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1 Introduction

In this text, we study universal sets and present a few results related to a conjecture of
Paul Erdös (1913-1996). What is a universal set?

Definition 1. A set E ⊆ R is called universal (in measure), if every measurable S ⊆ R of
positive Lebesgue measure contains an affine copy of E: there is a pair (t, r) ∈ R×R \ {0}
satisfying t+rE ⊆ S. A function ϕ : R→ R of the form ϕ(x) = t+rx is called a similarity
mapping.

It is known that all finite sets are universal (see Theorem 2) and certain types of infinite
sets have been shown to be non-universal. Paul Erdös conjectured [7, chap. 4, p. 29], that
no infinite universal set exists.

In Section 2 we discuss properties of universal sets and provide a proof that all finite sets
are universal. In Section 3 we construct a Cantor-like set that does not contain any affine
copy of a given slowly converging sequence. The construction of a set avoiding translation
copies of a given infinite set at almost every scale can be found in Section 4. To conclude,
in Section 5 we present two equivalent formulations of the conjecture.

The most recent attempt towards Erdös’ conjecture was published shortly after this
seminar paper was written: In [1], the authors endeavor to construct a Cantor-like set not
containing any affine copy of a sequence converging arbitrarily fast, which would prove the
conjecture. However, the paper was shortly revoked as it was found to contain a gap. Thus,
the so-called similarity conjecture remains unproven.

2 Properties of universal sets

We start by stating a few simple observations regarding universal sets.

Lemma 1. If E ⊆ R is universal, the following statements are true:

1. Every subset of E is universal.

2. If ϕ is a similarity mapping, then ϕ(E) is universal.

3. The closure of E is universal. [9, Lemma 2.1]
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2 Properties of universal sets

4. E is a bounded set of empty interior.

Proof.

1. For an arbitrary S ⊆ R with λ(S) > 0, there is a similarity mapping ϕ : R 7→ R
satisfying ϕ(E) ⊆ S. Needless to say, ϕ(E′) ⊆ S for any subset E′ ⊆ E.

2. This is owing to the fact that the inverse of ϕ is a similarity mapping, as is the
composition of similarity mappings.

3. Let S ⊆ R be some set of positive measure. Choose S′ to be a closed subset of S
which satisfies λ(S′) > 0. Since E is universal, we find (t, r) ∈ R × R \ {0} with
t+ rE ⊆ S′. Because t+ rE = t+ rE ⊆ S′ = S′ ⊆ S, the set E is universal as well.

4. If E is unbounded, then so is every set of the form t+rE, if only r 6= 0. If E contains
an open interval, then so does any set t + rE. In both cases, S := [0, 1] \ Q is a
possible witness of non-universality.

Before we turn our attention to infinite sets, let us verify that all finite sets are indeed
universal. The following theorem slightly extends this result: If E ⊆ R is finite and S ⊆ R
has positive measure, we show that if only the scaling parameter r is chosen small enough,
there is a t ∈ R so that t+ rE ⊆ S.

Theorem 2. If E ⊆ R is finite, then E is universal 1. Furthermore, for every S ⊆ R of
positive measure, the set {r | ∃t ∈ R : t+ rE ⊆ S} contains an interval (0, R) with R > 0.

Proof. If E consists only of a single point, there is not a lot to show. Assume #E ≥ 2 and
write E = {e1, . . . , em}, where ei < ej for i < j. We may also assume e1 = 0 and em = 1,
since if the statement is true for an appropriately scaled and shifted version of E, then it
holds for E as well, owing to the fact that the composition of similarity mappings is once
again a similarity mapping.

Let S ⊆ R be an arbitrary set of positive measure. Assume, towards a contradiction, the
following:

∀R > 0∃r ∈ (0, R) : ∀t ∈ R : t+ rE * S. (1)

Chose a sequence (rn)n∈N of positive numbers converging to zero, so that for every n ∈ N
we have ∀t ∈ R : t + rnE * S. Lebesgue’s Density Theorem (see Theorem 13 in the
appendix) guarantees the existence of some s ∈ S satisfying

lim
r↘0

λ (S ∩ [s− r, s+ r])

2s
= 1.

We will now show that each interval [s− rn, s+ rn] contains a set that does not belong to
S and has measure at least δrn, with δ > 0 fixed and not depending on rn. This yields

lim
n→∞

λ (S ∩ [s− rn, s+ rn])

2s
≤ lim

n→∞

2rn − δrn
2rn

= 1− δ

2
< 1,

1This observation is sometimes attributed to Hugo Steinhaus (1887-1972), for example in [9], where Sur
les distances des points dans les ensembles de measure positive, Fund. Math., 1(1920), 93-104, is cited.
For an alternative proof, see [5].
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2 Properties of universal sets

contradicting s being a point of density in S.
Fix n ∈ N and define

δ := min
i∈{1,...,m−1}

(ei+1 − ei).

Consider the similarity mapping ϕ0 (x) := (s− rn) + rnx, which maps e1 to s− rn and em
to s. For every t ∈ R, ϕt (x) := ϕ0 (x) + t is once again a similarity mapping with scaling
parameter rn. The sets

Ek := {ϕt(ek)|t ∈ [0, δrn)} ∩ Sc = [ϕ0(ek), ϕ0(ek) + δrn) ∩ Sc, k = 1, . . . , n

are disjoint, owing to our choice of δ. By our assumption that S contains no translate of
E scaled by rn, we know that

∀t ∈ [0, δrn)∃k ∈ {1, . . . , n} : ϕt(ek) ∈ Ek.

Reformulating this using the translations

τk : [ϕ0(ek), ϕ0(ek) + δrn)→ [0, δrn)

x 7→ x− ϕ0(ek),

we obtain

[0, δrn) =
n⋃
k=1

τk(Ek).

By the subadditivity and translation invariance of λ and because the Ek are disjoint, we
now deduce the following inequality:

δrn = λ ([0, δrn)) = λ

(
n⋃
k=1

τk(Ek)

)
≤

n∑
k=1

λ (τk(Ek)) =
∑

λ(Ek) = λ

(
n⋃
k=1

Ek

)
.

Thus, for arbitrary n ∈ N, we have found a set of measure greater than δrn fully contained
in Sc ∩ [s − rn, s + rn], namely the union of the sets Ek. As a result, we get the already
mentioned contradiction and conclude that the negation of (1) - which is the statement of
the theorem - holds.

Remark 1. It is interesting to note that if S ⊆ R contains a similar copy of every finite set,
λ(S) is not necessarily greater than zero - see [8] for a construction of a Lebesgue null set
with this property.

We have already seen that the set of universal sets is closed under similarity mappings.
The same can be said for the set of sets that do not contain a similar copy of a given set.
In fact, if we know of the existence of one such ’witness’ of non-universality, then we can
already assume that there is a closed subset of [0, 1] of measure arbitrarily close to 1 that
contains no copy of the given set, as the following Lemma shows:

Lemma 3. If E ⊆ R is not universal, then for every ε > 0 there is a closed set Sε ⊆ [0, 1]
of measure λ(Sε) > 1− ε that does not contain any affine copy of E.
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3 A set of positive measure not containing a copy of a slowly converging sequence

Proof. E is not universal, so there is a set S of positive measure not containing any affine
copy of E. Let s ∈ S be a point of density in S. Choose r > 0 so that 1

2rλ(S∩[s−r, s+r]) >
1− ε and define

Sε :=

(
(
r − s

2r
) +

1

2r
S

)
∩ [0, 1]

Sε is a subset of a scaled and shifted version of S and therefore does not contain any affine
copy of E. By shifting Sε by s−r

2r , it is readily verified that λ(Sε) > 1 − ε. Since λ is a
regular measure, we may assume Sε to be closed (otherwise simply take a closed subset of
Sε of sufficiently large measure).

The following lemma mentioned in [5] shows that while the sets Sε from the previous
Lemma may be of measure arbitrarily close to 1, they are never of full measure in [0, 1].
It also gives a rough idea about what kind of sets we will have to construct if we want to
prove that a given set is non-universal.

Lemma 4 ([5], Theorem 5). Let E ⊆ R be a countable and bounded set. If S ⊆ R satisfies
λ(O \ S) = 0 for some open set O ⊆ R, then S contains an affine copy of E.

Proof. Without loss of generality, we may assume E = {en | n ∈ N} ⊆ [0, 1] (see Lemma 1).
Suppose S is of full measure in some interval [s− ε, s+ ε] and define S′ := S ∩ [s− ε, s+ ε].
We now show that for any r ∈ (0, ε)⋂

n∈N
(S′ − ren) 6= ∅. (2)

This will prove the statement, since t ∈
⋂
n∈N

(S′ − ren) implies t+ rE ⊆ S′ ⊆ S.

Note that for every n ∈ N, the set (S′ − ren) is of full measure in [s− ε, s]. Therefore:

λ

(⋂
n∈N

(S′ − ren)

)
≥ λ([s− ε, s])− λ

(⋃
n∈N

[s− ε, s] \ (S′ − ren)

)
> ε, (3)

which shows that not only is the set in question not empty, but it even has positive measure.

3 A set of positive measure not containing a copy of a slowly
converging sequence

In order to show that all infinite sets are not universal, it would suffice to show that
any strictly decreasing zero-sequence does not have this property: E ⊆ R can only be
universal, if E is bounded (Lemma 1). In that case, let x ∈ E be an accumulation point of
E and (en)n∈N a strictly decreasing (or increasing) sequence in E converging to x. Since
the composition of similarity mappings is once again a similarity mapping and subsets
of universal sets are universal, if an appropriately shifted sequence can be shown to be
non-universal, then so is E.

This motivates the following theorem of Kenneth J. Falconer, to be found in [3]. The
comparatively simple proof stems from [9].
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3 A set of positive measure not containing a copy of a slowly converging sequence

Theorem 5 (Falconer2). Let E = (en)n∈N be a decreasing sequence of real numbers con-
verging to 0 such that

lim
n→∞

en+1

en
= 1.

Then E is not universal.

Proof. (Svetic) Let (εn)n∈N be an arbitrary strictly decreasing zero-sequence3 satisfying

0 < εn < 1 and
∞∏
n=1

(1 − εn) > 0. For each n ∈ N define N(n) ∈ N, so that m ≥ N(n)

implicates em+1/em > 1− εn.
We construct a set S of positive measure, which contains no similar copy of E. Define

S0 := [0, 1] and recursively construct a sequence of sets S0 ⊇ S1 ⊇ S2 . . . , and finally
S :=

⋂
n∈N

Sn. Each set Sn is obtained by removing a fraction from Sn−1 in the following

way:
Assume Sn−1 is given as the distinct union of closed intervals of the same length. From

each of these, we remove a certain number kn of evenly spaced open intervals, so that
the fractional amount removed is εn and kn+1 closed intervals of equal length remain. The
number of intervals to be removed is chosen so that nλ(In) < eN(n) holds, where In denotes
an arbitrary one of the remaining closed intervals.

Each set Sn is a finite union of closed intervals, therefore S is closed. Because λ is
continuous from above, we have

λ(S) = lim
n∈N

λ(Sn) =
∞∏
n=1

(1− εn) > 0,

so S has positive measure.
We now show that S contains no similar copy of E: Let a pair (t, r) ∈ R × R \ {0} be

given. Assume r < 0 (a similar argument can be made if r > 0). Since limn→∞(t+ren) = t
and S is closed, we may assume t ∈ S, as otherwise t+ rE * S is straightforward. This is
also apparent if t is the far left point of some closed interval of any of the Sn, so assume
this is not the case.

Choose n ∈ N satisfying 1
n < −r. Let In denote the closed interval constructed at the

n-th step with t ∈ In and On the open interval removed from it to the left. Let m ∈ N
be minimal so that t + rem ∈ In. By showing −r(em−1 − em) < λ(On), we see that
t+ rem−1 ∈ On and therefore t+ rem−1 /∈ S:

Because t and t + rem are both in In and because of our choice of n, we have em/n <
−rem ≤ λ(In) and therefore em < nλ(In) < eN(n). Since our sequence (en)n∈N is monotone,
this implies m > N(n) and thus −rem/− rem−1 > 1− εn, or written more conveniently for
future purposes:

−rem
1− εn

> −rem−1 (4)

We also have λ(On)/(λ(On) − rem) ≥ λ(On)/(λ(On) + λ(In)) > εn (whereby the second
inequality is true because εn was the fractional amount removed at the nth step and can

2According to [9], this theorem was also proven independently by S. J. Eigen in Putting Convergent
Sequences into Measurable Sets, Studia Sci. Math. Hung., 20(1985), 411-412, MR 88f:28003.

3e.g. εn := 1
(n+1)2
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3 A set of positive measure not containing a copy of a slowly converging sequence

be written as εn = knλ(On)/(knλ(On) + kn+1λ(In))). This can be rewritten as λ(On) ≥
λ(On)εn − remεn, from which we can deduce

λ(On) >
−remεn
1− εn

. (5)

Putting these results together, we get

− r(em−1 − em)
4
<
−rem
1− εn

− (−rem) =
−remεn
1− εn

5
< λ(On), (6)

which, as mentioned, shows t+ rem−1 /∈ S.

As pointed out in [9], Theorem 5 can be used to show any universal set to be a λ∗-zero
set:

Corollary 6. If E ⊆ R is universal, then λ∗(E) = 0. If E is measurable (as well as
universal), then for every S ⊆ R of positive measure, the set

{(t, r) ∈ R× R \ {0} | t+ rE ⊆ S} (7)

is uncountable.

Proof. Suppose λ∗(E) > 0 and assume that 0 is a point of density in E (otherwise shift E
accordingly so this is true). Because E is universal only if its closure is universal, we may
also assume that E is closed. We now extract a sequence from E, which meets the premise
of Theorem 5. Define

en := sup

(
E ∩

[
0,

1

n

])
.

Because E is closed and 0 is a point of density in E, en ∈ E. The sequence converges
sufficiently slowly:

lim
n∈N

en+1

en
≥ lim

n∈N
nen+1 = lim

n∈N
(n+ 1)en+1 = 1.

The last equation was true, because for all n ∈ N

1 ≥ nen =
λ([0, en])

1
n

≥
λ
(
E ∩ [0, 1

n ]
)

1
n

,

where the last term tends to 1 for n → ∞. According to Theorem 5, E is not universal.
This proves the first statement.

Let E be measurable and let S ⊆ R with λ(S) > 0 be given. Suppose (tn, rn)n∈N is an
enumeration of all possible pairs in 7. Because each set (tn + rnE) is a zero set, the set

S′ := S \
∞⋃
n=0

(tn + rnE) must be of positive measure. Because E is universal, there exist

(t, r) ∈ R × R \ {0} with t + rE ⊆ S′, but since S′ ⊆ S, we have (t, r) = (tn, rn) for some
n ∈ N. This yields a contradiction, since tn + rnE * S′.

Refinements to Falconers result have been made, for instance by Mihail Kolountzakis,
who showed the following:
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4 A set containing no translation copy of a given infinite set at almost every scale

Theorem 7. Let E ⊆ R be an infinite set which contains, for arbitrarily large n ∈ N, a
subset {e1, . . . , en} with e1 > · · · > en > 0 and

− log δn = o(n), (8)

where

δn := min
i=1,...,n−1

ei − ei+1

e1
. (9)

Then E is not universal.

Falconers theorem can be proven to be a corollary of the above, while another consequence
is the non-universality of sets of the form E+E, with E = { 1

2nα
| n ∈ N} for α ∈ (0, 2). [6,

Section 4.4]
Another result is due to Jean Bourgain, who proved4 that sets of the form E1 +E2 +E3,

where each Ei is an infinite set, are non-universal. The question however remains open for
faster converging sequences, most prominently E = { 1

2n | n ∈ N} (see [9]).

4 A set containing no translation copy of a given infinite set at
almost every scale

Another characterization of universality is the following, pointed out in [6]:

Lemma 8. Let E ⊆ R be an infinite set. E is universal if and only if every S ⊆ R with
λ(S) > 0 satisfies

λ∗({t ∈ R |∃r ∈ R \ {0} : t+ rE ⊆ S}) > 0. (10)

Proof. If (10) is true for any S of positive measure, then E is obviously universal.
Suppose E is an infinite set and S ⊆ R is such that λ(S) > 0 and λ∗({t ∈ R | ∃r ∈

R \ {0} : t + rE ⊆ S}) = 0. Since λ is a regular measure, we may choose S to be closed,
and because of Lemma 1, we may assume 0 to be an accumulation point in E. Under these
assumptions, S′ := {t ∈ R | ∃r ∈ R \ {0} : t+ rE ⊆ S} is a subset of S. Removing an open
set of small measure containing S′ from S, we get a set of positive measure which contains
no similar copies of E.

Motivated by this result, Kolountzakis showed the following (again, see [6]):

Theorem 9 (Kolountzakis). Let E ⊆ R be an infinite set. For any ε > 0 there is a set
S ⊆ [0, 1] satisfying λ(S) > 1− ε, such that

λ ({r ∈ R \ {0} | ∃t ∈ R : t+ rE ⊆ S}) = 0. (11)

Proof. It suffices to prove the theorem for E = {e1, e2, . . . } with em ↘ 0. We restrict the
scaling parameter r to intervals [α, β] not containing zero and construct sets Sα,β ⊆ [0, 1]
of measure as close to 1 as needed, so that λ ({r ∈ [α, β] | ∃t ∈ R : t+ rE ⊆ Sα,β}) = 0. If
we intersect countably many such sets where the intervals of the scaling parameter cover

4In [9], Svetic cites J. Bourgain, Construction Of Sets Of Positive Measure Not Containing An Affine
Image Of A Given Infinite Structure, Israel J. of Math., 60(1987).
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4 A set containing no translation copy of a given infinite set at almost every scale

R \ {0} and the sets are taken to be of sufficiently large measure5, we will get a set S
satisfying (11).

It is worth noting that it is enough to construct the sets Sα,β only for α, β > 0, since for
such a set, (1− Sα,β) will avoid almost all translation copies of E scaled by r ∈ [−β,−α].

Fix α, β so that 0 < α < β < ∞. We construct sets Sn ⊆ [0, 1] satisfying λ(Sn) → 1
as well as λ ({r ∈ [α, β] | ∃t ∈ R : t+ rE ⊆ Sn}) → 0 for n → ∞. If we define Sα,β as an
intersection of countably many of these Sn of measure sufficiently close to 1, it will have
the necessary properties.

We define each set Sn to be Tn-periodic with

Sn ∩ [0, Tn] = (εnTn, Tn), (12)

where (Tn)n∈N and (εn)n∈N are yet to be defined sequences of positive reals converging to
zero. Evidently, λ(Sn) → 1. Fix n ∈ N. We now figure out how Tn and εn have to be
defined, so that

λ ({r ∈ [α, β] | ∃t ∈ R : t+ rE ⊆ Sn})→ 0 (13)

holds:
Choose en(1), . . . , en(n) ∈ E so that

en(j+1)

en(j)
< Tn, j = 1, . . . , n− 1. (14)

Let us call a scaling parameter r ∈ [α, β] ’bad’, if the maximum gap between the numbers

ren(1) mod Tn, ren(2) mod Tn, . . . , ren(n) mod Tn, (15)

which we consider as points on a circle of length Tn, exceeds εnTn. Note that the gaps
between the points do not change if we instead consider

(t+ ren(1)) mod Tn, (t+ ren(2)) mod Tn, . . . , (t+ ren(n)) mod Tn,

where t ∈ R can be arbitrary. Because of this, if r ∈ [α, β] is not ’bad’, then for any t ∈ R,
there is at least one j ∈ {1, . . . n} so that (t+ ren(j)) mod Tn is in [0, εnTn] (and therefore
t+ren(j) /∈ Sn), as otherwise the maximum gap between the points in (15) would be greater
than εnTn. Our goal now is to show that the measure of the ’bad’ scaling parameters tends
to zero for n→∞ (and appropriately defined Tn and εn), which will prove (13).

Let k := d 1
εn
e and define Ii :=

[
i
kTn,

i+1
k Tn

]
, i = 0, . . . , k − 1. Because these intervals

have length ≤ εnTn, any r ∈ [α, β] which is ’bad’ belongs to Bn :=
k−1⋃
i=0

Bn
i , where

Bn
i := {r ∈ [α, β] | ∀j ∈ {1, . . . , n} : (ren(j) mod Tn) /∈ Ii}. (16)

We will now show that

λ(Bn
i )→ (β − α)(1− 1

k
)n for Tn → 0. (17)

5∑
n∈N λ(Acn ∩ [0, 1]) < ε for some An ⊆ [0, 1] implies λ(

⋂
n∈NAn) > 1− ε, which can be seen by applying

De Morgan’s law.
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4 A set containing no translation copy of a given infinite set at almost every scale

Casually speaking, this means that when looked at modulo some sufficiently small number,
the mappings t 7→ ten(j) behave similar to independent and uniformly distributed random
variables.

Fix i ∈ {0, . . . , k − 1}. For j = 1, . . . , n consider the sets

Sij :=
{
r ∈ [α, β] | ∀l ∈ {j, j + 1, . . . , n} : ren(l) mod Tn /∈ Ii

}
. (18)

We prove, first for j = n and then inductively for j = n − 1, . . . , 1, that Sij consists of
disjoint intervals, let us call them Jj,l, each of length

λ(Jj,l) =
(1− 1

k )Tn

en(j)
, (19)

plus a maximum of two smaller intervals, so that the total length is

λ(Sij) = (β − α)(1− 1

k
)n−j−1 +O(Tn). (20)

As Si1 = Bn
i , this will show (17).

We start with the case j = n: When r moves from α to β, ren(n) traverses b (β−α)en(n)
Tn

c
full periods of Tn and for each period, the size of the corresponding interval Jn,l of the

scaling parameter, during which ren(n) mod Tn /∈ Ii, is λ(Jn,l) = (1−(1/k))Tn
en(n)

. Multiplying

the two also yields (20) for Sin.
Suppose (19) and (20) are true for some j > 0. For each interval Jj,l, the subset for

which ren(j−1) mod Tn /∈ Ii consists of disjoint intervals Jj−1,l each of length (1−(1/k))Tn
en(j−1)

,

plus a maximum of two smaller intervals. The total size of Sij−1 is

λ(Sij−1) = (#intervals Jj,l)(#subintervals Jj−1,l)(length of each subinterval), (21)

where

number of intervals Jj,l =

(
(β − α)(1− 1

k
)n−j−1 +O(Tn)

)
en(j)

(1− 1
k )Tn

(22)

and

number of subintervals Jj−1,l =
(1− 1

k )Tn

en(j)

en(j−1)

Tn
+O(Tn). (23)

After multiplying (and some algebra), we get

λ(Sij−1) = (β − α)

(
1− 1

k

)n−(j−1)−1

+ C
en(j)

en(j−1)

1

Tn
O(Tn), (24)

where C is some constant that does not fit the page. Here we need (14), with the help of
which we see that the last term is O(Tn). This proves (17).

We can now choose Tn sufficiently small so as to have

λ(Bn) = λ(

k−1⋃
i=0

Bn
i ) ≤

k−1∑
i=0

λ(Bn
i ) ≈ k(β − α)(1− 1

k
)n. (25)
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5 Equivalent formulations to Erdös’ similarity conjecture

If we define εn := 1√
n

, we further get

· · · ≤ (β − α)(
√
n+ 1)(1− 1√

n+ 1
)n ≤ (β − α)(

√
n+ 1) exp(−

√
n), (26)

which tends to 0 for n→∞. This completes the proof.

An immediate corollary of the above theorem is the following:

Corollary 10. Let E ⊆ [0, 1] be an infinite set. For any ε > 0, there is a set S ⊆ [0, 1]
satisfying λ(S) > 1− ε, which contains no translation copy of E.6

Proof. Let S′ be the set constructed in Theorem 9 with λ(S′) > 1− ε
2 . Choose r ∈ (1− ε

2 , 1)
so that @t ∈ R : t+ rE ⊆ S′ and define S := 1

r (S′ ∩ [0, r]). The set S contains no translate
of E and S ⊆ [0, 1] with λ(S) = 1

r (λ(S′)− λ((r, 1])) > 1− ε.

5 Equivalent formulations to Erdös’ similarity conjecture

Erdös’ conjecture has been reformulated in various ways. Two equivalent formulations are
presented in this section. The first one is due to Jakub Jasinski, who views the problem as
a sort of ”tiling puzzle” (see [5]):

Theorem 11 (Jasinski). For E ⊆ (0, 1), the following statements are equivalent:

1. E is not universal:

∃S1 ⊆ R, λ(S1) > 0 : ∀(t, r) ∈ R× R \ {0} : t+ rE ∩ Sc1 6= ∅. (27)

2. There is a closed set S2 ⊆ (0, 1) of positive measure such that

∀t ∈ (0, 1) : Sc2 + tE = R. (28)

3. There is an open set G ⊆ R such that

λ((0, 1) \G) > 0 and ∀t ∈ (0, 1) : G+ tE = R. (29)

Proof. (2)⇔ (3) is evident.
(1)⇒ (2): For a fixed r ∈ R, the first statement is equivalent to

∀t 6= 0∃y ∈ Sc1, e ∈ E : y − re = t,

which in turn is equivalent to
Sc1 − rE = R.

6According to Kolountzakis, this was previously shown by Péter Komjáth in Large Sets not Containing
Images of a Given Sequence, 1983, Canadian Mathematical Bulletin, 26(1), 41-43. doi:10.4153/CMB-
1983-007-7
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5 Equivalent formulations to Erdös’ similarity conjecture

Shift S1 by τ ∈ R, so that (S1 + τ) ∩ (0, 1) is of positive measure. Define S2 to be some
closed subset of S1 + τ ∩ (0, 1) with λ(S2) > 0. For any t ∈ (0, 1), we have Sc2 + tE ⊇
τ + Sc1 + tE = τ + R = R.
(2)⇒ (1): Let s ∈ S2 be a point of density in S2. As s is also a point of density in (2s−S2),
we have λ(S2 ∩ (2s − S2)) > 0. Define S1 ⊆ (S2 ∩ (2s − S2)) so that λ(S1) > 0 and
diam(S1)7 < diam(E).

The first statement is true for |r| ≥ 1, since diam(t + rE) ≥ diam(E) > diam(S1) for
any t ∈ R. If r ∈ (−1, 0), then Sc1 − rE ⊇ Sc2 − rE = R implies (1), as seen in the proof
of ”(1)⇒ (2)”. In the case of r ∈ (0, 1), multiplying the equation S2 + rE = R by -1 and
adding 2s to both sides yields R = (2s − Sc2) − rE. As (2s − Sc2) is contained in Sc1, this
proves (1).

The ”puzzle”-idea is contained in (29): We are looking for an open set G with the above
property. As every open subset of the real line can be written as a countable union of
disjoint open intervals Gn, we might as well look for disjoint Gn ⊆ [0, 1], where the union
of Gn + rE covers R for any r ∈ (0, 1), and define

G :=
⋃
n∈N

Gn ∪ (−∞, 0) ∪ (1,∞). (30)

To conclude this survey of results regarding universal sets, I would only like to mention
one rather different but equivalent formulation to the problem, a proof of which can be
found in [4]:

Theorem 12 (Humke and Laczkovich). Let E ⊆ [0, 1] be such that inf E = 0 and supE =
1. Define Λn as the cardinality of the smallest set B ⊆ Nn := {1, 2, . . . , n} that intersects
every set of the form Ex,y := {x+ beyc|e ∈ E}, where x, y, x+ y ∈ Nn and y ≥ bn2 c. Then
the following statements are equivalent:

1. E is not universal.

2. lim
n∈N

Λn
n = 0.

3. lim inf
n∈N

Λn
n = 0.

Appendix

We state Lebegue’s Density Theorem. A proof can for example be found in [2, chap. 7,
p. 324].

Definition 2. We call x ∈ R a point of density in A ⊆ R, if

lim
r↘0

λ∗ (A ∩ [x− r, x+ r])

2r
= 1,

where λ∗ denotes the outer Lebesgue measure.

Theorem 13 (Lebesgue Density Theorem). For an arbitrary set A ⊆ R, almost every
point x ∈ A is a point of density in A.
7For A ⊆ R, we define the diameter of A to be diam(A) := sup{|x− y| : x, y ∈ A}.
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