P N : skpTnq Ñ skpT q for nÑ 8.

Proof :
We have to show, that Tn :� QnTPn Ñ T in Tω. Therefore let x P X and f P Y 1

be arbitrary. As @x P X : PnxÑ x and @y P Y : Qny Ñ y in Tω follows

|fpTnxq � fpTxq| ¤ |fpQnTPnxq � fpQnTxq| � |fpQnTxq � fpTxq| ¤
||f || � ||Qn|| � ||T || � ||Pnx� x|| � |fpQnTxq � fpTxq| Ñ 0 as nÑ 8.

Hence Tn Ñ T in Tω and therefore the conclusion follows from Theorem 3.6.
�
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4 Approximation under duality

assumption

In the last chapter we discussed the approximation of approximation numbers of
a linear bounded operator T : X Ñ Y on normed spaces under the assumption,
that Y is a re�exive space. We now want to show a second possibility to proof
the approximation on normed spaces under slightly di�erent conditions. The main
di�erence will be, that we assume, that the codomain Y of T is not necessarily
re�exive but the dual space of a separable normed linear space. In addition we will
slightly change the assumptions on the sequence of operators pTnqnPN. In corollary
3.11, our �nal version of the approximation in the last chapter, we asked for the
two sequences pPnqnPN, pQnqnPN for pPnqnPN point wise convergence and for pQnqnPN
convergence in the weak operator topology. Now we even want to weaken that,
namely that Tn :� QnTPn is just convergent in the weak-* operator topology. In
the �rst section of this chapter we will �rst prove a lemma, similar to Lemma
3.8, that will help us to prove the main theorem of this chapter. That we will do
right after discussing this lemma. In the second section of this chapter we will
discuss, if the approximation number of an operator skpT q is a minimum or not
under the duality assumption. Finally, we will give one very last version of the
approximation and sum up all three versions we proofed.

4.1 The approximation under duality assumption

Let us now formulate a lemma, that corresponds to Lemma 3.8. This section
follows Lemma 3.1 and Theorem 3.3 in [3].

Lemma 4.1 Let X,Z be separable normed linear spaces and Y :� Z 1, k P N.
Let pAnqnPN � BLpX, Y q be a sequence of uniformly bounded operators such that
@n P N : rankAn ¤ k. Then there exists a subsequence pAnlqlPN and an operator
A P BLpX, Y q with rankA ¤ k such that

Anl Ñ A in Tω� as nÑ 8.

Proof :
By consequence of Lemma 3.7 for every n P N there exist a basis pb

pnq
1 , ..., b

pnq
k q
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of ApXq � Y with @j P t1, ..., ku : ||bj|| � 1 and pφ
pnq
1 , ..., φ

pnq
k q � X 1 with @j P

t1, ..., ku : ||φ
pnq
j || ¤ ||T || such that

@x P X : Anx �
ķ

j�1

φ
pnq
j pxqb

pnq
j .

Since X 1 and Y are dual spaces of separable normed spaces, according to the
Theorems of Banach-Alaoglu and Tychono� (see Theorem 5.5.6 and Theorem 1.3.1

in [6]), the sequences pb
pnq
1 , ..., b

pnq
k qnPN and pφ

pnq
1 , ..., φ

pnq
k qnPN have weak-* convergent

subsequences. Hence there exist pb1, ..., bkq and pφ1, ..., φkq such that

@x P X : pφ
pnlq
1 pxq, ..., φ

pnlq
k pxqq Ñ pφ1pxq, ..., φkpxqq and

@z P Z : pb
pnlq
1 pzq, ..., b

pnlq
k pzqq Ñ pb1pzq, ..., bkpzqq as nÑ 8.

let us now de�ne, as in Lemma 3.8

@x P X : Ax :�
ķ

j�1

φjpxqbj.

It is clear, that A P BLpX, Y q with rankA ¤ k. Hence for every x P X and z P Z
follows, that

lim
lÑ8

Anlxpzq � lim
lÑ8

ķ

j�1

φ
pnlq
j pxqb

pnlq
j pzq �

ķ

j�1

φjpxqbjpzq � Axpzq.

�
Let us now formulate the main theorem of this chapter. It proves the approxima-
tion of the approximation numbers under the duality assumption.

Theorem 4.2 Let X,Z be separable normed linear spaces and Y :� Z 1, k P N. Let
T P BLpX, Y q and pPnqnPN � BLpXq, pQnqnPN � BLpY q be sequences of operators
with @n P N : ||Pn|| ¤ 1, ||Qn|| ¤ 1 such that Tn :� QnTPn Ñ T in Tω� as nÑ 8.
Then holds

lim
nÑ8

skpTnq � skpT q.

Proof :
As in the proof of Theorem 3.3 we again show �rst lim supnÑ8 skpTnq ¤ skpT q and
then lim infnÑ8 skpTnq ¥ skpT q. The �rst inequality can be absolutely similarly
shown as in Theorem 3.3. So we have

lim sup
nÑ8

skpTnq ¤ skpT q. (4.1)
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Again we want to prove lim infnÑ8 skpTnq ¥ skpT q by contradiction. So we assume,
that lim infnÑ8 skpTnq   skpT q. In consequence there exist an ε ¡ 0 and in�nitely
many nl P N with skpTnlq   skpT q � ε. Therefore we �nd a sequence of operators
pAnlqnPN � BLpX, Y q with @l P N : rankAnl ¤ k � 1 such that ||Anl � Tnl ||  
skpT q � ε. It follows, that

@l P N : ||Anl || ¤ ||Anl � Tnl || � ||Tnl ||   skpT q � ε� ||T ||.

As pAnlqnPN is uniformly bounded by consequence of Lemma 4.1 there exist a
subsequence pAjqjPN � pAnlqlPN and an operator A P BLpX, Y q such that

pAjqjPN Ñ A in Tω� .

Let x P X and z P Z with ||x|| ¤ 1 and ||z|| ¤ 1. We want to get the following
term small:

|Txpzq�Axpzq| ¤ |Txpzq�Tjxpzq| � |Tjxpzq�Ajxpzq| � |Ajxpzq�Axpzq|. (4.2)

Now �rst we see, that

@j P N : |Tjxpzq � Ajxpzq| ¤ ||Tj � Aj||   skpT q � ε.

Second, by weak-*-convergence of pTjqjPN and pAjqjPN there exists a jε such that

|Txpzq � Tjεxpzq|  
ε
3
and

|Axpzq � Ajεxpzq|  
ε
3
.

Hence |Txpzq � Axpzq|   skpT q �
ε
3
. As x P X and z P Z with ||x|| ¤ 1 and

||z|| ¤ 1 were arbitrary it follows that

skpT q ¤ ||T � A|| ¤ skpT q �
ε
3
.

We have reached a contradiction. Hence

lim inf
nÑ8

skpTnq ¥ skpT q. (4.3)

Together with (4.1) we have

lim
nÑ8

skpTnq � skpT q.

�
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4.2 Additional remarks

Similar to section 3.3 we now want to show, that under the duality assumption the
approximation numbers are minima, so for every k P N there exists an operator
A : X Ñ Y such that skpT q � ||T � A||. Last we give one �nal version of the
approximation of the approximation numbers under the duality assumption. This
section follows Corollary 3.2 and Corollary 3.4 in [3].

Corollary 4.3 Let X,Z be separable normed linear spaces and Y :� Z 1, k P N.
Let T P BLpX, Y q. Then there exists an operator A P BLpX, Y q with rankA ¤ k�1
such that

skpT q � ||T � A||.

Proof :
Similar to the proof of Corollary 3.10, according to the de�nition of skpT q for every
n P N there exists an An P BLpX, Y q with rankAn ¤ k � 1 and

||T � An|| ¤ skpT q �
1

n
(4.4)

and therefore ||An|| ¤ ||T ||�skpT q�
1
n
  ||T ||�skpT q�1. As pAnqnPN is uniformly

bounded by consequence of Lemma 4.1 there exists an A P BLpX, Y q, rankA ¤
k � 1 and a subsequence pAnlqnPN with

pAnlqnPN Ñ A in Tω� .

Let ε ¡ 0, x P X, z P Z with ||x|| ¤ 1 and ||z|| ¤ 1. Let nε P N be such that for
all nl ¥ nε holds that

1
nl
  ε

2
and |Axpzq � Anlxpzq|  

ε
2
.

Together follows that

|Txpzq � Axpzq| ¤ |Txpzq � Anlxpzq| � |Anlxpzq � Axpzq| ¤
||x|| � ||z|| � ||T � Anl || �

ε
2
  skpT q �

1
nε
� ε

2
  skpT q � ε.

As x, z and ε were arbitrary, it follows

||T � A|| ¤ skpT q. (4.5)

By consequence of the de�nition of skpT q follows, that ||T � A|| ¥ skpT q and
together with (4.5) we get

||T � A|| � skpT q.
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�
Last we name a corollary, that gives one very last version of the approximation of
the approximation numbers under duality assumption.

Corollary 4.4 Let X,Z be separable normed linear spaces and Y :� Z 1, k P
N. Let T P BLpX, Y q and pPnqnPN � BLpXq, pQnqnPN � BLpY q be sequences of
operators with @n P N : ||Pn|| ¤ 1 such that @x P X : PnxÑ x and ||Qn|| ¤ 1 with
@y P Y : Qny Ñ y in Tω� as nÑ 8. Then holds that

lim
nÑ8

skpTnq � skpT q.

Proof :
We want to use Theorem 4.2. Therefore we have to show, that Tn :� QnTPn Ñ T
in Tω� as nÑ 8. As @x P X : PnxÑ x and @y P Y : Qny Ñ y in Tω� it follows

|Tnxpzq � Txpzq| ¤ |QnTPnxpzq �QnTxpzq| � |QnTxpzq � Txpzq| ¤
||Qn|| � ||T || � ||Pnx� x|| � ||z|| � |QnTxpzq � Txpzq| Ñ 0 as nÑ 8.

Hence Tn Ñ T in Tω� and therefore the conclusion follows from Theorem 4.2. �

4.3 Conclusion

Let us now formulate a theorem that sums up all three versions of the approxima-
tion of the approximation numbers.

Theorem 4.5 (Approximation of approximation numbers) Let X and Y
be normed spaces and T P BLpX, Y q. Furthermore let pPnqnPN � BLpXq, pQnqnPN �
BLpY q be sequences of Operators with ||Pn|| ¤ 1, ||Qn|| ¤ 1 for all n P N. Let
@n P NTn :� QnTPn. If one of the following statements

� X and Y are Hilbertspaces. Pn and Qn are linear projections with Pn Ñ idX
and Qn Ñ idY .

� X is a separable, Y a re�exive Banachspace and Tn Ñ T in Tω.

� X and Z are separable normed spaces, Y :� Z 1 and Tn Ñ T in Tω�.

is true, then holds that

lim
nÑ8

skpTnq � skpT q.
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