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1 Introduction

In this thesis we shall prove sandwich-type theorems for superlinear functionals with
values in R U {00, —oo} on ordered cones. Therefor, we will use the concept of locally
convex cones, introduced by K. Keimel and W. Roth in [1]. These yield a boundedness
from below, necessary to handle superlinear functionals attaining the value —oc.

In Section 2 we provide a sandwich theorem for functionals with values in R U {00},
which will be used to prove a generalisation in Sections 3 and 4. There, we shall also
give a short introduction to locally convex cones, which can be approached either by an
abstract 0-neighborhood-system or by a convex quasiuniform structure.

In Section 5 we give a general Hahn-Banach-type theorem, which yields a variety of
extension and seperation theorems as corollaries.

Those will find some application in our final section, where we investigate the range of
linear functionals on an ordered cone. The Sup-Inf-Theorem proven in this section gives
a different characterization of sub- and superharmonic elements of an ordered cone.

2 A Sandwich Theorem for Ordered Cones

Definition 2.1. A cone is a set P endowed with an addition + : Px P — P, (a,b) — a+b
and a scalar multiplication - : PXxR* — P, («a,a) — aa for which the following conditions
hold:

e (at+b)+c=a+ (b+c), for a,b,c € P
e a+b=>b+a, for a,b € P
e there exists an element Op € P such that a +0p = a, forae P
e a(fa) = (af)a, fora € P and o, 8 € RT
e (a+ p)a = aa+ Ba, fora € P and o, B € RT
e a(a+b) = aa+ b, for a,b € P and o € R™
e la=a, fora € P

Definition 2.2. An ordered cone (P, <) is a cone carrying a reflexive and transitive
relation < satisfying the following conditions:

e a<b=—=a+c<b+c, for a,b,c € P

e 0 <b=— aa < ab, for a,b € P and o € R™

Remark 2.3. Let P be a cone. Since

0a=(0-2)a=0(2a) =0((1+1)a) =0(la+ 1la) = 0(a + a) = 0a + Oa



we conclude that 0a = Op holds for a € P. In the following we shall write 0 instead of
Op if it is clear, which neutral element is meant. Furthermore, for a,b, x,y € P satisfying
a < band z <y we infer

at+xr < b+x
r+b < y+b

hence, a + x < b + y holds.

Example 2.4. In the following let R := R U {oo} denote the extended real line with the
usual algebraic operations extended by:

e o+ 00 = 00, for a € R
e (00 = 00, for a > 0
e Joo=0

It is easy to verify that R together with the standard order relation < forms an ordered
cone.

Definition 2.5. Let P be an ordered cone. A sublinear functional on P is a map
p: P — R satisfying

p(aa) = ap(a) and p(a+b) < p(a) + p(b), for a,b € P and o € R
Likewise a map ¢ : P — R is called a superlinear functional on P, if

q(aa) = ag(a) and g(a+b) > g(a) + q(b), for a,b € P and a € R
A linear functional on P is a map p : P — R such that

p(aa) = ap(a) and p(a+0) = p(a) + u(b), for a,b € P and a € R

In the following we use the pointwise order relation for functionals f, g on a cone P,
ie. f<giff f(a) <g(a) for a € P.

Theorem 2.6. Let P be an ordered cone. For a sublinear functional p : P — R and a
superlinear functional q : P — R there exists a monotone linear functional pu : P — R
such that ¢ < p < p if and only if

q(a) < p(b) whenever a <b fora,be P (1)

Proof. For the necessity of the condition assume there exists a monotone linear functional
u: P — R satisfying ¢ < u < p and let a < b for some a,b € P. By the properties of i
we get q(a) < p(a) < p(b) < p(b), which proves (1).

For the converse let X := {s: P — R | s is monotone and sublinear, ¢ < s < p} and
define a functional s : P — R by



s(a) :=inf{p(d) | a < b,b € P}
Now we show that s € X. Therefor let a < b. By the transitivity of the order we have
b <c¢=a<c, which implies {c€ P |b<c¢} C {ce€ P|a<c} and hence s(a) < s(b).
Since a < b iff A\a < Ab for A > 0 and p is sublinear, we conclude that s(Aa) = As(a).
Furthermore,

s(a+b) = inf{p(c)|a+b<e¢, ceP}
= inf{p(ci+c)|a+b<ci+cy c1,c0 € P}
< inf{p(c1) +p(ca) |a+b<c1+ca c¢1,¢0 € P}
< inf{p(c1) +p(e2) |a < e, b<ca, c1,00 € P}

s(a) + s(b)

shows that s is sublinear. Finally, our assumption implies that ¢(a) is a lower bound for
{p(d) | a <b, be P} forae€ P. Together with the reflexivity of the order we infer
a(a) < s(a) < pla), for a € P

which proves s € X. Now we want to apply Zorn’s Lemma in order to show that X
contains a minimal element. Therefor let C' C X be a totally ordered subset of X and
set

so(a) :=inf{s(a) | s € C}

Obviously sg(a) < s(a) holds for s € C' and a € P, which yields ¢ < sy < p. Now let
€ >0 and a,b € P. By the definition of sg there exist s,, s, € C' such that

sq(a) < sola) + §
sp(b) < s0(b) + 5

Since C' is totally ordered, we have either s, < s, or s, < s,. Without loss of generality
assume s, < s,. Then

so(a + b) a+b)

al

a(a) + 54(b)

a(@) + 5u(b)
(

S
S
S
so(a) + so(b) + €

VAN VAN VANVAN

together with
so(Aa) = inf{s(Aa) | s € C} = inf{As(a) | s € C} = Asp(a), forae Pand A\ >0

ensures that sg is sublinear. As every s € C' is monotone, we easily see that sy has to
be monotone as well. Putting those results together, we conclude that sy € X is a lower
bound of C. By Zorn’s Lemma there exists a minimal element p € X. To finish the proof
we need to show that p indeed is a linear functional. Let ay € P and set

g = sup{q(c) — u(b) | b,c € P,u(b) < 00, < ap + b}



As ¢ < ag + b implies g(c) < u(c) < p(ag+b) < p(ag) + p(b) and ag < ag + 0 we observe
that

q(ao) < g < plao) (2)
holds. Now define a functional ji : P — R by

fi(a) :=inf{u(b) + Ay | b€ P,A > 0,a < b+ Aap}

In order to show ¢ < filet a < b+ Aag. If A = 0 or pu(b) = oo, gla) < u(d) + Aag
easily follows. Otherwise % < ag+ 2 and the definition of a proves g(a) < pu(b) + Aay,
which implies ¢ < fi. Analogous to the beginning of the proof it can be shown that
is monotone and sublinear. Together with g < p < p this results in g € X and by the
minimality of u we get i = pu.

Finally, ap < 0+ lag implies fi(ag) < ap, which combined with (2) yields fi(ag) = ay.
Hence, the mapping a¢ — g coincides with fi. To complete the proof we show that the
map

fi: P—R, a — sup{q(c) — u(b) | b,c € P, u(b) < 0o,c < a+ b}

is indeed superlinear. Therefor let a,b € P and A > 0. It is evident that
fi(Aa) = Ai(a)
holds. Furthermore, let b;, ¢; € P for i € {1,2}, with
g <a+b;

62§b+62

Then ¢; + co < a+ b+ by + by holds and by the sublinearity of u and the superlinearity
of ¢ we conclude

q(ci +c2) — (b +b2) > qler) + qlea) — (p(by) + (b))
= q(e1) = p(br) + q(c2) — p(be)

This implies superlinearity of i. Hence, linearity of p is shown, which finishes the proof.
[ |

The following example shows a situation where the preceding Sandwich Theorem can
not be applied and motivates our upcoming theory.

Example 2.7. Let P be the vector space of all sequences in R with only finitely many
non-zero elements and endow P with the canonical order <, (a;)ieny < (;)ien iff a; < b;
for i € N. For a = (a;)ien € P set n(a) := max{i € N | a; # 0}, and define a functional
p: P — R by
00 if a; > 0 for some ¢ € N
pla) = n(a) > a; else
ieN
A straightforward calculation shows that p is sublinear, and even monotone.Let us show
that there exists no superlinear functional ¢ with ¢ < p. In particular, Theorem 2.6 can
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not be applied to any linear functional dominated by p. Assume on the contrary that
there is a superlinear functional ¢ : P — R with ¢ < p. Let e, := (0n;)ien, Where d;;
denotes the Kronecker Delta and for some A > 0 let

a, = —(Xey +¢,)
Now, the superlinearity of ¢ implies
Ag(—e1) +q(—en) < qlan) < plan) = —n(A+1)

and hence
q(—en) < =Ag(—e1) +n) —n

But if we let n > —g(—e;) we see that this can not hold true for every A > 0.

3 Locally Convex Cones

In order to extend the field of application for sandwich-type theorems, we want to allow
the superlinear functional ¢ to attain the value —oo. A theorem of this kind can be
formulated using the concept of locally convex cones.

Definition 3.1. Let (P, <) be an ordered cone and V' C P not containing Op. Then
(P,V) is called a full locally convex cone, if V' satisfies the following conditions:

e (V1) 0<w forveV

e (V2) for u,v € V there exists w € V such that w < u and w <wv
e (V3) eV, u+veV foru,v € Vand A >0

e (V4) fora e Pand v €V thereis A > 0 such that 0 < a+ \v

Definition 3.2. A subset V' C P of an ordered cone (P, <) is called an abstract 0-
neighborhood system if 0p ¢ V and V1-V3 hold. The elements of V' are often referred to
as neighborhoods.

Definition 3.3. Let (@, <) be an ordered cone and V a set. (Q,V) is called a locally
convex cone if there exists an ordered cone (P, <) such that @ C P is a subcone and
(P, V) is a full locally convex cone.

Remark 3.4. Let (P, V) be a locally convex cone. Then V' gives rise to three different
topologies in the following way:
For v € V and a € P we define

v(a):={beP|b<a+v}



to be a neighborhood of a in the upper topology,
(a)v:={be Pla<b+uv}
to be a neighborhood of a in the lower topology, and
v(a)v :=wv(a) N (a)v

to be a neighborhood of a in the symmetric topology. The name ”locally convex cone”
is derived from the fact that these sets are indeed convex and for every a € P the union
of all v € V of those neighborhoods forms a neighborhood basis in the corresponding
topology.

In the following example we shall motivate another, more intuitive approach to locally
convex cones.
Example 3.5. Let (P, V') be a locally convex cone. For v € V set
0:={(a,b) e Px P|la<b+uv}
We now prove that V := {# | v € V} satisfies the following conditions:

every v € V is a convex set

A :={(a,a) |a€ P} C7, for o € V
v

forﬂ,ﬁeVthereiswEVWithwgﬂ

(Aa) o (pa) C (N + p)a, for \,p >0 and &€ V

e NV, for A\>0and o eV

e for a € P and & € V there is p > 0 such that (0,a) € pi

It is straightforward to check that these sets are indeed convex. Since < is reflexive and
(V1) holds, we conclude that a < a+ v for a € P and v € V. Hence, A C ¢ holds for
o € V. Furthermore, for @,o € V by (V2), there exists w € V satisfying w < u and
w < v and it is clear that w C @ N v holds.

Now let A, u > 0,5 € V and (a,b) € (A?) o (u). By the definition of o there exists ¢ € P
such that (a,c) € A0 and (c,b) € uv. As (a,c) € A0 iff § < § + v we get:

c+ \v

a
c b+ pv

<
<

Dividing those inequalities by (A + p), adding F’\“v to the second one and using the
transitivity of < leads to

2 < b + K v+ A v = b
A~ A+p Atp o Atp A+

+v

showing (a,b) € (A4 p)v. Since A\v = Av for A > 0 and (V3) holds true, we conclude that
AU € V holds for v € V and A > 0. Finally, let « € P and v € V. Then the condition

(0,a) € pv for some p > 0 transfers into 0 < a + pv, which follows immediately from
(V4).



Definition 3.6. Let P be a cone. A collection U of convex subsets of P x P is called a
convex quasiuniform structure if the following conditions hold:

e (Ul) A Cu, forueU

e (U2) for u,v € U there exists w € U such that w Cunw

e (U3) (A\u)o (pu) C (A+ pu, forue Uand A\, u>0

o (U4) Muel, forue Uand A >0

e (U5) fora€ P and u € U there exists p > 0 such that (0p,a) € pu

We have already seen above that every locally convex cone gives rise to a convex
quasiuniform structure. Now we show how a full locally convex cone can be constructed,
starting with a cone P and a convex quasiuniform structure.

Example 3.7. Let @ be a cone and U a convex quasiuniform structure on ). Define
V = {(ru)uev | 7« > 0 and r, = oo for almost all u € U}

By adding a zero element to V' we obtain a cone Vj endowed with the usual componentwise
operations and order. Obviously, P := @ & Vj defines a cone as well. Now we shall
introduce an order on P in the following way: For a,b € Q) and r,s € V; let

adr=bds iff r<sand (a,b) € A\u for every A > s, —r,, whenever s, < 00

In the following we prove that < indeed is an order relation. Reflexivity is easily checked,
since (U1) and (U4) hold. In order to show transitivity, let z®r < y® s < 2@ t. Firstly,
we notice that r < s < t holds. Secondly, consider v € U such that ¢, < oo and let
A > t, —r,. Then there exist A\;y > s, — 1y, A2 > t, — s, satisfying A = A\ + Ao, As
(x,y) € Mu and (y,2) € Au, using the property (U3), we conclude that (z,2) € Au
holds, which proves transitivity of <.

Finally, we want to show that (P, <) is an ordered cone. Therefor, the only thing left to
prove is the compatibility of < with the algebraic operations on P. Let t & r <y ® s. It
is evident that Mz @& r) < A(y @ s) holds for A > 0. Finally, let z &t € P. Obviously,
r+t < s+t holds, so let u € U such that s,+t, < oo and X\ > (s, +1t,)—(ru+ty) = Su—"Tu.
Now choose € > 0 satisfying A :== A — € > s, — r,. We notice (z,9) € M and (z, 2) € eu.
This transfers into the equivalent formulation

Ty
a:=(=,T)€u
;9
bi=(22)eu
€ €
By using convexity of u, we conclude that
A L€y (93+z y~|—z)E
a4 = = (= , = u
A€ A€ A+e A+e



hence, (v + 2,y + 2) € (A + €)u = Au.
To finish proving our assertion, we now shall show that {0g} & V' C P satisfies the
conditions (V1) - (V4).
(V1) immediately results from (Ul) and (U4) using the definition of <. In order to
show (V2) let (ry)uev, (Su)ucv € V and set t, := min{r,,s,} for v € U. Then it is
straightforward to check

OQ S (tu)uEU < OQ S (Tu)uEU

0g @ (tw)uect < 00 D (Su)uev

Furthermore, since V' is a cone without zero, we conclude that (V3) holds as well. Finally,
let a@®r € Pand Og @ s € {0g} @ V. Assume uq, ..., u,, are those members of U, which
satisfy s,, < 0o. (Ub) now implies that for every i € {1,...,n} there exists some \; > 0
satisfying (0,a) € A\u;. Set

)\i — Ty,

,0}, for i € {1,...,n}

p; »= max{

Usg

and
p:=max{p; | i€ {1,...,n}}

For some ¢ € {1,...,n} let A > r; + ps;. Then A > \; holds and by the convexity of w;
together with (0g,0q) € u; we conclude that

Aty © Aug;
Since (0,a) € \ju; and @ € {1,...,n} was arbitrary, we see that
Op < (a®r)+p(0® s)

holds, proving (V4). Thus, (P, {0} @ V) endowed with < is a full locally convex cone.

We will use the preceding construction of such a full locally convex cone to prove some
of our upcoming theorems.

4 Sandwich-Type Theorems for Locally Convex Cones

In the following we consider functionals attaining the value —oco. We extend the algebraic
operation defined on R to R := RU {—oc} by

a+ (—o0) = —o0, for a € R
a - (—o00) = —o0, for o> 0
0-(—00)=0

If we let —oo be the least element of R, (ﬁ, <) again is an ordered cone.

10



Definition 4.1. Let P be a cone. A map ¢ : P — R is called an extended superlinear
functional iff
q(a+b) > q(a) + q(b) for a,b € P

q(aa) = aq(a) fora € Pand a > 0

Definition 4.2. Let (P, K) be a locally convex cone and v € V. A linear, sublinear or
superlinear map p : P — R is said to be uniformly continuous with respect to v iff

a<b+v = pla) < pd)+1, for a,b € P

The set of all uniformly continuous linear functionals in respect to a certain v € V is
denoted by v°, the polar of v.
The union of all polars v° is called the dual cone P*.

Remark 4.3. Let (P, V) be a locally convex cone, v € V' a neighborhood and p € v°.
Firstly, we notice that for A > 0

b b
a<bti = §§X+v — u(%)su(x)ﬂ — p(a) < p(b) + A

holds. If we let a < b for a,b € P, then for every € > 0
a<b+ev

holds and therefore we get
p(a) < p(b) + e

Hence, i is monotone. Secondly, (R,R* \ {0}) obviously forms a locally convex cone.
Then g is continuous with respect to the lower, upper and symmetric topology, which can
be seen as follows: Let a € P, A > 0 and A(u(a)) a neighborhood in the upper topology
of p(a)

AMp(a)) ={ceR|c<pu(a) + A}

Choosing Av(a) as a neighborhood of a in the upper topology of P leads to

p(xo(a)) € A(p(a))

hence, p is continuous with respect to the upper topology. An analogous proof shows
continuity with respect to the lower and symmetric topology.

Theorem 4.4. Let (P, V') be a locally conver cone and v € V' some neighborhood. Fur-

thermore, let p: P — R be a sublinear functional and ¢ : P — R an extended superlinear
functional. Then there exists a linear functional p € v° such that ¢ < p < p if and only

if
a<b+v = ¢qa) <p) +1, fora,be P (3)

11



Proof. The necessity of the condition is evident, as for any p € v° satisfying ¢ < u <p
and a,be P,a<b+wv

a(a) < pifa) < p(b) +1 < p(b) +1

holds. For the converse, assume that condition (3) holds. V := {\v | A > 0} obviously
satisfies (V1)-(V4) and therefore (P, V) forms a locally convex cone. Hence, following the
notation of Example 3.5, U := {& C P x P | u € V} is a convex quasiuniform structure.
Now we use the same method as shown in Example 3.7 to construct a full locally convex

cone: Let B
P=P®R"

and define an order relation < on P by
(a®a)x (bdp)iff a < p and (a,b) € Ay, for A\ > p—a

(P, <) now forms a full locally convex cone, as elaborated in Example 3.7. We extend
the sublinear functional p to P by

P(a® a) = pla) + a
and define a map q on P by
Jla®a):=sup{q(d)—A|de PAx>0andd<a+ M} +a

Since (V4) holds, for every a € P there exists some A > 0 such that 0 < a + Av. This
implies
jJla®a)> -A+a>-—-0

hence, g : P — R. Now we will show that g is superlinear. It is straightforward to check
that for A >0 and (e ® «a) € P

(Ma®a)) =Ala®a)

holds. In order to show superadditivity let (a ® «), (b @® 8) € P. Then

implies
d1+d2 < (a+b)+(>\1+)\2)v

for some dy,dy € P and A, Ay > 0. Since q is superlinear, we get
q(di +d2) — (A1 + A2) > [g(di) — M] + [g(d2) — Ao

Hence, ¢ is a superlinear functional. Now, to finish the proof, we want to apply Theorem
2.6 to the functionals ¢ and p on the ordered cone (P, <). As p obviously is sublinear,
the only thing left to show is that condition (1) holds. Therefor let (a ® ), (b® 3) € P
such that

(a®a)<(bDpB)

12



From the definition of < we infer that
a < B and (a,b) € A0, for A\ > 8 —«

holds. Assume to the contrary g(a @ «) > p(b @ ). Then there exists d € P and A > 0
such that B
d<a+ v (4)

and
g(d) = A+a > p(b)+ (5)

holds. But, for any A > 5 — «, (a,b) € Av transfers into a < b+ Av. Combined with (4),
we infer

d<b+(A+Av

and our condition implies

q(d) < p(d) + X+ A

Since A > 8 — «a was arbitrary, this is a contradiction to (5). Hence, condition (1) holds
and we can apply Theorem 2.6. So there exists a monotone linear functional ji on P such
that ¢ < < p. Finally, we show that

p(a) :== ji(a®0), for a € P

has the desired properties. As ¢(a) < g(a @ 0) and p(a) = p(a & 0) holds for a € P, we
infer ¢ < pu < p. Now let a,b € P satisfying a < b+ v. By (V1) we observe that

a<b+ v, for A >1
holds. Hence, (a®0) < (b@1) = (b@0)+ (0p @ 1). Using the linearity of i we get
p(a) < p(b) + p(0p 1) < pu(d) +p0p & 1) = p(b) + 1

Since p obviously inherits linearity from p, we have shown g € v°, which finishes the
proof. |

In the following we shall utilise the connection between the neighborhoods of a locally

convex cone and left-absorbing sets of an ordered cone to formulate an algebraic version
of Theorem 4.4.

Definition 4.5. Let (P, <) be an ordered cone. A convex subset L C P is called left-
absorbing if 0p € L and for every a € P there is [ € L and A > 0 such that Al < a.

Theorem_4.6. Let (P, <) be an ordered cone, p : P — R a sublinear functional and

qg: P — R an extended superlinear functional. Then there exists a monotone linear
functional pu : P — R satisfying ¢ < p < p if and only if there is a left-absorbing subset
L C P such that

a+1<b = qla) <pD)+1, fora,b € P and somel € L (6)

13



Proof. First, assume there exists a monotone linear functional p such that ¢ < p < p.
Set
L:={beP|0<pub)+1}

L obviously contains Op and it is straightforward to check convexity of L. For a € P let
A > 0 such that 0 < p(a) + . Linearity of 4 now guarantees § € L. As A{ < a we see
that L indeed is a left-absorbing subset of P.

In order to prove (6) let a,b € P and | € L with a + 1 < b. Due to the properties of u
and the definition of L we get

11(b)
p(l) +1

Adding 1 to the first inequality, p(a) to the second one and using transitivity of <, we
obtain p(a) < p(b) + 1. Since ¢ < pu < p holds, we conclude

q(a) < p(b) +1

proving one direction of the equivalence.
For the converse assume there exists a left-absorbing subset L C P such that (6) holds.
Let

pla) + p(l)
0

IA A

u:={(a,b) € Px P|la+1<bforsomel € L}

and
U:={\u| >0}
Note that Au = {(a,b) € P x P | a+ A < b for some [ € L}. We now shall prove that U
is a convex quasiuniform structure:
Therefor let A, u > 0 arbitrary. Convexity of Au follows from the convexity of L and (U1)

is a direct consequence of 0p € L. Now assume without loss of generality that A < pu.
Then for (a,b) € Au there exists [ € L such that

+1<

>
> o

Multiplying with ﬁ < 1 yields

a A b

-+ 1< -

oo T
As Op € L and L is convex, we conclude ﬁl € L, hence, (a,b) € pu. Therefore \u C pu
holds, showing (U2). In order to prove (U3) let (a,b) € (Au) o (uu). Then there exist
c € P, ly,l5 such that

g_|_l < E
PR D
c b
__|_l2 S _
n H

Multiplication with ﬁ (resp. ﬁ) and adding ﬁlg to the second inequality yields

a A 1 b

+ Iy + Iy <
A /\—l—,u1 A+u2_A+u

14



Since L is convex, we conclude F/\ull + 3452 € L and therefore (a,b) € (A + p)u holds.

This proves (U3). (U4) is an immediate consequence of the definition of U. To show (U5)
let @ € P. By the properties of a left-absorbing set, there exists p > 0 and [ € L such
that pl < a, which is equivalent to (0p,a) € pu. Hence, (U5) holds and U is a convex
quasiuniform structure.

Now @ := P ® R" endowed with an order relation < defined by

(a®da)x (b p) iff a < B and (a,b) € \u, for A\ >0 —«
forms a full locally convex cone, as elaborated in Example 3.7. Therefore
P .= (P& {0},{0pr} ® (R"\ {0}))

forms a locally convex cone. We now define a sublinear functional p and a superlinear
functional ¢ on P in a natural way: For a € P let

pla ®0) == p(a)

G(a®0) :=q(a)

To finish the proof, we want to apply Theorem 4.4 to the neighborhood 0p & % € Q.
Therefor we need to check if (3) holds. Let a,b € P such that

(a@OH(b@OH(Op@%):(b@%)

holds. By the definition of < we get

1
(a,b) € Au, for A > 3

This yields (a,b) € u, hence, there exists [ € L such that a +1 < b. (6) now implies
q(a) < p(b) + 1, which is equivalent to ¢(a ® 0) < p(b @ 0) + 1. Applying the theorem
yields the existence of a linear functional i € (%)O on P satisfying § < i < p. Finally,
define a linear functional © on P by

p(a) == fi(a @ 0) forae P

As ¢ < p < p is obvious, the only thing left to show is monotonicity of p. Therefor
let a,b € P, a < b. Since Op € L, we observe (a,b) € Au for every A > 0, showing
(a®0) < (b® 0). Monotonicity of i now yields

(@) = jila @ 0) < fi(b & 0) = p(b)

Hence, i is monotone and the proof is finished. |

15



Corollary 4.7. Let (P, V) be a locally convex cone and v € V' a neighborhood. For any
sublinear functional p : P — R the following are equivalent:

(1) p is uniformly continuous with respect to v; B

(i1) for every extended superlinear functional q : P — R with ¢ < p there exists a
monotone linear functional p € v° such that ¢ < p < p;

(111) p(a) = max{p(a) | p € v° and p < p}, forae P

Proof. Asssume p is continuous with respect to v. Let ¢ be an extended superlinear
functional satisfying ¢ < p and a,b € P such that a < b+ v. Then

q(a) < pla) < p(b) +1

holds and Theorem4.4 yields the existence of a linear functional y € v° with the desired
properties.
Now assume that (i) holds and let a € P. Define an extended superlinear functional

q : P — R the following way:

Ap(a) if b = Aa for some A > 0
Q(b)'{ )

—00 else

Since p is positively homogeneous, we observe ¢ < p. Our assumption now implies that
there exists a monotone linear functional p € v° such that ¢ < p < p. This shows
q(a) < p(a) < p(a) = q(a), hence, p(a) = p(a) holds. As

p(a) < max{u(a) | p € v° and pu < p}

is evident, we infer (iii).
For the last part of the proof assume that (iii) holds. Let a,b € P such that a < b+ v.
By our assumption there exists a functional u € v° satisfying u < p and p(a) = p(a).
Hence,

pla) = p(a) < p(b) +1 < p(b) +1

holds, which shows uniform continuity of p and therefore finishes the proof. [ |

Theorem 4.8. Let (P,V) be a locally convex cone, and v € V' a neighborhood. Further-
more, let p: P — R be a sublinear functional that is uniformly continuous with respect to
v. If p is unbounded on a subset A C P, then there exists a monotone linear functional
we v, p < p such that p is also unbounded on A.

Proof. Let p be a sublinear functional that is continuous with respect to v which is
unbounded on a subset A C P. Since

o) — {0 ifb=0

—00 else
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obviously is an extended superlinear functional such that ¢ < p, Corollary 4.7 now guar-
antees that there exists at least one monotone linear functional u € v° satisfying p < p.
If inf{p(a) | @ € A} = —o0, then the same holds true for any functional ;1 < p, hence,
our claim is obvious.

Thus we assume that sup{p(a) | @ € A} = oo and every functional p € v°, u < p is
bounded below on A. Now we will prove that in this case, there exists at least one such
functional u, which is unbounded above on A.

Therefor we will construct sequences of elements a,, € A, of functionals u, € v° and of
real numbers «,, in the following way:

Set o 1= % and let a; € A such that p(a;) > 2. Such an element exists, since we assumed
that p is unbounded above on A. Furthermore, Corollary 4.7 yields the existence of a
monotone linear functional p; € v° such that p; < p and py(a1) = p(ay).

For n > 2 we observe the following: By (V4), for every ¢ € {1,...,n — 1} there exists
Ai > 0 such that 0 < a; + A\jv. Then X\ := max{\; |i € {1,...,n — 1}} U {1} satisfies

0<a;+ v forie {1,..,n—1}
Multiplying with the strictly positive real number o, := % < 27" yields
0 <apa;+2"v fori e {1,..,n -1}

Note that for any m € v°
apm(a;) > =27" (7)

holds. By our assumption, every pu;, i € {1,...,n — 1} is bounded below i.e. there exist
¢; € R such that p; > ¢;. Hence, using part (iii) of Corollary 4.7 again, we can choose
a, € A and pu, € v° satisfying u,, < p and

n n—1
> aipian) =) ouci + p(an) = n (8)
=0 =0

Now set - -
043:2041‘ < ZQ‘i <1
i=1 i=1

Let ¢ € P. By (V4) there exists some A > 0 such that 0 < ¢+ Av. As every p, is
contained in v° we infer

=A< pn(e) < ple)

Hence,

1 oo
= — 1 fi P
p(e) - ;1 a;j1;(c) or ¢ €

is convergent in R and defines a linear functional on P. Now p < p is evident, and for
c,d € Pwithe<d+wv

p(c) = ézaiui(c> < éZO&i(Mi(d) +1) < p(d) +1
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holds, which implies @ € v°. Furthermore, by inequalities (7) and (8), we compute

ap(a,) = Z%Mz‘(@n) = Zaz‘#z‘(am) = Z aiti(@im) > n — Z 27" >n—1
i—1 i—1 i—nt1 i—nt2

Therefore, we infer
sup{p(a) | a € A} > sup{u(a,) | n € N} = oo

which shows that p indeed is unbounded above on A. |

5 Hahn-Banach Type Theorems for Locally Convex
Cones

We now come to our main Hahn-Banach-type theorems. First we show a generalised
extension theorem, which has some interesting results as special cases.

Definition 5.1. Let P be a cone and C' C P a convex subset. A map f: P — R is
called convex if

fQer + (1= A)ez) < Af(er) + (1= A)f(c2)

holds for all ¢;,c; € C and A € [0,1].
Likewise, a map f : C' — R is said to be concave if

FOer+ (1 =A)ez) = Af(er) + (1 = A) f(ca)

holds for all ¢1,c; € C and A € [0, 1].
An affine function is a map that is both convex and concave.

Theorem 5.2. Let (P, V') be a locally convex cone, C' and D non-empty conver subsets
of P, and v € V' a neighborhood. Furthermore, let p : P — R be a sublinear functional

and q : P — R an extended superlinear functional.

For a conver functional f : C — R and a concave functional g : D — R there exists a
monotone linear functional p € v° satisfying

q<pu<p, g<ponD and p<fonC (9)
if and only iof
a+pd<b+oc+v = qla)+ pg(d) <pb)+of(c)+1 (10)

holds for a,b € P, c€ C,d € D and p,oc > 0.
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Proof. At first we will show the necessity of condition (10) for the existence of a linear
functional p € v° with the desired properties. Therefor assume there exists a monotone
linear functional p € v° such that (9) holds. Furthermore, let a,b € P, c € C, d € D and
p,o > 0 such that a + pd < b+ oc+ v. We infer

q(a) + pq(d) < qla+ pd) < pla+pd) < p(b+o0c) +1 <pb+oc)+1 < p(b) +op(c)+1

Hence, condition (10) holds. For the converse, assume that our condition is valid and
define two functionals p and ¢ on P by

p(x) :=1inf{p(b) + of(c)+ X|be€ P,ce C, \,o >0, and x <b+ oc+ \v}

q(z) :=sup{q(a) + pg(d) |a € P,d € D, p >0, and a + pd < x}
Asz <x+0c+ 0v and ¢ < 0p + 1lc + Ov holds, we conclude

p<p and p< fonC (11)
Analogously it can be seen that
g>q and ¢>gonD (12)

holds. Let z,b € P, c € C'and A\,0 > 0 such that x < b+ oc+ Av. By (V4) there exists
some p > 0 satisfying 0 < x + pv. Combining those inequalities yields

0<b+oc+(p+Av
and condition (10) guarantees
0<p(b)+of(c)+(p+2A)

hence, p(z) > —p > —oo. To finish the proof, we want to apply Theorem 4.4 to the

functionals p : P — R and ¢ : P — R. Therefor we need to prove sublinearity for p
resp. extended superlinerity for ¢g. We shall only show the required properties for p, as
the proof of ¢ is analogous. Positive homogenity is easily seen, since

r<b+oc+ v i ar<ab+ accH+ alv
holds for any a, A > 0, z,b € P and ¢ € C' and
plab) +aocf(c) + al = a(p(b) + o f(c) + A)

In order to show subadditivity, let x,y,b1.bo € P, ¢1,¢co € C' and 01,09, A1, Ao > 0 such
that

b1 + o101 + )\11)

<
< by + 0909 + A

x
Y
Adding those inequalities together yields

24y < (by+by) + 0(%01 + %Cg) (1 + Ao
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where 0 := 01 + 02. By the convexity of C' we infer ¢ := Zt¢; + 22c, € C'. Thus, using
the properties of p and f, we compute

p(b1 +ba) + o f(c) + (M + A2) < p(b1) +p(b2) +o1f(c1) +o2f(c2) + At + Ao

Hence, p(z + y) < p(x) + p(y) holds, showing that p indeed is a sublinear functional.
In order to apply Theorem 4.4, the only thing left is to show that condition (3) holds.
Therefor let z,y € P such that x < y+wv. For any a,b€ P,ce C,d € D and A\, p,0 > 0
with a 4+ pd < x and y < b+ oc + \v we infer

a+pd <b+oc+ (1+ Mo
and, by condition (10),
q(a) + pg(d) < p(b) + o f(c) + A+ 1

follows. Therefore, we can apply Theorem 4.4, which yields a monotone linear functional
€ v° such that ¢ < p < p. From (11) and (12) we conclude that p indeed has the
desired properties. [ ]

Remark 5.3. If ac € C, for any ¢ € C' and a > 0, and if f is a linear functional, we
observe that condition (10) needs to be verified only for ¢ = 1. Obviously, the same holds
for D, g and p. Furthermore, if f = oo or ¢ = —o0, we have to consider the condition
only for 0 = 0 and p = 0 resp.

Similar to Theorem 4.6 we can formulate an algebraic version of Theorem 5.2 by
considering the convex left-absorbing subset L := {b € P | 0 < u(b) 4+ 1} for a monotone
linear functional p on an ordered cone (P, <).

Theorem 5.4. Let (P, <) be an ordered cone and C,D non-empty convezr subsets of

P. Furthermore, let p : P — R be a sublinear functional and ¢ : P — R an extended
superlinear functional. For a convex functional f : C — R and a concave functional

g: D — R there exists a monotone linear functional i : P — R satisfying
g<p<p, g<ponD and p<fonC
if and only if there is a left-absorbing convex subset L C P such that
a+pd+1<b+oc = qla)+pg(d) <pb)+aof(c)+1 (13)
holds for a,b € P,le L, ce C,de D and p,o > 0.
Proof. Similar as Theorem 4.6. ]
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Corollary 5.5. Let (P,V) be a locally convex cone, v € V a neighborhoods, and C, D
non-empty convexr subsets of P. For a convex functional f : P — R and a concave

functional g : P — R there exists a monotone linear functional i € v° such that
g<ponD and pu<fonC

if and only if
pd <oc+v = pg(d) <of(c)+1 (14)

holds for ce C, d € D and p,o > 0.

Proof. Apply Theorem 5.2 to the sublinear functional p : P — R and extended superlin-
ear functional ¢ : P — R defined by

pm%:{o ifa=0

oo else
0 ifa=0
aw:{
—00 else

Corollary 5.6. Let (P, V') be a locally convex cone, v € V' a neighborhood andQ cCP
a subcone of P. Then for any linear, uniformly continuous functional p : Q — R there
exists a linear functional i € v° such that

p=fonQ

Proof. 1t is evident that every linear functional is concave and convex. Therefore, we can
apply Corollary 5.5 to the functionals f = g = p on the convex sets C = D = Q. As C,
D, f and g fulfill the requirements of Remark 5.3, we observe that condition (14) reduces
to

d<c+v = p(d) <p(c)+1

for ¢,d € (), which coincides with the uniform continuity of . Hence, there exists a
monotone linear functional i € v° such that p < i < pon Q. ]

Theorem 5.7. Let (P, V) be a locally convex cone, v € V a neighborhood and C, D
non-empty convex subsets of P. For a € R there exists a monotone linear functional
W€ v° such that

p(e) < a < pu(d) force C andd e D

if and only if
pd<oc+v — ap<ac+1 (15)

Proof. Apply Corollary 5.5 with the maps f = a and g = a. ]
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Definition 5.8. Let (P, <) be an ordered cone. A subset C' C P is called increasing, if
a € C' whenever ¢ < ¢ for a € P and some ¢ € C.

Likewise, a subset D of P is called decreasing, if a € D whenever a < d for a € P and
some d € D.

Corollary 5.9. Let (P, <) be an ordered cone, and let C, D be disjoint non-empty convex
subsets of P. Furthermore, suppose that for every a € P there are ¢ € C, d € D and
o,p > 0 such that pd < a + oc.
(i) If C is decreasing and Op € C, then there exists a monotone linear functional
w: P — R such that

p(e) <1< p(d) force C andd e D

(ii) If D is increasing and Op € D, then there exists a monotone linear functional
w: P — R such that

p(e) < —1 < p(d) force C andd e D

Proof. We shall take a similar approach as in the proof of Theorem 4.6: Let
L:={leP|pd<l+ocforceC,deDando,p>0,0+p<1}

At first, we will show that L is a left-absorbing set. Notice that by our condition there
exist p,o > 0 and ¢ € C, d € D such that pd < 0p + oc. By letting A := p + o, we
observe §d <0p + $cand § + < < 1. Hence, Op € L.

In order to prove convexity of L, let l1,l, € L and «, f > 0 such that a + § = 1. By the
definition of L there exist pq, pa2, 01,09 > 0, ¢1,¢9 € C and dy, dy € D satisfying

pdi < 4o
pidi < lLi+oi
and
pr+o <1
p2t+oy < 1
Hence,
Oépldl + 6p2 -+ dQ S Oéll + Blg + aoicy + ﬁO—QCQ (16)

holds. Now set \; := ap; + Bp2 and A\, := a0y + Bos. By the convexity of C', resp. D
we infer d := a/\—’;ldl + B)\—’fdg € D and ¢ := e + i—"fcg € C. Therefore, (16) yields
Aad < aly + Bly + A.c and since

A+ Ae=alpr+01)+B(pa+o02) <a+ =1

we see that aly + (ls € L.
In order to prove the left-absorbing property of L, let a € P. Then there exist p,o > 0,
c € C and d € D such that pd < a+ oc. If p =0 =0, we infer 0p < a, hence, the proof
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is evident. Otherwise, dividing by A := p + o shows %a € L. Since )\(ia) < a holds, we
conclude that L indeed is a left-absorbing set.

Now U := {Au | A > 0} where u := {(a,b) € P x P|a+1<b for some [ € L} defines a
convex quasiuniform structure as elaborated before. Let (P @ Rt {0p} @ R™ \ {0}) be
the full locally convex cone generated by U, endowed with an order < defined by

(a®a)<x (b p)iff a < p and (a,bd) € Au, for \ > —«

for a,b € P and o, > 0. For a detailed proof of the required properties see Example
3.7. In the following we will consider the subcone @ := P & {0} of P := P ®R™,

In order to prove part (i) we want to apply Theorem 5.7 to the locally convex cone
(Q,{0p} ® RT \ {0}), with the neighborhood v := 0, ® 1 and « := 1. Furthermore, we
shall identify the required convex subsets C' and D with C'@® {0} and D @ {0}.

Assume that, contrary to condition (15), there exist ¢ € C', d € D and o, p > 0 such that

p(d@0) g o(c@0)+v (17)

and
p>o+1 (18)

holds. This implies (pd, oc) € Au for every A > 1. Let A > 1 arbitrary. Then there exist
leL,deC,deDandod,p>0,p+0c <1 such that

pd+ AN < oc
pd <l+d'd
Combining those inequalities yields
MN'd + pd < No'd + oc (19)
Since C' and D are convex, we observe
d"::MGD and c”::MGC
Ao+ p Ao’ + o
Furthermore, plugging ¢’ and d” into (19) yields
d" <" (20)
where ¢” := ‘;iig/l . By our assumption, we have

o+o0 <o+l<p<p+p

Hence, if we choose A > 1 small enough, ¢” < 1 holds. Since C' is convex and contains

0p, we infer o”¢” € C. But this contradicts our assumption that C' is decreasing and

disjoint from D.
Now Theorem 5.7 yields the existence of a linear functional i € v° on () such that

f(e) <1< p(d) for ce C and d € D
Finally, 1 : P — R defined by
p(a) = p(a®0) fora e P
has the desired properties.

The proof of part (ii) is similar, if we let @ = —1 in Theorem 5.7. [ |
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Definition 5.10. Let (P, V') be a locally convex cone. An element a € P is called upper
bounded, if for every v € V' there exists a > 0 such that a < awv.

Theorem 5.11. Let (P,V) be a locally conver cone and B C P a non-empty convex
subset of P such that Op € B.
(i) If B is closed with respect to the lower topology on P, then for every a € B there
exists a linear functional p € P* such that

p(b) <1< p(a) forbe Pe B (21)

and indeed 1 < p(a) if a is upper bounded.
(ii) If B is closed with respect to the upper topology on P, then for every a € B there
exists a linear functional p € P* such that

ula) < =1 < p(a) forbe Pe B (22)

Proof. In order to prove part (i), let a € B®. Hence, there exists u € V such that
(a)un C = 0. We shall apply Theorem 5.7 with the neighborhood v := u € V, the
convex sets B and (a)v, and a = 1.

Assume that, contrary to condition (15), there are b € B, ¢ € (a)v and o, p > 0 such that

pc < ob+wv (23)
p > o+1 (24)

Since & < 1 and Op € B, we infer b= 2b € B. Furthermore, as % < 1, inequality (23)
yields
1
c<b+-v<b+v
)

Now ¢ € (a)v transfers into a < c+wv. Therefore, we observe a < ¥/ 4+2v = b’ 4+ u, showing
V' € (a)u. But this contradicts our assumption (a)uN B = ). Hence, condition (15) holds
and Theorem 5.7 guarantees the existence of a linear functional p € v° satisfying

() <1< p(e) for b € B and ¢ € (a)v (25)

which proves the first statement of (i). Now assume that a is even upper bounded. Then
there is @ > 0 such that aa < v, hence, (1 + a)a < a +v. Now o := H%a satisfies
a<a+ HLO‘U < a' + v, that is @’ € (a)v. Therefore, (25) yields

hence, 1 < 1+ a < p(a) holds as claimed.
For part (ii), an analogous argument shows that there is a neighborhood v € V and a
linear functional pu € v° such that

ple) < —1 < pu(b) for b € B and ¢ € v(a) (26)
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By (V4), there is some A > 0 such that 0 < a + Av. Since 0 < v, we can choose A > 1.
Therefore, we infer

1
0 S X(I + v

and hence

a = )\_1@<a+v

=——a<
Hence, o’ € v(a). Now (26) yields
SRR |

pla) < —5—7 <

finishing the proof. |

6 The Sup-Inf Theorem

Theorem 6.1. Let (P, V) be a locally convex cone, p: P — R a sublinear functional and

q: P — R an extended superlinear functional. Furthermore, suppose that there exists at
least one linear functional u € P* satisfying q < u < p. Then for all a € P

sup u(a) = supinf{p(b) —q(c) | b,c € P, q(c) € R, a+c < b+ v} (27)
pepP* veV
qsps<p

and for all a € P such that p(a) is finite for at least one p € P* satisfying ¢ < u <p

inf p(a) = inf sup{g(c) —p(b) | b.c € P, p(b) €R, c < a+b+v} (28)
HEP* v
q<pu<p

Proof. Let a € P. In order to abbreviate our notation, we shall use o and @ to denote
the left-hand side and the right-hand side of equation (27). In the same way we will use
3 and $ for equation (28).

From our assumptions we infer that @« > —oo and 8 < co. Now let p € p* such that
q < p < p. By the definition of P* there exists v € V such that u € v°. For € > 0 let
w:=¢ev € V. Then a+c¢ < b+ w and ¢(c) € R imply

p(a) +q(e) < pla) + p(e) < p(b) + € < p(b) +€
for b,c € P. Hence, u(a) < p(b) — q(c) + €. This shows that
p(a) < inf{p(b) — q(c) | b,c€ P, q(c) e R, a+c<b+w}+e¢

As € > 0 can be chosen arbitrarily small, we get p(a) < @. Likewise, for some b,c € P
such that ¢ < a+ b+ w and p(b) € R we conclude that

q(c) < pulc) < pla) + p(b) + e < p(a) +p(b) + €
holds. Therefore, we infer p(a) > q(c) — p(b) — €, and

p(a) > sup{q(c) = p(b) | b,c € P, q(c) ER, c<a+b+w} —¢
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Again, this shows j(a) > 3. Combining the previous results yields
f<p(a)<a (29)

f<pB<a<a (30)

We shall proceed to show that @ < « holds. For a = oo this is obvious. Thus we may
assume that o € Rand let v € V. For 0 < e < % there is p € P* such that ¢ < pu <p
and p(a) > a —e. Hence, we find a neighborhood u € V such that u € u°. By (V2)
there exists o € V satisfying o < v and o < u. Now we shall apply Theorem 5.2 to the
neighborhood w := %0, the convex sets C' = D = {a} and the functionals f = co and
g=«a+e€.
Since there is no linear functional 7 € w® such that ¢ < n < p and n(a) > a + ¢, we
conclude that condition (10) must fail. By Remark 5.3 there are b,c € P and p > 0 such
that
c+pa<b+w (31)

and

q(c) + pla+€) > p(b) +1 (32)
This yields p(b) < oo. Since p € u® and ¢+ pa < b+w = b+ Lo < b+ Lu we compute

1 1
q(c) + pla —€) < ple) + pula) < p(b) + 5 < p(b) + 3 (33)
Combining inequalities (32) and (33) implies ¢(c) € R and p(b) + 1 < p(b) + 3 + 2pe.
Hence,

1
1< —<
— 4e p

As e < 1, we infer p > 1. Multiplying inequality (31) by % < 1 yields
/ / 1 /
d+a<b+-w<b+w (34)
p

with ¢ = %c and O/ = %b. Furthermore, using (32), we observe

p(¥) < p(t)) + % - %@o(b) 1) < q() + (ot o) (35)

hence, p(V') — q(¢’) < a+ €. Thus, we obtain

a+e inf{p(b) —q(c) | b,c € P, q(c) e R, a+c < b+ w}

>
> inf{p(b) —q(c) | b,c € P, q(c) e R, a+¢c < b+ v}

showing o > a. Together with (30), this proves the first part of our theorem. For the
second part, the only thing left to show is 8 < . If 8 = —o0, the proof is obvious.
Therefore, we assume € R and let v € V. For 0 < e < % there exists p € P* such that
p(a) < B+ e. Thus, there are u,0 € V satisfying u € u°, 0 < u and o < v.

Now we shall apply Theorem 5.2 to the neighborhood w := %0 € V, the convex sets
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C = D = {a} and the functionals ¢ = —o0, f = § — €. Again, by Remark 5.3 there exist
b,c € P and o > 0 such that

c<b+oa+w (36)
and
q(c) > p(b) +o(f —€) +1 (37)
Furthermore, we compute
4(e) < ple) < p(B) + op(a) + 5 < plb) + (6 +€) + (3%)

This shows ¢(c), p(b) € R and combining the last two inequalities yields

1
—2>1 39
0> = (39)

Now multiplying inequality (36) with £ < 1 results in
d<b+a+w (40)

with ¢ = %c and b = %b. Finally, (37) yields

¢) > pH) + (5 =€)+ = 2 p¥) + (5 )

hence, q(c’) — p(b') > p — e. Thus, we infer

B—e < sup{q(c) —p(b)|bce P, pb) eR, c<a+b+w}
< sup{q(c) —p(b) | b,c € P, p(b) ER, c < a+b+v}
As v € V was arbitrary, we conclude that 3 < 3 holds. ]

Definition 6.2. Let (P, V) be a locally convex cone, p : P — R a sublinear functional

and ¢ : P — R an extended superlinear functional. Then w € V is said to satisfy
condition (wp) iff

for all a,b € P, a < b+ w there is w’ € P such that p(w’) <1and a <b+w"  (41)
Likewise, we say w € V satisfies condition (wq) iff

for all a,b € P, a < b+ w there is w’ € P such that ¢g(w') > —1 and a+w' <b (42)

Remark 6.3. Let (P, V) be a locally convex cone, and P* its dual cone. We shall endow
P* with the topology w(P*, P) of pointwise convergence. Furthermore, let p: P — R be

a sublinear functional and ¢ : P — R an extended superlinear functional. Now assume
that a neighborhood w € V satisfies (wp). Then, for a linear functional p € P*, n <p
we infer

a<bt+w = a<b+w = pla) < p)+ p(w) < pbd)+p(w') < pbd)+1
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for a,b € P and some w’ € V| hence, p € w°®. Thus, M :={pu € P* | ¢ < pu<p} Cw®
holds. Since M is a closed subset of the compact set w® ([1, Proposition I1.2.4]), we
conclude that M is w(P*, P)-compact as well. Thus, the infimum and the supremum
on the left hand sides of equation (27) and (28) turn into a minimum and maximum.
Furthermore, we observe that

supinf{p(b) — q(c) | b,c € P, q(c) € R, a+c < b+ v}
veV

<inf{p(b) — g(c) | bc € P, q(c) €R, a+c < b}

holds. On the other hand, for a,b,c € P, e > 0and v € V, v < ew satisfying a+c¢ < b+wv
there is w’ € P such that

at+c<b+v<b+ew<b+ew

and
p(b+ ew’) — q(c) < (p(b) — q(c)) + ¢
But this yields the reverse inequality

supinf{p(b) — q(c) | b,c € P, q(c) € R, a+c < b+ v}
veV

> inf{p(b) — q(c) [ b,c € P, q(c) €R, a+c < b}

An analogous computation shows that equality (28) can be simplified in a similar way.
Moreover, the above results remain unchanged if we replace condition (wp) with (wq).
This leads to the following corollary:

Corollary 6.4. Let (P, V) be a locally convex cone, p : P — R a sublinear functional

and q : P — R an extended superlinear functional such that
a<b = qa) <p(d) (43)
holds for a,b € P. If either (wp) or (wq) holds for a certain neighborhood w € V', then

max p(a) = f{p(b) —q(c) [b,c € P, q(c) €R, a+c < b} (44)
pep”
q<p<p

min j(a) = supig(c) —p(b) [b,c € P, p(b) € R, ¢ < a+b} (45)
o
q<p<p

holds for all a € P.

Proof. We shall apply Theorem 6. 1 to the functionals p and ¢ on P. Then, Remark
6.3 yields the desired equations. In order to apply the theorem, we have to verify some
additional assumptions. We will only carry out the proof for (wp), as the proof for (wq) is
similar. Therefore, assume there is a neighborhood w € V satisfying (wp). Now a < b+w
guarantees q(a) < p(b) + 1. Hence, Theorem 4.4 yields a linear functional p € w® such
that ¢ < p < p. Thus, there is at least one linear functional p € P* satisfying ¢ < p < p.
For the second equation, let a € P. Assume pu(a) = oo for every u € P*, g < pu < p.
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Then, for every n € N there is no p € w® satisfying ¢ < p < p and u(a) < n. Hence,
applying Theorem 5.2 to C' = D = {a} and the functionals ¢ = —oco and f = n, yields
an,b, € P and o, > 0 such that

a, < b, +o,a+w (46)
and
q(a,) > p(b,) + oxn+1 (47)

Furthermore, if (wp) holds, there are w!, € P satisfying p(w/,) < 1 and a,, < b, +0o,a+w),.
We observe o, > 0, since otherwise our assumption would yield ¢(a,) < p(b,) + 1. Thus,
we can divide by o,, and infer

an, by, + w!, 1
o2 = () = —(g(an) ~plbn) = 1) > 7 (48)
This shows
sup{g(c) —p(b) | b,c € P, p(b) €R, ¢ < a+b} = co = min y(a)
q<p<p
Hence, equation (45) holds also in this case. [ |

Definition 6.5. Let (P, V') be a locally convex cone, C' C P a subcone of P and 1 € P* a
linear functional. An element a € P is said to be C-subharmonic in p if for every n € P*

n(a) > u(a) holds whenever n(c) > p(c) for all ¢ € C (49)
Likewise, a € P is called C-superharmonic in p if for every n € P*

n(a) < p(a) holds whenever n(c) < u(c) for all c € C (50)

Corollary 6.6. Let (P, V') be a locally convex cone, p € P* and C' C P a subcone of P.
An element a € P is C-superharmonic in u if and only if

w(a) =supinf{u(c) |c€ C, a < c+v} (51)

veV

Similarly, an element a € P such that p(a) < oo is C-subharmonic in p if and only if
p(a) = in‘f/ sup{p(c) | c€e C, c <a+wv} (52)
ve

Proof. Let u € P*. Hence, there is w € V such that u € w°. Now

p(a) = {,u(a) ifaeC

00 else

0 ifa=0
q(a) = { i

—o0o else



defines a sublinear resp. superlinear functional on P. Since ¢ < o < p obviously holds
true, we can apply Theorem 6.1 to p and q. For a linear functional n € P*, ¢ < n <p
holds if and only if n(c) < u(c) for all ¢ € C. Therefore, by equation (27) we observe
that an element a € P is C-superharmonic in p if and only if

w(a) > supinf{p(b)—q(c) | b,c € P, q(c) € R, a+c < b+v} = supinf{u(c) | c € C, a < c+v}
veV veV

As the reverse inequality is evident, we conclude that (51) holds. The proof of part two
is similar, if we apply Theorem 6.1 to the functionals p and ¢ on P defined by

p(a) = {0 if a = 0p

oo else
a) ifaeC
J(a) = {u( )
—00 else
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