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Chapter 1

Convex Modules

The notion of convex modules has first been introduced by Neumann and Morgenstern
in [9]. Convex modules give a generalization of convex subsets of linear spaces. In the
first section basic definitions and properties of convex modules as given in [1], [3], [4],
[5] and [6] are presented. A criterion is given for a convex module to be isomorphic to
a convex subset of a linear space, namely being preseparated. Then, an affine function
is constructed, that maps a convex module into a preseparated convex module and that

is initial under such functions.

In the second part a semimetric on convex modules, introduced by Pumpliin in [11], is

discussed. Criteria on the semimetric being a metric are given.

In the final section superconvex modules are introduced and the construction of a com-

pletion functor, as described in [11], are displayed.

1.1 Convex Modules

Definition 1.1.1. A set X and a function ¢ : [0,1] x X x X — X are called a convex

module and c is called convex combination if they satisfy the following conditions:

1. e\ z,y) =c(1 =\, y,x) for all z,y € X and X € [0, 1].
2. ¢(\,z,z) =z for all z € X and X € [0,1].

3. ¢(0,z,y) =« for all z,y € X.

4. c(\,z,c(p,y,2)) = ()\u,c(/\l(i;/’j),x,y),z) for all x,y,z € X and A\, pu € (0,1).



Remark 1.1.2. For a convex module (X, ¢), ¢ it is also said to be a convex structure on

X. Some authors call convex modules ”semiconvex sets”.

The above notation is rather unintuitive. The following notation will make the implica-

tions of these conditions much clearer.

Definition 1.1.3. Let (X, c¢) be a convex module, let o; € (0,1] for all j € {1,..,n}
such that >°% ;a; = 1 and let »; € X for all j € {1,..,n}. Define the formal sum

m—+1 Qa;

QAm+1 m (&7
J=1 ity >

n . . — ,
> j—1 ajz; inductively as > xj = c( i o 21 Zzl:lak:rj,xmﬂ) and

DR
Let (X,c) be a convex module, let o; € [0,1] for all j € N such that all but finitely

many «; are equal to zero and such that 72, aj = 1. Let x; € X for all j € {1,..,n}.

Define E;’il oz by omitting those indices j with a; = 0 in the above induction.
In this new notation the conditions in definition 1.1.1 read as follows:

L A=XNz+Ay=Ay+ (1 —-N)z.
2. 1-=Nz+ Xz ==z
3. lz 4+ 0y = =.

4. (1=XNz+MA—pwy+pz)=((1-Nz+ X1 —p)y) + Apz.

Thus, the notation as a formal sum is justified. For the remainder of this paper, this

notation will be used.

Example 1.1.4. Any convex subset of a real vector space is a convex module by identifying

the formal addition with the vector space addition.

For the remainder of this paper, whenever a subset of a real vector space is considered, it
is assumed to be equipped with this convex structure. As the following example shows,
there are convex modules which cannot be equivalent to a convex subsets of a real vector
spaces.

Ezample 1.1.5. Let X := {x,y}, let (1—N)z+Az =z for A € [0,1],1let (1—-AN)y+Ay =y
for A € [0,1], let (1 — XNz + Ay =z for A € [0,1), let (1 — ANz + Ay =« for A € (0,1],
let 0z 4+ 1y = y and let 1y 4+ Ox = y. It is easily seen, that X is a convex module. Since

T = %:c + %y and x # y, it cannot be a subset of a real vector space.

The following definition characterizes those convex modules that can be considered as

convex subsets of real vector spaces.



Definition 1.1.6. A convex module X is called preseparated if for all z,y,z € X and
Ae0,1):
(I =Xz +Az=(1—-Ny+ Az implies z = y.

Remark 1.1.7. preseparated convex modules are called cancellative by some authors.
Lemma 1.1.8. Let X be a convex module, let x,y,z € X and let A € [0,1), such that

I=XNz+Az=10-Ny+Az. Then (1 —a)z+az=(1—a)y+ az for al a € (0,1].

Proof. For @« =1 and o = A the equation is trivial. Let z,y, z, A be as above. Show that

the equation holds for all o € (A, 1):

B A1 —a) l—a,
l-a)r+az=(1—-a)x+ T z—&—(l—l_)\)z—
l1-a 11—« -« l-a
—1_)\((1—)\)x+>\z)+(1—1_)\)z—1_)\((1—)\)y—|—)\z)+(1—1_>\)z—
B A1 —«) l—a,
—(l—oz)y—kﬁz—k(l—1_)\)2—(1—a)y+ozz
Next let A1) := ﬁ, then:
1—X 1 1—A 1
M My "2 = (1 — _ _
(I=Xz+ Az 5 +2_)\((1 Az +Az) 2_)\x+2_)\((1 Ny + Az)
1-A 1-A A 1-A
—2_)\m~|—2_)\y—|—2_)\Z—2_)\y~|—2_)\((1—)\)$—|—>\z)—
1—A 1

= _ — (1M 1)
2_)\y+2_/\((1 Ny +Az)=1-A)y+ Az

Since the equation holds for A1), the equation holds for all o € [A(),1]. Now we can
iterate this process with A("*+1) = A(/“)n Since A < 1 and A = 22(;(,:131) < )‘;n_i\l) <
the equation holds for all a € (0, 1]. O

[V /\)"

Definition 1.1.9. Let X and Y be convex modules. A mapping f : X — Y is called
affine, if for all z; € X and Z _, o = 1, such that a; > 0 for all j € N and «;j = 0 for
all but finitely many j € N:

FO o) = ajf(x)
j=1 J=1

Clearly, the convex modules together with affine mappings as morphisms form a category.
Let Conv denote this category and let Conv(X,Y') denote the set of all affine mappings
from X to Y.

Lemma 1.1.10. Any bijective, affine mapping is an isomorphism.



Proof. f(z C L aif i (zy) = Z;’il ajz;j and thus applying f~! to both sides results in
f_l(ijl ajx;) = Ej:lajf_l($j)~ O

Lemma 1.1.11. Let X be a conver module and let Y be a real vector space. Let f :
X =Y be affine, then f(X) is conver.

Proof. Let z,y € X and A € [0,1], then (1 — \)f(x) + Af(y) = f(1 = Nz + \y) €
f(X). 0

In the following let R4 denote the positive reals including 0 and let R4 denote the

positive reals excluding 0.

Theorem 1.1.12. A convex module X is isomorphic to a convex subset of a real vector

space, if and only if X is preseparated.

Proof. Every convex subset of a real vector space is preseparated, so clearly any convex

module isomorphic to a convex subset of a real vector space is preseparated.

For the other direction, let X be a preseparated convex module. Let C' := (R44) x X.
For (u,z) € C and \ € R++ let A(p,x) := (A, x). For (p,x) € C and (v,y) € C

let (u,z) + (v,y) == (n+v, iy
(w,z) ~ (y,z) iff w42z = z+y. Let V be the set of all equivalence classes and let [(x,y)]

x4+ M_l,_z/y). Define on C' x C' an equivalence relation:

denote the equivalence class of (z,y) for x,y € C. To define a vector space structure
on V let [(w,x)]+[(y, 2)]|:=[(w + y,x + 2)]. If (s,t) ~ (u,v) and (w,x) ~ (y,z), then
(s,t) + (w,z) ~ (u,v) + (y, 2), thus addition on V is well-defined and with —[(z,y)] :=
[(y,2)] it is an abelian group. For A € Ry, define A[(z,y)] := [(Az, Ay)], for A € =R ¢
define A[(z,y)] := [(—Ay, —Az)] = —[(—Az, —Ay)] and define 0[(x,y)] = [(z, x)]. Clearly

addition and scalar multiplication are distributive and hence V is a real vector space.

Let (A, z) € C be fixed. Let f: X — V be defined as f(x) := [((1,2) + (A, 2), (A, 2))].

f(iocjxj) Za]x] + (N 2),(\ 2))] = i ((aj,25) + (a5, 2) ,i (A, 2)
Jj=1 7=1 j=1

:i (o, ) + (A, 2), (A, 2) Zaj ((L,z5) + (A 2) Zo‘jf )

7j=1
Thus, f is affine and its image is convex. For injectivity, let x # y with z,y € X and
assume f(x) = f(y). Then, ((1,z)+ (X, 2), (N, 2)) ~ ((1,y)+ (A, 2), (A, 2)), which implies
1 2\

(1420 Ty + Togy2) = (L) + (02) + (0, 2) =




- 9
1+227 " 1520

=Ly +\z2)+(\z) =142

But 5 4_12)\33 + I%Az = 3 +12/\y + 1-2+/\2)\Z contradicts X being preseparated, hence f is
injective. Thus, f is an affine bijection. The inverse of any affine bijection is also affine,

hence f is an isomorphism. O

Definition 1.1.13. A subset C of a real vector space X is called a cone if the following

conditions are satisfied:

1. ax e C, forall z € C, a € R,
2. x+yeC, forall z,y € C.
Remark 1.1.14. Clearly, any cone is convex.

Definition 1.1.15. Let X be a real vector space. A cone C'is called proper if CN(—C) =
{0}. A cone C is called generating if C — C = X.

Definition 1.1.16. A real vector space X is called an ordered vector space with order

<, if < is a partial order that satisfies:

1. z <y implies ax < ay, for all z,y € X, a € Ry.
2. x <yimpliesz+ 2 <y+z forall z,y,z € X.

Remark 1.1.17. For any ordered vector space X, C' := {x € X : x > 0} defines a proper
cone. On the other hand, for any given proper cone C, z < y :» (y — x) € C defines
a partial order satisfying the conditions of an ordered vector space. Hence an ordered

vector space can equally be defined by defining a proper cone.

Definition 1.1.18. A real vector space X is called base ordered vector space with base
B, if B C X is convex, if for all aj,ag € Ry, b1,bs € B: a1b; = agby implies a1 = ag,
and if Ry B—R;B = X.

Remark 1.1.19. In the definition above C' := R B is a cone and the conditions imply
that C' is proper and generating, i.e. C N (—C) = {0} and C — C = X. Thus, any base

ordered vector space is an ordered vector space.

Lemma 1.1.20. For any base ordered vector space X with base B, the affine hull of B

is proper, i.e. it does not include 0.

Proof. Assume z,y € B, A € R such that x + A(y —x) = 0. If A > 1, then (A — 1)z = \y
implies A = A — 1, thus a contradiction. If A <0, then (1 — )z = —Ay implies A = A —1
aswell. If 0 < XA < 1, then x + A\(y — ) = 0, implies 0 € B. But then, 0-0 = 1-0 implies
0 = 1. Thus, the affine hull of B does not contain 0. ]



Definition 1.1.21. Let BOVec denote the category of base ordered vector spaces with
morphisms linear mappings which satisfy that the domain’s base is mapped into the
codomain’s base. Let Bs : BOVec — Conv denote the functor which assigns to each

base ordered vector space its base and to each linear function the restriction to its base.

Remark 1.1.22. Obviously this defines a functor, since the restriction of a linear mapping
is still linear and hence affine. The composition of morphism is the usual composition

of functions in both categories.

Remark 1.1.23. Bs can also be treated as a functor to the full and faithful subcategory

of preseparated convex modules PresepConv.

Definition 1.1.24. Let X be a convex module. Conv(X,R) is a real vector space. Let
Conv(X,R)* denote its algebraic dual. Define p: X — Conv(X,R)* as p(z)(f) = f(x).
Let R(X) denote the subspace of Conv(X,R)* generated by p(X). Let p be defined as

the corestriction of p to R(X) and let p be defined as the corestriction of p to its image.

Lemma 1.1.25. p is affine and R(X) is a base ordered vector space with base p(X).

Proof. p(x) is defined by acting on affine functions f therefore,
PO (f) = FOeyay) = aif(as) = O aip(x))(f)
J=1 Jj=1 Jj=1 j=1

Thus p is affine and p(X) is convex. The constant function ¢; : x — 1 is an element
of Conv(X,R). Let z,y € X and ag,a2 € Ry with ajp(x) = agp(y), then a; =
a1p(z)(c1) = agp(y)(c1) = aa. R(X) is generated by p(X) and p(X) is convex, thus
R, p(X) — Ryp(X) = X. 0

Lemma 1.1.26. X is preseparated if and only if p is injective.
Proof. Assume that z # y and az + (1 — o)z = ay + (1 — @)z with « € (0, 1], then

ap() + (1 — a)p(z) = plaz + (1 — a)z) = play + (1 — ) = ap(a) + (1 — a)p(2)

Therefore p(x) = p(y) and consequently p is not injective. On the other hand if X is
preseparated, then X is isomorphic to a convex subset of some real vector space and

thus for any x # y with x,y € X there exists a function f € Conv(X,R) such that
f(x) # f(y). Hence p(z)(f) # p(y)(f)- O

Corollary 1.1.27. X is preseparated if and only if p is an isomorphism.

Proof. This follows directly from lemmata 1.1.26 and 1.1.10. O



Lemma 1.1.28. Let X1, Xo be base ordered vector spaces with bases By, By. Let f :

B1 — By be affine. Then there exists a unique linear extension F : X1 — Xo.

Proof. Let z,y € B and let A\, u € R;. Define F(A\x — py) := Af(x) — puf(y). Then:

F(Mz1 — py1 + Aoxo — poyo) =

A1 A2 H1 M2
= F((\ + A + — (m + + =
(( ! 2)()\1+)\2m1 )\1+)\2x2) (Ml MQ)(M1+,U2y1 M1+M2y2))
A1 A2 M1 M2
= (M +A + — (1 + + =
(A1 2)f(>\1+)\2$1 )\1+>\2$2) (11 Mz)f(Meryl M1+M2y2)

= Mf(w1) + Xaf(z2) — pa f(y1) — paf(y2) = F(Mx1 — payr) + F(Aaxa — payz)
F(v(Az — py)) = vAf(z) —vpf(y) = vF(Az — py)

Hence, F' is additive and homogeneous. Thus, it suffices to show that F' is independent
of representation at 0, for F' to be well-defined. Let Az — puy = 0, then since Bj is a
base, A = p and hence x = y. Therefore, F(Ax — py) = Af(z) — Af(z) = 0. Since
Fv(Ax — py)) = vAf(x) —vuf(y) = vF(Ax — py), F is linear. Since any other linear

extension has to satisfy the defining equation of F', the extension is unique. O

Theorem 1.1.29. Let X be a convex module, let Y be a base ordered vector space
with base B and let f : X — B be affine. Then there is a unique linear mapping
F:R(X)—Y, such that Fop=f.

Proof. First, show that there is a unique affine mapping F : p(X) — Y satisfying
Fop=f. For such a function to be well-defined f(z) # f(y) has to imply p(z) # p(y),
for all z,y € X. Let x and y be, such that f(z) # f(y). Since Y is a real linear
space there is a linear functional g : Y — R, such that g(f(x)) # g(f(y)). Since go f
is an affine function to the reals, p(z) # p(y). In order to show that F is affine, let
zj € p(X) and let y € X such that p(y;) = x; for all j € N. Thereby, F(Zj; ajxj) =
Flo(S32 agmy) = S5 aguy) = 5 s f(yy) = 352, ayF (). Since R(X) is a
base ordered vector space with base p(X), there is a unique linear extension F' of F,

according to the preceding lemma. O

Definition 1.1.30. Let R : Conv — BOVec denote the functor along p, which assigns
to each convex module X the base ordered vector space R(X) and to each affine mapping

f: X =Y, the unique linear mapping F': R(X) — R(Y) from the preceding theorem.
Remark 1.1.31. Note that p: X — Bs o R(X) constitutes an affine function.

Corollary 1.1.32. R : Conv — BOVec is left adjoint to Bs : BOVec — Conuv,

i.e. for each convexr module X, for each base ordered vector space Y and for each affine



f:+ X — Bs(Y), there is a unique linear function g : R(X) — Y that maps p(X) into
the base of Y, such that Bs(g)op= f.

Proof. Let ¢ denote the inclusion of Bs(Y') into Y. According to the preceding theorem,
there is a unique linear function g : R(X) — Y, such that p(X) is mapped into the
base of Y and such that gop = 1o f. Let x € X, then Bs(g)(p(z)) = g(p(z)) =
g(p(x)) = u(f(x)) = f(x). According to lemma 1.1.28, g is the unique function with this
property. ]

Corollary 1.1.33. The categories PresepConv and BOVec are equivalent.

Proof. For each X € PresepConv the affine function px : X — Bso R(X) is an
isomorphism. For each Y € BOCVec, let Fy : RoBs(Y) — Y be the unique linear
and base preserving function that extends the inclusion of Bs(Y) into Y. Fy is an

isomorphism. O

1.2 A Semimetric on Convex Modules

Definition 1.2.1. Let X be convex module. Let the convex semimetricd : X x X — R
of X be defined as:

d(z,y) ::inf{%:ae 0,1;z,9€ X;(1—a)r+at=(1—a)y+ ay}

Proposition 1.2.2. d is a semimetric.

Proof. Clearly, d is symmetric. For the triangle inequality let X be a convex module, let

2,9,z € X and let € > 0 be fixed. Let 22— < d(z,2) +¢, let —% < d(y, z) + € and let

l—a; — l—ay —

Z,7, Zz, 2y € X, such that (1 —ag)z+ 0z = (1 —ag)z+ oz, and that (1 —ay)y+ o,y =

. ~ L agptay—2azay W ag(l-ay) ~ (1—agz)ay =~
(I —-ay)z+az,. Let a:= T Tma, let & := Gty 2aay arta,—2ara; and let
a (1-ag)oy  ~ oz(l—ay) -~ X
y= az+ay72azayy + gty —20z 01y Zr- Then:

(1-a)z+ ad = (1_az)(1_ay>$+0‘m(1_0‘y)i+ (1_0@)0@5 _
1 —azay 1 —azay 1 —azay Y

_ (1_aw)(1_ay)z+aw<1_ay) - (I —ag)ay

= Zy Zy
1 —azay 1 —azay 1 —azay

(1 —ay)(1— O‘y)y i (1 —ag)ay . + az(1 — ay) -
1 —azoy 1 —azay 1 —azay
_ (I—ag) - O‘y)z + (1— az)ayi + ag(l—ay)

= Y
1 — oy 1 —agay

l-a)y+ag=




Thus, we get the equations:

l-a)x+at=(1-a)y+ay

« Qi Qy

1—a:1—a$+1—ay

Since € was arbitrary, d(z,y) < d(z, z) + d(z,y). O

Remark 1.2.3. Let =y, let § = z and let a = . Then the equation (1 — o)z + aF =
(1 — @)y + ay becomes %x + %y = %y + %m Hence d(z,y) <1 for all z,y € X.

Lemma 1.2.4. Fvery affine mapping f : X1 — Xo satisfies for all x,y € X;:

da(f(2), f(y)) < dr(2,y)

Proof. Let ¢ > 0 be fixed and let z,y € X;. Let a € [0,1], Z,5 € X, such that
7%= < di(z,y) +eand that (1 —a)r+af = (1 -a)y+ag. Then (1 —a)f(z)+af(?) =
(I =a)r+az)=f(1-a)y+aj)=(1—a)f(y)+af(y). Thus, da(x,y) < 1% and
since € was arbitrary da(f(z), f(y)) < di(x,y). O

Corollary 1.2.5. Any affine mapping is continuous. Any isomorphism in Conwv is an

1sometry.

Proposition 1.2.6. Let X be a convex module. If the conver semimetric is a metric,

X is preseparated.

Proof. Let z,y,z € X and let A € [0,1), such that  # y and (1-A\)z+Xz = (1-\)y+Az.
Because of lemma 1.1.8, (1 — @)z + az = (1 — @)y + az for all a € (0,1] and therefore
d(z,y) = 0. Hence, (X,d) cannot be metric. O

Definition 1.2.7. A convex module X is called linearly bounded if all affine mappings

f: Ry — X are constant.

Lemma 1.2.8. Let X be a linearly bounded convexr module. Then:

e Any convexr submodule Y of X, i.e. a subset that carries the same convex structure,

is linearly bounded.

o If X is a subset of a real vector space that carries the inherited convex structure

and A € R, then A\X 1is linearly bounded, too.

Proof. Let f : Ry1 — Y be affine. Let ¢ : Y — X denote the inclusion. ¢ obviously
is affine and injective. Since X is linearly bounded, ¢ o f has to be constant. Since ¢ is

injective, f is constant, too.
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First assume A # 0. Let f : Ry;. — Y be affine. Let gy : A- X — X be defined
as: ga(x) = %:L’ Since g, is an affine bijection and linearly boundedness is invariant
under isomorphisms, AX is linearly bounded if and only if X is linearly bounded. In
case A = 0, 0X consist of a single point and hence any function with codomain 0X is

constant. O

Lemma 1.2.9. Let X be a convex module, let I be an open, possibly infinite, real interval
and let f : I — X be an affine mapping and let A\, p € 1, such that X # p. If f(A) = f(u),

then f is constant.

Proof. Without loss of generality, let A < p and let £ € I, with & > p. Then the

following equation holds:

p—=_E A—p Y s — P
Ai_gf()\)+)\7_£f(f)—f()\_€)\+)\_gf)—
= £() = 1) = 5 FO0) + T 7

According to lemma 1.1.8, af (A\) + (1 — ) f(&) = af(N) + (1 — a)f(A) = f(A) for all

€ (0,1]. Since af(N) + (1 —a)f(§) = flar+ (1 — a)&), this implies f({) = f(A) for
all ¢ € [\, §). Since £ > p was arbitrary this holds for all ( > A. The proof for ¢ < p is

analogous. O

Lemma 1.2.10. Let X be a convex module and let f : Ryy — X be an affine mapping.
For all z,y € f(R44): d(z,y) = 0.

Proof. Let p1,u2 € Ryy, such that p1 < pg and let a € (0, 1], then:

(1 0 (u) + af (P22 ) = (1= ) o) + 0 )

Thus, d(f(u1), f(p2)) = 0. O

Lemma 1.2.11. A convexr and balanced subset C' of a real vector space X is linearly
bounded if and only if for all x € X\{0} there exists a A € R, such that A\x is not in C.

Proof. Assume that there is an x € C such that Rz C C. Define f : Ry — C by
f(A) := Az. Thus, C cannot be linearly bound. For the other direction, assume that
there is an affine and nonconstant f : Ry, — C. Let A > 0 be arbitrary and let

= /()= 5/(0) € C. Then, 373 +(1=3)7(0) = J(1) and Ao = 37(0)+ 151(0) -
) = 3(Af(1)+(1=X)f(0))—3£(0) =2 f(A\)—3£(0) € C. Since A > 0 was arbitrary
Ci

(
and C'is convex and balanced, Rz C C. O
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Lemma 1.2.12. Let X be a real vector space and let || - || denote the seminorm induced
by the Minkowski functional of a convex, balanced and absorbing subset C. Let v € X.
Then, ||z|| =0 if and only if Rz C C.

Proof. If ||| = 0, then for all A € Ryy, z € AC and hence 3z € C. If Rz C C, then
x € AC for all A € Ry and hence ||z = 0. O

Definition 1.2.13. Let X be a real vector space and let B C X. Let conv(B) denote

the convex closure of B, i.e. the intersection of all convex sets containing B.

Remark 1.2.14. The convex closure of B is the smallest convex set containing B.

Definition 1.2.15. For any base ordered vector space X with base B let || - || denote
the seminorm induced by the Minkowski functional of conv(B U (—B)). Call || - || the
base seminorm of X. If || - || is a norm call it the base norm of X and call X a base

normed vector space.

Remark 1.2.16. Clearly, conv(B U (—B)) is convex and balanced and, since B is gener-

ating, conv(B U (—B)) is absorbing too. Hence || - || is indeed a seminorm.

Corollary 1.2.17. Any base ordered vector space X with base B is a base normed vector

space if and only if conv(B U (—B)) is linearly bounded.

Proof. Follows directly from lemmata 1.2.12 and 1.2.11. O

Lemma 1.2.18. Let X be a base ordered vector space with base B and let By := {%(1 +
Nz —3(1 =Ny :x,y € B}. Then:

o cono(BU(=B)) ={az— (1 -a)y:z,y € B,a€[0,1]} =U\ei_1,1) Br
e There is a linear function 7 : X — R, such that w(B)) = {\}.

e The affine spaces generated by By, A € R are pairwise disjoint.

Proof. To show the first equation, let w,x,y,z € B and let «, 3,7 € [0, 1]. Then:

(I=a)(fw—(1=F)z)+a(yy—(1-7)2) = (1-a)fwtayy)—((1-a)(1-Flz+a(l-7)z) =

_ B—ap oy
—(ﬁ—a+a7)(ﬁ_a+a7w+ﬂ_a+a7y)+
l—a—-pF+af a— oy

+(1 =84+ af —ay)( )

T z
1-8+4+af—ay 1-B8+af—ay
Since (S —a+a7y) € [—1, 1] the convex combination is contained in D := {az—(1—a)y :

x,y € B,a € [0,1]} and thus D is convex. Let v = ax — (1 — a)y € D be arbitrary.
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Since v is a convex combination of x and —y, v must be in conv(B U (—B)) and since
conv(B U (—B)) is the smallest convex set containing B U (—B), the first equation holds

true. The second equation is trivial.

For the second part let b € B be fixed and let z € X be arbitrary. X is generated by
B — B and thereby there are y,z € B and u,v € Ry such that © = uy — vz. Define

m(z) := p— v. To show that 7 is well-defined assume x = py — vz = (u — nu, with
p,v,¢,n € Ry and y, z,u,0 € B. Thus, (u+n) (G5 y+55v) = (v+() (e 2+ 57w and
since (A-y+ Zv) € B and (#Cz#—%cu) € B, definition 1.1.18 implies u+n = v +.

To show that 7 is linear let p,v,(,n, A € Ry, let y,z,u,v € B and let x = py — vz,w =
Cu — nv. Then:
m(z + Ay) = m(py — vz + AMCu —nv)) =

n A v AN
— A _ A — (u— ¢ —
m((u+ C)(H+)\Cy+ u+>\4u) (v+ n)(y+An2+ VJMUU)) (n=v)+A(C=n)
Thus 7 is linear. Obviously, this implies 7(B)) = {A} and hence the third statement is
true. O

Proposition 1.2.19. Let X be a base ordered vector space with base B. For any x,y € B

the base seminorm and the conver semimetric d on B satisfy:

|z -yl = 2d(x, y)

Proof. Let z,y,Z,y € B and « € [0,1), such that (1 — a)x + aZ = (1 — a)y + ag. This

yields x —y = -2 (g — Z) and thus:

11—«

o o 2
Pale Y s -1 —
g =zl = =gl +lzl)

-yl = =2 - =

Hencev Hx - y” < 2d({l},y)

For the other direction, first consider the case that ||z — y|| > 0. Let € > 0 be fixed
and z := ”;:;H(x —y). Since ||z]| = 1 — ¢, there are Z,5 € B and § € [0, 1] such that
z = (1—B)j — 7. Since z and y are in the affine hull of By = {3 (1 + 1)u— (1 —1)v:

u,v € B}, according to lemma 1.2.18, z is in the affine hull of By and hence 5 =1 — .

1— _ 1~ 1 — llz—yll lz—yll _
Thus W_QH(Q: —y) = 59 — 5% Let a := s e pramey then 20— — 7% and thus

(1 —a)z+ af = (1 — a)y + ay. Since € was arbitrary, ||z — y|| = 2d(z,y) follows.

In case that ||z —y|| = 0, for all A\ € Ry there is a 2 € B such that z = A\(z —y). Again,
since z is in the affine subspace generated by By, there are z,7 € B, such that A(z—y) =
39— 3% Let a:= ﬁ, so that 5y = 72-. Thereby (1 — )z +af = (1 — a)y + of and

since \ was arbitrary, d(z,y) = 0 follows. O
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Corollary 1.2.20. The convex semimetric of a convexr module X is a metric if and only

if p is injective and conv(p(X) U (—p(X))) is linearly bounded.

Proof. 1f p is injective, it is an isomorphism and thereby an isometry. According to 1.2.17
and 1.2.19 it is metric if and only if conv(p(X) U (—p(X))) is linearly bounded. In case

X is metric, X is preseparated according to 1.2.6 and hence p is an isomorphism. 0

Proposition 1.2.21. Let X be a base ordered vector space with base B. Let By :=
3(B — B) be linearly bounded, then By := {3(1+ Az — (1 — Ay : z,y € B} is linearly
bounded for any A € R.

Proof. Since B_) = —B), we can assume that A > 0. First consider the case A > 1.
Then, By = AB, hence it suffices to show that B is linearly bounded. Let b € B be fixed
let f: Ry — B be an affine mapping and let g : B — By be defined as g(z) := %z — %b.
Clearly, g is affine and injective. Since By is linearly bounded g o f must be constant

and because g is injective, f must be constant too. Thus, B is linearly bounded.

Next, let A € [0,1). Again, let b € B be fixed and let f : R4y — B) be an affine
mapping. Define g : By — By by: g(z) := HLAZ — H%b. To assure that the image of ¢

is contained in By, let z = 3(1 + A)z — 3(1 — A)y, with 2,y € B. Then:

R b—lx—l(l_)\ L2
T+x 28 299 Y "1

(14 Xz~ 5 (1= \)y) b)

Q
—
N
N—
Il
>
—~
N

Indeed g maps B) into By and clearly ¢ is affine and injective. Since By is linearly
bounded ¢g o f must be constant and because ¢ is injective, f must be constant, too.

Hence B, is linearly bounded. O

Proposition 1.2.22. Let B be the base of a base ordered vector space X. The following

statements are equivalent:

e 1(B — B) is linearly bounded.

e conv(B U (—B)) is linearly bounded.

Proof. First let conv(B U (—B)) be linearly bounded. Since 3(B — B) is a subset of
conv(B U (—B)), it is linearly bounded too. For the other direction let f : R4y —
conv(B U (—B)) be affine. Let m be the linear functional of lemma 1.2.18. Since 7o f
is affine and 7(conv(B U (—B))) = [—1,1], m o f must be constant. Thereby there exist
A € [-1,1], such that f(Ri4) C By := {(A+3)z — (A= )y : 2,y € B}. According to
the preceding proposition B) is linearly bounded and thereby f is constant. O
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Corollary 1.2.23. The semimetric of a convex module X is a metric if and only if p

is injective and p(X) — p(X) is linearly bounded.
Proof. Follows directly from the preceding proposition and corollary 1.2.20. O

The following example shows that the linearly boundedness of a convex module B does
not imply the linearly boundedness of B — B and hence the condition of p(X) — p(X)
being linearly bounded cannot be reduced to a condition of p(X) being bounded.

Example 1.2.24. Let R<N> denote the real vector space freely generated by a countably
infinte set, i.e. all (z,)neny € RY such that z,, = 0 for all but finitely many n € N. Let
B = {(zp)neny € RS> 1z, <0 Vno> 1;|z0] < > 721 |zjl}. To show that B is convex
it is sufficient to show convexity for all finite dimensional subspaces, since for each convex
combination of two vectors, all but finitely many components are zero already. Define
B = {(xn)neny € R 2] < mylzo] < Jm|;zn = 0V > 1,n # m}. Clearly
By, is convex for each positive integer m. Let (zp)nen, (Yn)neny € B and p € N, such
that ; = 0 and y; = 0 for all j > p. Since |zg| < Z?Zl lz;| and |yo| < Z?:l 51,
(T )nen, (Yn)nen € >-5_) Bj. The sets B; are convex for all j, hence )30 B; is convex.
Therefore there exists a convex combination of (zy)nen and (yp)nen in Z];:l B; C B,

hence B is convex.

To show that B is linearly bounded let f: R.; — B. Let n € N be such that the n-th
component of f(2)— f(1) is not equal to zero. Let this difference be denoted by d. In case
n>0, f(1+ %’f) =f(1)+ %’f(f@) — f(1)) ¢ B, because the absolute value of the n-th
component is larger than n. In case n = 0, let p be such that all k-th components with
k > pof f(1) and f(2) vanish. Then = f(l+%) = f(l)—l—w(f@)—f(l)) cannot
be in B, since the absolute value of the 0-th component is larger than @ = 1;:1 7.

Hence f(2) — f(1) = 0, which implies that f is constant.

Now consider B — B. Let e, denote the n-th unit vector and let [-] denote the ceiling
function, i.e. rounding up to the next integer. For A € R define g; () := %eo + %eﬂéﬂ €
B and ga(\) = —3eg + %(ZH%H € B. Thus; g1(A) — g2(A) = Aeg and \eg € B — B for
all A € R. Now define the function f(\) := Aep, which is clearly affine and nonconstant.

Hence B — B cannot be linearly bounded.

1.3 Superconvex Modules and the Completion

Definition 1.3.1. A family (\y,),en of countably infinite many real numbers is called a
superconvex combination if 0 < A, < 1 for all n € N and Zzozl An, = 1. Let Q. denote

the set of all superconvex combinations.
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Definition 1.3.2. A set X and a function ¢ : Qs x XN — X, which is written as
c((An)nen, (Tn)nen) =: >y Apy, are called a superconvex module and ¢ a superconvex

combination if they satisfy the following conditions:

LYol At = 307 Ao(n)Ta(n), for any bijection o : N — N

2. ZZO:1 ,U«n(z;.:;:l /\n,mxm) = 22:1(230:1 Un)\n,m)mm for all (xn)nEN S XN? and
()‘mm)meNa (Nn)neN € Qe

3. > 0 Anp =i if Ay =1 and A\j =0 for all j # 4, for (,)nen € XN,

Remark 1.3.3. Clearly the latter term in the second condition is well-defined since

(O | BnAnm)men 1s a superconvex combination.

Every superconvex module is as a convex module too: Let Zf\i 1 Ai = 1 be arbitrary.
Let 5\1 = A\ for ¢ < N and 5\1 := 0 for ¢+ > N. Define the operation of a convex
module on X by letting EZ]\; A=y Xi. One easily sees that the first condition
of definition 1.3.2, the commutativity of the formal sum, implies the first condition in
1.1. The second condition, the associativity of the formal sum, implies the second and
the fourth condition of 1.1 and the third condition in 1.3.2 implies the third condition
in 1.1. From now on, when a superconvex module is considered, define this as its
canonical underlying structure as a convex module. A superconvex module is said to be
preseparated or linearly bounded if the underlying convex module has that property. Let
the semimetric on a superconvex module be defined as the semimetric on its underlying

convex module.

Definition 1.3.4. Let X and Y be superconvex modules. A mapping f : X — Y is
called superaffine, if for all z; € X and (\})jen € Qqe:

FO M) =D Nif(x)
=1 =1

Let SConv denote the category of superaffine modules with superaffine mappings as
morphisms. Since every superaffine mapping is affine too, SConv is a subcategory of

Conv.

Lemma 1.3.5. Fvery preseparated superconvexr module is linearly bounded.

Let X be a preseparated convex module and let f : Ry, — X be an affine function.
Then:

1
3-27

1 =1 ‘ =1 .
3f(1)+j203,2jf(2j+1)=23.2] f(27+1) =

J=1

FO 437+
j=1
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o

+Z S G )+ L) = 2 f@Q) 43 o I 1) =

Jj=1

2+ 3 .12jf(2j +1)
=0

Since X is preseparated, this implies f(1) = f(2). According to lemma 1.2.9, f is

constant.

Definition 1.3.6. Let X be a normed real vector space. A subset C' C X is called
superconvex if there exists a superconvex structure on C' such that the underlying convex

module coincides with the linear structure on C.

Lemma 1.3.7. Let X be a normed real vector space and let B C X be bounded and
superconvex. Then, the superconvex structure on B extending the linear structure of B

is unique and satisfies:
o0 N
g a;r; = lim g QT4
: 7T N 4 Jxi
Jj=1 J=1

If X is a Banach space and B C X 1is convex, bounded and closed, then B is a super-

convex set.

Proof. To show uniqueness, it satisfies to show that the equation holds true. Let
i1 ajxj be an arbitrary superconvex combination and let ¢ € Ry such that [lz[| < ¢
for all z € X. Then:

s N
g 19 D q Om Z;').;N+1 O‘J o Zm 1%m
Z Qexe = ) Z N v+ (R Z —s Ty
Zk 108" {5 D —1 D k1 Ok N1 2 neNt10n

HZW ZamH< (Bt NS e Oy (e e 0

ik =N+l 2 neN410n Y«

Thus, the superconvex combination has to coincide with the limit of the series. For
the second part, the boundedness implies || > 272 v\ ) cjzj|| < D275 n o @24l — 0. The
series converges and hence is well-defined. Since the series converges absolutely this
definition does not depend on the order of the summands and » 22, 8;(3_;2; ajkak) =

ZZOZI(Z;”;I Bjojrxy). Hence, this indeed defines a superconvex module. O

Definition 1.3.8. Let X be a Banach space and let B C X. Let superconv(B) denote

the superconvex closure of B, i.e. the intersection of all superconvex sets containing B.

Lemma 1.3.9. Let X be a Banach space and let B C X be a bounded subset. Then,
superconv(B) = {limy_ Z;VZI ajaj Yoty aj =Lz € X for all j € N} C conv(B).
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Proof. Since B is bounded the series does converge absolutely, hence the set is well-
defined. Clearly, D := {limy_, Zjvzl ajrj Y 2y = Lz € X for all j € N}
contains conv(B). Since any element of D is the limit of a sequence in conv(B), it is
contained in conv(B) and hence still bounded. Thus, for all Bj,ajr € [0,1], such that
d2iBj=1and > 77, aj=1forall j €N, and for all z;; € X:

lim Z B;( lim Z QO kT k) J\/}l_r)noo A}gnoo Z Z B0 kxj 1)

N—oo M—o0
Jj=1j=1

is well-defined. Since Y 72, >3/, B, = 1, it is also in D. O

Lemma 1.3.10. Let X be a superconvexr module, let Y be a bounded, closed, convex

subset of a Banach sapce and let f : X — Y be an affine mapping. Then f is superaffine.

Proof. Let Y ;2 ajzj be an arbitrary convex combination in X and let ¢ € Ry, such

that |ly|] < c for all y € Y. Since f is affine the following equations holds true:

N N .
195 oy _
Zaewz L% 11O 721\;7”_1 )+
Z’f 1Ok T Xnm1 O

ZiNH Q; - Y O
el L I M Lim=1“m

220:1 g

+( xp) =

o0
(N1 D n=N41 On

N Qi « o
Zzajf( )+(Z] N+1 ] f Z zZm 1 ml'f)
/=1

D ket Otk =N 41 D neN41 O

[e'e) N .y a .
1O~ ame) = ajf ()l = H(ZJ YL £( Z Qe O
/=1 /=1

D ket Ok —N41 D oneN41 O

= (R Y Uty o (REEn %),

2 ke Ok V=N A1 2 neN41 On D ke Ok

Hence f(3202, cwe) = impy oo o0y arf(z0) = 202, apf(xy). Thus, f is superaffine.
O

Definition 1.3.11. A base normed vector space X with base B is called base ordered

Banach space, if X is a Banach space in regard to its base norm.
Proposition 1.3.12. Let X be a base ordered vector space with superconver base B.

Then X is a base ordered Banach space with base B.

Proof. Since B is superconvex, B — B is superconvex too and hence linearly bounded.

According to proposition 1.2.22 and corollary 1.2.17, X is a base normed vector space.
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To show completeness, let (x;)jen be an arbitrary Cauchy sequence. Let (y;)jen be a
subsequence such that ||y;—yx|| < 277 forallk > j. Let 21 := y; and let z; := y;—y;_ for
all j > 1, then y; = Y77, 2. Since ||zi]| < 27541, 2, € conv((27F1B) U (—27%+1B)) C
[0,27%+1]B — [0,27%*1]1B. Hence there are a;, 3; € [0,27%*+!] and u;,v; € B, such that
zj = ajuj — Bjv;. To show that the sequence converges, it is sufficient to show that the
series Z;VZI ajuj and Z;VZI Bjv; do. Since |a;| < 277FL the series Zjvzl «j converges
absolutely and Z;’il a; is well-defined. In case that all but finitely many «a; vanish
the series clearly converges. In case this does not happen, the rules for superconvex

combinations yield the following equation:
N

Zak ZZI Lot = () e (D ) >

Q.
I | k=N+1  j=N+1 Zl N+1™

. o0 Oc]' . . . .
Since Zj:NH el uj; € B, its norm is not greater than 1. Hence:

N %)
i | Zak Zz = (Fa) ;El = Jim |30 el =0

The proof for Ejvzl Bjv; is identical. By that,

oo (;ak);ZZﬂ Zﬂk ZZZ 15

O
Definition 1.3.13. Let X be an ordered vector space. An element e € X is called order
unit, if for any = € X there is a A € Ry, such that < Xe.

Definition 1.3.14. Let X be an ordered vector space with order unit e. Let the order

unit (semi-)norm of e be definied as:
|z]|e :=inf{A e R: —Xe <z < Ae}

Remark 1.3.15. The infimum is well-defined, because the set is non-empty, since e is
an order unit. The homogeneity and the triangle equation follow directly from the

corresponding properties of the partial ordering.

Definition 1.3.16. Let X be an ordered vector space. A function f : X — R is called

a positive linear functional, if it is linear and if for all z € X, 0 < z implies 0 < f(x).

Lemma 1.3.17. Let X be an ordered vector space with order unit e and order unit

(semi-)norm || - ||e. For any positive linear functional f the following equation holds:

(@) < [lz]lef(e)
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Proof. Let € > 0 be arbitrary. Then, x < (||z||c + €)e implies that (||z||c + €)e — 2z > 0.
Hence f((||x]le + €)e —x) > 0 and, since f is linear, f(z) < (||z]le + €)f(e). Since €
was arbitrary this shows the inequality for f(x) > 0. For f(x) < 0 insert —z instead of
T. O

Theorem 1.3.18. Let X be an ordered vector space with order unit e. Let'Y be a
subspace of X, such that e € Y and equipped with the inherited order. Let f be a
positive linear functional on Y. Then there exists a positive linear functional F on X,
such that f(y) = F(y) forally €Y.

Proof. Let p(z) := inf{f(y) : y € Y and x < y}. Clearly, p(Ax) = Ap(zx) for all A € Ry
forallz € X and f(z+2) < f(z)+ f(z) forall z, 2z € X. Also, p(y) = f(y) forally € Y,
since for any z € Y with y < z, f(2) = f(z —y) + f(y) > f(y). Hence the Hahn-Banach
theorem can be applied and yields a linear extension F' of f. To show that F' is positive
let > 0. Thus, f(—z) < p(—z) <0 and hence f(z) > 0. O

Theorem 1.3.19. Let X be an ordered vector space with order unit e and order unit
norm || - |le. Let f be in the topological dual of X, denoted by X'. Then there exist
positive linear functionals g,h € X', such that f = g—h and || f|| = ||g|| + ||k, whereat

| - || is the operator norm.

Proof. Let Y := X x X and define a partial order on Y by (u,v) < (w,z), whenever
u < w and v < z. Clearly (e,e) is a order unit of Y. Now define Z := {(Ae —z, Ae + ) :
AeR,z e X}. Let f € X' be arbitrary. Define f: Z — R as f((Ae — z, \e + x)) :=
M|fIl = f(z). Obviously f is linear. To show that f is positive let (Ae — z, Ae + ) > 0.
Since —Xe < z < Ae, ||z||e < A and thereby A||f||— f(z) < 0. Thus we can apply theorem
1.3.18 and get a linear positive extension of f to Y called F. Let h(z) := F(z,0) and
let g(x) := F(0,z). Then g and h are positive linear functionals and g(z) — h(xz) =
F(z,—x) = f(z,—2) = f(x) for all 2 € X. According to lemma 1.3.17, g and h are

continuous and the equation ||g||+||k|| = g(e)+h(e) = F(e,e) = f(e,e) = || f|| holds. O

Definition 1.3.20. Let C be a convex module. Define Aff,(C') as the set of all bounded
affine functions from C' to the reals, i.e. all affine f € Conv(C,R) such that there is a
c € Ry with |f(z)| < cfor all z € C.

Lemma 1.3.21. Let C be a convex module. With the usual addition of functions and
multiplications with reals, Affy(C) is an ordered Banach space with order unit the con-

stant 1-function.

Proof. Clearly, Affy(C) is a real vector space and the supremum norm || - ||, makes it a

Banach space. Let 1¢ denote the constant 1-function. Define a partial order on Affy(C)



20

by f < g if and only if f(z) < g(x) for all x € C. Clearly, 1¢ is an order unit. Since
—1 < f(z) < 1 for all x € C if and only if ||f|c < 1, the order unit (semi-)norm

coincides with the supremum norm. ]

Proposition 1.3.22. Let C be a convexr module and let Aff,(C) denote the topological
dual of Affy(C). Then, Aff,(C) equipped with the operator norm is a base ordered
Banach space with base B := {f € Aff,(C) : f(1¢) =1 and || f]| < 1}.

Proof. As the topological dual of a Banach space, Aff,(C)" equipped with the operator
norm clearly is a Banach space. To show that B is a base, let b1,be € B and « € [0, 1].
Then, [[(1 — a)bi + abs|| < (1 — a)||bi]] + of|b2|| < 1 and ((1 — )by + ab2)(1c) =
(1 —a)bi(1¢) + abe(1¢) = 1, hence B is convex. Next, let oy, a0 € Ry, by1,be € B and
a1by = agbe, then a3 = a1b1(1¢) = agbe(le) = a1. Let f € Affy(C) be an arbitrary
positive linear functional. Then, according to lemma 1.3.17, ||f|| = f(1¢) and hence
ﬁf € B. According to theorem 1.3.19, any f € Aff,(C)’ can be decomposed into the
difference of two positive linear functionals and hence Ry B — Ry B = Affy(C)’. Thus,
B is a base. To show that the base norm coincides with the operator norm, let the base
norm be denoted by || - ||g. Any element f € Aff,(C) with ||f||p < 1 can be written
as f = a1by — agbe with aj, a0 € [0,1) and by, by € B, such that a; + ag < 1. Since
IF Il < aal|b1]] + az2||b2]| = a1 + a2 < 1 and ¢ was arbitrary, || - || < || - ||z. On the other
hand let f < 1, then, according to theorem 1.3.19, there are positive linear functionals
g and h, such that f = g — h and ||f|| = ||g]| + ||1||- Since IIT}HQ € B and mh € B,
the following equation holds: f = Hgﬂﬁg - HhHﬁh Since ||g|| + ||h]| < 1, this shows
1l < 1 and thus | | > | - | =

Definition 1.3.23. Let X be a convex module. Let 7 : X — Affy(X)’ be defined as
(7(x))(f) := f(x). Let B := superconv(7(X)), i.e. the intersection of all superconvex
sets containing 7(X). Let T(X) := Ry B—R, B and let 7 be defined as the corestriction
of 7 to T'(X).

Lemma 1.3.24. In the above definition T and T are well-defined, affine functions. T(X)

is a base ordered Banach space with base B.

Proof. Let z,y € X, let a € [0,1] and let f € Affy(X), then (7((1 — @)z + ay))(f) =
f((1 =)z +ay) = (1 —a)f(z) + af(y) = (1 = a)(7(2))(f) + a(7(y))(f), hence 7 is
affine. Since ||7(x)|] < 1, 7(z) is continuous and hence in Affy(X)’, for all x € X. Since
(7(z))(1x) = 1, the image of 7 is a convex subset of the base B := {f € Aff,(C) :
f(l¢) = L and || f|| < 1}. Since B is the base of the norm it is bounded and thus
7(X) is bounded. Let H be the affine proper hyperplane generated by B. According to

lemma 1.3.9, B is contained in 7(X) and hence contained in H. Since B is contained in
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the proper affine hyperplane H N T(X) it satisfies that for all oy, ay € Ry, by, by € B,
a1b1 = by implies oy = ap. Thereby B is a base of T(X) = R+B - R+B’. Since B is
superconvex, T'(X) is a base ordered Banach space. Obviously the corestriction of 7 to
the subspace T'(X) is affine. O

Theorem 1.3.25. Let X be a conver module and let' Y be a base normed Banach space
with base B. Let f : X — B be affine. Then there exists a unique linear continuous
function F : T(X) =Y, such that F ot = f. This function satisfies ||F|| < 1.

Proof. First show that there is a unique affine mapping F : 7(X) — B satisfying
For = f. For such a function to be well-defined f(x) # f(y) has to imply 7(z) # 7(y),
for all x,y € X. Let z and y be fixed, such that f(z) # f(y). Since Y is a Ba-
nach space there is a continuous linear functional g : ¥ — R, such that g(f(x))) #
g9(f(y)). Since B is bounded, g o f is a bounded, affine function to the reals, thus
7(z) # 7(y). In order to show that F' is affine, let x; € 7(X) and let y; € X such that

7(y;) = z; for all j € N. Thereby, F(Z;’il a;xj) = F(T(Z;il ajy)) = F(O 2521 yy;) =
Yoy aifly;) = 2202 ajF(x5). According to lemma 1.1.28, there is a unique linear
extension F' : Ry7(X) — Ry7(X) of F. Let x € 7(X) — 7(X) with [jz|| < 1. Since
conv(7(X) U (—7(X))) is dense in conv(superconv(7(X)) U (—superconv(7(X)))), there
is a sequence (zp)nen in conv(rx, (X1) U (—7x,(X1))) converging towards x. There are
Yn, z2n € T(X) and ay,, B, € [0, 1], such that apyn — Bnzn = x, and o, + B, = 1 for all

n € N. Then:

1B (@)l = llnF (yn) = BuF (za)ll < cnll E(ya)ll + Bull F(z0) | < n + B =1

Hence || F(z)|| < 1. Now, F is a continuous linear function, defined on a dense subspace

of T'(X). Hence there exists a unique linear continuous extension F': T(X) - Y. O

Lemma 1.3.26. Let X be a convex module and let T(X) and B be as above. Then B

is superconvex and is a base of T'(X).

Proof. As the closure of a convex and bounded set, B is superconvex, according to
lemma 1.3.9. The closure of B is contained in the same affine hyperplane as B, hence
it fulfills that for all ay, 0 € Ry, by1,b2 € B, a1b; = agbs implies a; = ag. Thus
T(X) =R, B —R;B and B C B, imply that B is a base. Since conv(B U (—B)) C
conv(B U (—B)) C conv(B U (—B)), the Minkowski-functionals and hence the norms

coincide. O

Corollary 1.3.27. Let X be a superaffine module, then T is superaffine.
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Proof. Since B is a bounded and convex subset of a Banach space, this follows directly

from lemma 1.3.10. O

Definition 1.3.28. Let BNBan denote the category of base normed Banach space with
closed bases and with morphisms linear functions that map the domain’s base into the
codomain’s base. Clearly, BNBan is a full subcategory of BOVec. Let Bs denote the
restriction of Bs to BNBan. Let T : Conv — BNBan denote the functor along 7,
which assigns to each convex module X the base normed Banach space T'(X) with base
W — B and to each affine mapping f, the unique linear contnous extension of p o f

according to theorem 1.3.25.

Remark 1.3.29. Note that, since the extension in continuous ant the bases are closed,

T(f) maps the domain’s base into the codomain’s base.

Remark 1.3.30. Note that for any convex module that is isomorphic to a closed, bounded,

convex subset of a Banach space, Aff,(X) is point separating and 7(X) = 7(X), hence

Bs o T is an isomorphism.

Definition 1.3.31. Let 7 denote the corestriction of 7 to 7(X).

Corollary 1.3.32. T': Conv — BNBan is left adjoint to Bs: BNBan — Conv, i.e.
for each convex module X, for each base normed Banach space Y and for each affine

f:X— B\S(Y), there is a unique linear continuous function g : T(X) — Y that maps
7(X) into the base of Y, such that B\s(g) ot =f.

Proof. Let ¢ denote the inclusion of ]§\S(Y) into Y. According to theorem 1.3.25, there

is a unique linear continuous function g : T(X) — Y, such that 7(X) is mapped into
the base of Y and such that go7T = 1o f. Let x € X, then Bs(g)(7(z)) = g(7(x)) =
g(7(z)) = (f(x)) = f(x). According to lemma 1.1.28, ¢ is the unique function with this
property. [

Definition 1.3.33. A convex module X is called separated, if for any =,y € X there is
an affine function f: X — [0, 1], such that f(z) # f(y).

Theorem 1.3.34. For a convex module X the following statements are equivalent:

1. X 1s metric.

2. p is injective and conv(p(X) U (—p(X))) is linearly bounded.
3. p is injective and conv(B U (—B)) is linearly bounded.

4. X 1is separated.

5. T 18 injective.
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Proof. The equality of the first three statements has been shown in corollaries 1.2.20,
1.2.22 and 1.2.23.

To show that the third statement implies the fourth, let x,y € X be arbitrary. Let V be
the one dimensional subspace of R(X) generated by p(y) — p(z) and let g : V' — R be an
arbitrary nonconstant linear function such that |g(v)| < ||v|| for all v € V', in which || - ||
denotes the base norm. According to the Hahn-Banach theorem, there exists a linear
function G, which extends g to R(X), that satisfies |G(z)| < ||z|| for all z € Z. Now,
G(p(z)) C [-1,1], hence f : X — [0,1] defined by f(w) := £G(p(w)) + 3 is an affine

function which separates x and y.

To show that the fourth statement implies the first, let x,y € X be arbitrary, such that
d(z,y) = 0. Hence there are sequences (Z,)neN, (Yn)neN, (0 )nen, such that z,,y, € X,
an € [0,1], 1—an)x+anty, = (1 —an)y+anyy, for all n € N and lim,, o o, = 0. Now,
let f: X — [0,1] be an affine function. Then, (1 — «ay,)f(2) + anf(xn) = (1 —an) f(y) +
an f(yn) for all n € N implies that (1 —a,)|f(z) — f(y)| < a|f(zn) — f(yn)| < 2« for all
n € N. Hence f(z) = f(y) and since f was arbitrary, = y. Thus, X is metric.

To show that the fourth statement implies the fifth, assume there are z,y € X, such
that * # y and let f : X — [0,1] be an affine function separating = and y. Then,
(7(z))(f) = f(z) # f(y) = (7(y))(f). Since 7 is the corestriction of 7, it is injective.

To show that, on the other hand, that the fifth implies the fourth statement, let x,y € X,
such that x # y. Since 7 is injective, T is injective aswell, hence the exists an g € Affy(X)
such that g(z) = (7(x))(9) # (7(y))(g9) = g(y). Let ¢ € Ry such that ||g|lecc < ¢. Let
f(z):= %Cg(z) + 3. Clearly f is affine and separates z and y. O

Lemma 1.3.35. Let X be a convex module. If T in injective, T is isometric.

Proof. Consider R, 7(X)—R,7(X) as a subspace of T'(X). Since 7(X) is a convex subset
of the base B and it generates Ry 7(X) —R,7(X), 7(X) is a base of R, 7(X) — R, 7(X).
Since conv(7(X)U(—7(X))) is a dense subset of conv(BU(—B)), the base norms coincide.
Since 7 is injective, 7(X) is isomorphic to X. According to proposition 1.2.19, the metric

on B coincides on 7(X) with the convex metric on 7(X), hence 7 is isometric. O

Remark 1.3.36. Clearly, the corestriction of an affine isometry to its image is an isomor-

phism.

Theorem 1.3.37. Any convex module X is metric and complete, if and only if T is

isomorphic.

Proof. If 7 is isomorphic, X is isomorphic to a closed and bounded subset of a Banach

space and hence metric and complete. If X is metric and complete, 7(X) is a closed,
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bounded, convex subset of the Banach space T'(X), since 7(X) is isomorphic to X and

therefore complete. Thereby, 7(X) = superconv(7(X)) = superconv(7(X)). Thus, X is

surjective and hence isomorphic. O
Corollary 1.3.38. Any complete metric convexr module is superaffine.

Proof. According to the preceding theorem, any complete metric convex module is iso-
morphic to a closed, bounded, convex subset of a Banach space. ]
Corollary 1.3.39. Let X and Y be complete metric convex modules and let f: X — Y

be affine. Then f is superaffine.

Proof. Any affine function between closed, bounded convex subsetes of Banach spaces

can be regarded as a superconvex function. O

Definition 1.3.40. Let ComplConv denote the category of complete metric convex

modules with morphisms affine (and therefore superaffine) functions.
Remark 1.3.41. Clearly, ComplConyv is a full and faithful subcategory of Conv.

Theorem 1.3.42. ComplConuwv is a reflective subcategory of Conwv with reflection Bso
T, i.e. for any X € Conv, any Y € ComplConv and any affine function f: X — Y,
there is a unique affine function g : Bso T(X)—Y, such that go7 = f.

Proof. Let f := 7o f. According to theorem 1.3.32, there is a unique affine function
g:T(X)— Y, such that go7 = f. Since Y is complete and hence 7 is an isomorphism,
g:

= 771 6 g uniquely satisfies go 7 =771 o f = f. O



Chapter 2

Positively Convex Modules

In this chapter positively convex modules, i.e. convex modules with a distinguished
element called 0, are discussed. In the first part basic definition are given and some

results about convex modules are transferred.

In the second section a semimetric is introduced. Metric positively convex modules are
characterized and a metrization functor is constructed. This construction coincides with

the construction in [12].

In the final section the metrization functor is extended to a completion functor. This
part of the construction is different from the construction in [12], since one of the proofs

in [12] is faulty.

2.1 Positively Convex Modules and Positively Supercon-

vex Modules

Definition 2.1.1. A pair consisting of a convex module X and an element 0 € X is
called a positively convex module. A pair of a superconvex module X and an element
0 € X is called a positively superconvex module. In both cases 0 is called the zero

element of X.

For the remainder of this paper, that zero element will always be denoted by 0.

Definition 2.1.2. Let X be a positively convex or positively superconvex module. Let

(aj)jen, such that o € [0,1] for all j € N and 322, a; < 1. Let (z;)jen, such that

25
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zj € X for all j € N. In case 3772, a; # 0, define:

Za]x] = Zaj ZZ (1—Zaj)0
j=1 j=1

In case )72, a; = 0, define:
oo
Z ajx; =0
Jj=1

Remark 2.1.3. Some authors do define positively convex modules as a pair of a set X and
a function ¢ : {(«, 8) € Ri ta+ B <1} x X x X — X, such that ¢(o, 8, 2,y) = az+ Sy
satisfying analogous axioms as the convex combination in 1.1.1. To show that these
definitions are equivalent, one just has to repeat the steps at the beginning of the previous

chapter.

Ezample 2.1.4. Any real vector space with 0 being the zero vector and the usual addition

clearly is a positively convex module.

From now on whenever a positively convex structure on real vector space is considered,

the zero element is assumed to be the zero vector.

Definition 2.1.5. Any affine function is called positively affine if it maps its domain’s
zero element to its codomain’s zero element. Let PosConv denote the category of

positively convex modules with morphisms positively affine functions.

Lemma 2.1.6. Let X1, Xo be positively convexr modules and let f : X1 — Xo. The
function f is positively affine if and only if for all sequences (o) jen, such that o € [0,1]
for all j € N and Z;’il a; < 1 and all (z5)jen, such that x; € Xy for all j € N the

following equation holds:

FQajay) =) ajf(z))
j=1 J=1

Proof. Let all a;j = 0, then the equation reads f(0) = 0, hence it maps the zero element
to the zero element. Since the equation clearly implies the affinity of the f, it is positively

convex. To show the other direction, first assume 72, a; # 0, then:

f(zaj%‘):(zaa Z aj ')+(1—Z%’)f(0)=

1

Za] Z flx; —|—O—Zajfx]
Z]_

j=1

The case Z;’il a; # 0 reads f(0) = 0, which was the premise. O
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Definition 2.1.7. A real vector space X is called preordered vector space with order

<, if < is a preorder that fulfills:

1. x <y implies ax < ay, for all z,y € X, a € R,.
2. x <yimpliesz+ 2 <y+ 2z forall z,y,z € X.

Remark 2.1.8. For any preordered vector space X, C := {x € X : 0 < z} defines a
cone. On the other hand, for any given cone C, x <y <> (y — ) € C defines a preorder
satisfying the condition for a preordered vector space. Hence a preordered vector space

could equally be defined by giving a cone.

Next, theorems similar to 1.1.29 and 1.1.32 are proved.

Definition 2.1.9. Let POVec denote the category with objects preordered vector
spaces and with morphisms linear functions, such that the image of the domain’s cone

is contained in the codomain’s cone.

Definition 2.1.10. Let X be a positively convex module. Then, PosConv(X,R), i.e. the
set of positively affine functions to the reals, is a real vector space. Let PosConv(X,R)*
denote its algebraic dual. Define ¢/ : X — Conv(X,R)* as (¢(z))(f) = f(x). Let
P(X) denote the subspace of Conv(X,R)* generated by 1(X). Let ¢ be defined as the
corestriction of ¢ to P(X) and let 1 be defined as the corestriction of 1 to its image.

Lemma 2.1.11. 1 is positively affine and P(X) is a preordered vector space with cone
Ry (X) and Rytp(X) — Rath(X) = P(X).

Proof. 1 (x) is defined by acting on affine functions f therefore,
PO e (f) = FOagr) =Y ajf(x) = O ajib(a;))(f)
j=1 j=1 j=1 j=1

Thus ¢ is positively affine and (X)) is convex. Let z,y € X and \,u € Ry, then
Ao+ py = (A + p)(ﬁx + 3iy) € Ryyp(X). Thus Ryyp(X) is a cone and hence its
span coincides with Ry¢(X) — Riy(X). O

Lemma 2.1.12. X is preseparated if and only if ¢ is injective.

Proof. Assume that z # y and az + (1 — a)z = ay + (1 — a)z with a € (0, 1], then

ap(z) + (1 — a)p(z) = Plaz + (1 - a)z) = Play + (1 - a)) = a(z) + (1 — @)¥(z)

Therefore ¥(z) = ¥ (y) and consequently 1 is not injective. On the other hand if X is

preseparated, then X is isomorphic to a convex subset of some real vector space and thus
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for any & # y with z,y € X there exists a function f € Conv(X,R) such that f(x) %
f(y). Then, f(2) := f(z) — f(0) is positively affine. Hence ¥(z)(f) # 1 (y)(f). O

Corollary 2.1.13. X is preseparated if and only if the corestriction of 1 to its image

s an isomorphism.

Proof. This follows directly from lemmata 2.1.12 and 1.1.10. O

Lemma 2.1.14. Let X,Y be a real vector space and let P C X and QQ CY be positively
convex sets. Let f: P — @ be positively affine. Then there is a unique linear extension
F : span(P) — Y, such that F(x) = f(x) for all z € P.

Proof. Let (Aj)jen; (11j)jen € Ry, such that 3772 A; < oo, that 322 u; < oo and that
all but finitely many summands are equal to zero in both cases. Let (p;);en, (¢;)jen € P,
then define F': span(P) — Y as:

FO Npi = > miag) = O _N)f ZZ ZM; ZZ
=0 i=0 =0

jOJ ]OluJ

Since f is additive and homogeneous, F' is linear. Thereby, for F' to be well-defined
it suffices to show that F(0) is independent of its representation. Let Z;’;O Ajpj —
Z;io 1;q; be a representation for 0, then:

F AiDs — a:) = i OOJ ; .
(jz::o jPj jzz;)ﬂj%) (; )f(; =, )\kpj Z,U Z Zk o,uk

o~ N ke 0)‘k+2k 0 Mk Aj A
—(g&)f< D om—0 A ZZ 0 An +Z?§°:ounp]>

7=0

(oMt Y i
(ZMZ)f< Zm Olu’m ZZ A +Zn Olu’nq)

Z)\k+2mc ZZ e +Z pj)—

n= O,Um

Z)\k—f—z,uk ZZ S +Z )

. by , . .
Since 72, s AnJrJZi‘;o P = >0 s )\nljr]ZZozo -5, this verifies that F(0) = 0.

Since any different extension has to satisfy the defining equation of F'| this extension is

unique. ]
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Theorem 2.1.15. Let X be a positively convexr module, let Y be a preordered vector
space with cone C' and let f : X — C be affine. Then there is a unique linear mapping
F:P(X)—=Y, such that Fovy = f and F(R (X)) CC.

Proof. First, show that there is a unique affine mapping F : Y(X) — Y satisfying
F o1 = f. For such a function to be well-defined f(z) # f(y) has to imply 1 () # ¥ (y),
for all z,y € X. Let  and y be, such that f(z) # f(y). Since Y is a real linear
space there is a linear functional g : Y — R, such that g(f(x)) # ¢g(f(y)). Since go f
is a positively affine function to the reals, 1(z) # (y). In order to show that F' is
affine, let z; € ¥(X) and let y € X such that ¢(y;) = z; for all j € N. Thereby,

F(O2, agay) = F(p(52 agyy)) = FO50, agyy) = 250 a5 f(yy) = 52, o F(wy).
Since P(X) is a preordered vector space with generating cone R (X ), there is a unique
linear extension F of F, according to the preceding lemma. Clearly, (X)) C C implies

R 4(X) C C. O

Definition 2.1.16. Let P : Conv — POVec denote the functor along v, which assigns
to each convex module X the preordered vector space P(X) and to each affine mapping
f: X =Y, the unique linear mapping F': P(X) — P(Y) uniquely satisfying F o¢x =
1y o f according to the preceding theorem. Let Cone : POVec — PosConv denote
the functor that maps a preordered vector spaces to its cone and morphisms to their

corresponding restrictions.
Remark 2.1.17. Note that ¢ : X — Cone o P(X) constitutes an affine function.

Corollary 2.1.18. P: Conv — POVec is left adjoint to Cone : POVec — Conv,
i.e. for each convex module X, for each preordered vector space Y and for each affine
f: X — Cone(Y), there is a unique linear function g : P(X) —Y that maps Ry (X)
into the cone of Y, such that Cone(g) o = f-

Proof. Let ¢ denote the inclusion of Cone(Y) into Y. According to the preceding theo-
rem, there is a unique linear function g : P(X) — Y, such that R¢(X) is mapped into

the cone of Y and such that got = 1o f. Let x € X, then Cone(g)(¢(z)) = g(¢(z)) =
g(¥(z)) = t(f(x)) = f(z), hence g uniquely satisfies this equation. O

2.2 A Semimetric on Positively Convex Modules

It is possible to use the same semimetric for positively convex modules as we did in the
previous chapter for convex modules, but instead a new semimetric is introduced which
has some properties in common with a norm, such that 0 is the zero element in regard

to the norm.
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Definition 2.2.1. Let X be a positively convex module. Define dp : X x X — R, as
dP(l‘,y) lnf{gg ,5€R++7/,L,VER+,UUU/€XOZ+B<1ILL—|—B<17/—|—B<
1; Bz + aw = By + vv; fy + aw = Sz + pu} and call it the positively convex semimetric
on X.

Theorem 2.2.2. dp is a semimetric.

Proof. Clearly dp is symmetric. For the triangle inequality let X be a positively convex
module, let x1, 29,y € X and let € > 0 be fixed. Let aq, a9, 51,82 € (0,1], p1, po, v1,v2 €
[0, 1], w1, uz, v1,v2, w1, w2 € X, such that 73 - < dp(z1,y)+e, a1+ 61 <1, u1+p1 <1,
v+ B <1, iz + aqwy = By + v, 51?/ + ocqwy = fran + paua, 55 < dp(a2,y) + €
g+ P2 <1, pa+ B2 < 1, v+ B2 < 1, Baxa + agwz = Pay + vov2 and Boy + arws =
Boxo + pous. The following inequalities hold:

B1f2+ a1fa+ aafr = (B1+a1)Ba+asfi < Pa+afi < Po+ar <1

B1B2 + v1B2 + pafr = (B1 + v1)Be + p2fr < B2+ pafr < Po + 2 <1

B1B2 + 1P+ 121 = (b1 + )2 +12f1 < Po+ 1201 < Pa+12 <1

1182 +
V152+M251 1 B2+vaf1 U1 p1,82+1/2,81

wsy. Then, the following equations hold true, since the

Next, let us := mﬁl:szﬁl L

a1 B2 az1
a1 fB2+azf w1 + a1 fB2+azfB1

sum of coefficients of any occurring positively convex combination is less than 1:

ug, let uy := vy and let

w3 =

a1 P2 n a1 )=

B1P2z1+ (a1 fa+azf1)ws = 51ﬂ29€1+(041/32+04251)(a1ﬂ2 ol wy o1Ba 1 asBn way) =

= (1 82x1 + a1 fowr + aafiwe = Ba(frz1 + arwr) + aefrws = Ba(Sry +v1v1) + asfiwe =

= B1P2y + Baviv1 + agfiwa = B1(Bay + asws) + Pavivy = Bi(Paxe + poug) + Bavivr =

V132 o 1251
v1B2 + pafi V12 + M251

06162 wy + 06261 'UJQ) —
a1 2 + azf a1 2 + azf

= (18222 + a1 fowr + aafiwe = [1(Saza + aows) + a1 fawr = B1(Bay + vave) + a1 fowy =

= P1f2w2 + (V182 + p2f1)( ug) = B1 B2z + (1182 + p2f1)us

B1B2x2+ (a1 Be 41 )ws = [1B2xa+ (a1 fo+anB1)(

= B1B2y + Bivave + a1 fowr = Bo(Bry + arwr) + Bivgve = Bo(fra1 + paur) + Pivove =
p1 B2 vo 31
up +
p1B2 + v 8y p1B2 + v
Hence, with ag 1= a1 82 + a1, B3 1= 152, p3 = v1f2 + p2f1 and py = pife + v2f1,
one gets B3x1 +azws = P3xra+ psus and Paxg + agws = [3xy + pgug. Thus, dp(xy, x2) <

= P15zt + (1 B2 + v2f1)( v2) = B1B2x1 + (1152 + v2P1)ua

as a1 fB2+asp

g = MRl = A4 2 < dp(x1,y) + dp(z2,y) + 2¢. Since € was arbitrary, this
asserts the inequality. O
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Remark 2.2.3. Let u:=y, let v:=xz, let w:= %1‘4—%3;, leta=p=v= % and let g = %
Thena+p =1, p+8=1Lv+pB=1,0r+aw = %:U—i—%(%l’—i—%y) = %y—&—%w:By—i—yv,
By + aw = %y+%(%x+%y) = %aﬁ—i—%yzﬁx—kuu. Hence d(z,y) <1 for all z,y € X.

Lemma 2.2.4. Let X be a positively convex module. For all x,y € X, A\ € [0,1],
dp(Az, \y) = Mdp(z,y).

Proof. Let ¢ > 0. Let a, € (0,1], p,v € [0,1] and w,v,w € X, such that % <
dp(z,y)+e, a+p <1, u+8<1,v+5 <1, fr+aw = By+vv and By +aw = Sz + pu.
Then, Az 4+ adw = Ay + vAv and By + aw = Br+ pu. Also, ad+ <1, A+ 5 <1
and vA+ 3 < 1, hence dp(A\z, \y) < g‘—g‘ < Adp(z,y)+ Xe. Thus, dp(Ax, \y) < Adp(z,y).

For the other direction, first consider the case A # 0. Let ¢ > 0. Let «,5 € (0,1],
w,v € [0,1] and u,v,w € X, such that % <dp(Az,\y)+e, a+B <1, u+p5 <1,
v+ 8 <1, Bz +aw = By +vv and Sy + aw = BAx + pu. Then a + A < 1,
uw~+ A < 1 and v+ BX < 1, hence dp(x,y) < 3y = %dp()\:n,)\y) + %. Thereby,

Adp(z,y) < dp(Ax,\y). The case A = 0 is trivial, since dp is a semimetric. O

Proposition 2.2.5. Let X1, X9 be positively convexr modules. Let f : X1 — X9 be a
positively affine function. Then f satisfies for all x,y € Xy:

dpa(f(x), f(y)) < dpa(z,y)

Proof. Let € > 0. Let a,8 € (0,1], p,v € [0,1] and w,v,w € Xj, such that % <
dpi(z,y)+e, a+p <1, u+p8 <1, v+p <1, fr+ow = fy+vv and fy+aw = x4+ pu.
Then, Bf(z)+af(w) = f(Br+aw) = f(By+vv) = Bf(y)+vf(v) and Bf(y) +af(w) =
fBy+oaw) = f(Br+pu) = Bf () + pf (u), hence dpa(f(x), f(y)) < 35 < dpa(z,y) +e

Since € was arbitrary, this meets the assertion. O

Proposition 2.2.6. Let X be a positively convexr module. All x,y € X fulfill the fol-
lowing equation:

dP(:L‘a y) < d(l’,y)

Proof. Let € > 0 be fixed and let z,y € X. Let a € [0,1], Z, € X, such that
7%= <d(z,y) +e€and that (1 —a)z+aZ = (1 —a)y+ag. Let u:= Z, let v := § and let

w = %i—i-%gj. Letd:,uzyzzli—aa and let g := ﬁ_—g Then the following equations
hold true:
11—« 20 1 1 1
o) p— 7~ 7~ = ——— 1— 7 ~:
Bx + aw 1+az—|—1+a(2x+2y) 1—|—oz(( oz)x—l—aa:)+1+ay
1 « 1—« 2ay
= — 1— U = =
oty Faf)+ g =ty + -0 = Byt
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By +a 11—« n 2a¢ (1~+1~)_ 1 (@ Yy + adl) + a
Y = T Y TRt T Y T . WY TH T
1 o l—«o 2
= 1— T T = T =
1+a(( a)x+am)+1+a:1: 1+aw+1+ax Bx + pu

Since &+ f = p+ B =v+5= & + 172 = 1, this implies that dp(z,y) < 55 = 125

<
d(z,y) + €. Hence dp(x,y) < d(x,y). O

The following example shows that the inverse inequation does not hold true in general.

Ezample 2.2.7. Let X := {(z,y) € [-1,1] x [0,1] : 22 < y}. As a convex subset of
real linear space that includes 0, this obviously defines a positively convex module. Let

t € [0,1] be arbitrary, let z := (—t,t?), let y := (¢,¢*) and let w := (0,t). Let p = v = 1.

For all € € (0,1], let u, := (et, €2t2), let v, := (—et, €2t?), let B = T let ae = % Then:

2 et et? €%t €

1
Bex 4 aew = i(—t,tQ) + %(O,t) = (_Z’ = 7) 4(15,152) + 5(—675, 2t?) = By + veve

€ €2 et et? € 1
Bey + acw = Z(zt,tQ) + 500 = (G- +5) = Z(—t,tQ) + 5 (et 2t?) = Bet + preue

Since are+fe = G+5 <1, p+fe =+ <landv+fe=4+5 <1, dp(a,y) < & =
Since € was arbitrary, dp(x,y) = 0. On the other hand, {1} x X is a base of R? and
according to proposition 1.2.19, the convex metric coincides with the base norm up to a
factor 2. In particular x # y implies d(z,y) # 0. (Furthermore, one can calculate that
dp(x,y) = t.) Hence the inverse of the inequation of the preceding proposition does not

hold true in general.

Corollary 2.2.8. Let X be a positively convex module. If dp is a metric, then X is

preseparated.
Proof. According to the preceding proposition, dp being a metric implies that d is a
metric and thus X is preseparated. ]

Definition 2.2.9. An normed and ordered vector space X with cone C' and norm || - ||

is called regularly ordered if the following equation is fulfilled for all x € X:
ol = inf{fle]| : c € C:—e <z < ¢}

Remark 2.2.10. Note that this implies that C' is generating.

Proposition 2.2.11. Let X be a regularly ordered vector space with cone C and norm
| -1|. Let P be positively affine, such that {c € C :||c|| <1} C P C{ceC: || <1}.
Then the positively convex metric dp on P and the norm fulfill for all x,y € P:

1
dp(z,y) = §||1‘ — 9|
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Proof. Let ¢ > 0. Let o, € (0,1], p,v € [0,1] and u,v,w € P, such that % <

dp(z,y)+e, a+B <1, u+p<1,v+5 <1, fr+aw = Py+vv and fy+aw = fx+ pu.
Then:

@ O n v 1( ) o w «
——w<——w+—v==(r—y)=—w—- —u< —w
25 =T Tt TV T Y T 95 T 95" =55
Since |lw|| < 1, this means that 1|z —y|| < & = dp(z,y)+e. Hence 3||lz—y|| < dp(z,y).

For the other direction, let € > 0 and let @ € C, such that —& < 1(z —y) < @ and
|@|| < ||3(z — y)|| + €. The lefthand inequality implies, that there is a & € C, such
that %y + v = %x + w. The righthand inequality implies, that there is a u € C, such
that 32 + @ = 2y + @. Now, let D := 2max{(1 + €)||@|, (1 + €)[|a], (1 + €)||7], 1}.

— 1 . = — (1+€)II@II
Let w := (&E)Hw”w let u := (HE)”u”u, let v := (He)”v”v Then, 2Dy + v
%x—{-%w and 22@"’% y—i—ww Hence dp(z,y) < (1—{-6)Hw|| <
(L4 €)(|(z —y)| +¢). Since € was arbltrary, dp(z,y) < 3z —y]. O

Definition 2.2.12. Let X be a preordered vector space with cone C. A set £ C X
is called absolutely dominated, if for any x € FE, there is a y € F, such that —y <
x <y. Aset F C X is called absolutely order convex, if for any x € E the interval
[—z,z] :={y € X : —v <y < x} is contained in E. A set is called solid if it is both
absolutely dominated and absolutely order convex. Let the solid hull of E be defined as

sol(E) := U epl—, z].

Remark 2.2.13. Since —x < z is equivalent to 0 < 2z, the set [—z, z] is nonempty if and

only if € C. Hence, sol(E) = J,cpncl—2, =]

Lemma 2.2.14. Let X be a preordered linear space with cone C and let E C X. Then
sol(E) is solid. If in addition E is absolutely dominated, then sol(E) is the smallest solid

set containing F.

Proof. Let « € sol(E) be arbitrary. Then there exists a y € E, such that —y < z < y.
Hence sol(F) is absolutely dominated. Let x € sol(E) be arbitrary. Then there exists a
y € E, such that —y <z <y. Thus, [-z,2]={2€ X: -2 <2<z} C{ze X:—y<
z <y} =[—vy,y] C sol(E). Hence sol(F) is absolutely order convex, and thus solid.

Let E be absolutely dominated. To show that sol(E) is the smallest solid set containing
E, let F be an arbitrary solid set containing E. For any x € E thereisay € ENC, such
that —y < & <y. Since F is absolutely order convex, [—y,y| C F. Hence, [—z,z] C F.
Since x € E was arbitrary, this shows that sol(E) C F. O

Lemma 2.2.15. Let X be a regularly ordered vector space with cone C' and norm || -||.

Then the open unit ball and the closed unit ball are both solid.
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Proof. Let B denote either the open or the closed unit ball. Let b € B and let € [—b, b].
Then, ||z|| < ||b]|, hence x € B. O

Proposition 2.2.16. Let X be an ordered linear space with cone C. Let P C C be
positively convex, such that Ry P = C and let Q := C N sol(P). Then the semimetric

dy p of P coincides with the semimetric dy g of @ for any pair of points in P.

Proof. Let x,y € P be arbitrary. Since P C Q, dpq(z,y) < d, p(x,y). For the other
direction let € > 0. Let o,8 € (0,1], p,v € [0,1] and u,v,w € @, such that % <
dpo(z,y)+e, a+B <1, p+p <1, v+p5<1, fr+aw=py+rvvand fy+aw =
Bx + pu. Since w € @, there is a w € P, such that w < w, i.e. w —w € C. Hence
pu~+ a(w —w) € C and vv + a(w —w) € C. Since Ry P = C, there is a A € (0, 1], such
that A(pu + a(w — w)) € P and A(vv + a(w — w)) € P. Then:

A A A oA A
—2’833+—2aw=—25y+—;v+—2a(*—w):—nyr—()\(era(w—w)))
A A A A A A
7& +7O“—75 + Sut S )—?ﬁx—ki()\(uu—i-a(w—w)))

Also, ¥ + /\70‘ < 1 and ¥x+% < 1. Thus, dpp(z,y) < 35 = 55 < dpo(z,y) + e

Hence the semimetrics coincide. O

Lemma 2.2.17. Let X be a preordered linear space with cone C. Let E C X be convez,
solid and absorbing. Then the Minkowski functional ||-||g of E is a seminorm and fulfills
forallx € X:

|lz||g =inf{||c]|g:ce C;—c <z <c}

If in addition E is linearly bounded, then || - || is a norm and X is a regularly ordered

vector space with cone C'.

Proof. Since E = |, p[—, z] is symmetric, convex and absorbing, |||z is a seminorm.

Let ||z||int := inf{||c||g : c € C;—c < x < c¢}. Let p:= ||z||g and let € > 0 be arbitrary.

1
fite

Since E is absolutely dominated, there is a y € ENC, such that —y < x < y. Hence

—py <z < py and ||zlins < ||z B

For the other direction let y := ||z||inf and let € > 0. Let y € C such that —y <z < y and

lyle < p+e€ Then y € ENC and since F is absolutely order convex, —-x € E.

1
' pu42e ' pu42e

Hence ||z||g < o+ 2€ and thus ||z]|g < ||Z]|int-

For the additional part let € X, such that ||z||z = 0. Let f: Ry; — E defined as
f(A) :== Az. Since f is constant, this implies z = 0. Let ¢ € C N (=C), then 0 < ¢ <0,
hence |lc[|[z = 0. Thereby, ¢ = 0 and thus C is proper and X is a regularly ordered

vector space. ]
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Lemma 2.2.18. Let X be a preordered vector space with cone C, such that X = C —C
and let P C C be positively convex, such that R P = C. Then sol(P) is positively
convex, solid and absorbing. The Minkowski functional of sol(P) is a seminorm that

fulfills:

|z|| = inf{||c|| : c € C;—c <z < ¢}

If in addition sol(P) is linearly bounded, then X is a reqularly ordered vector space.

Proof. Since P C (), it is absolutely dominated and thereby sol(P) is solid. To show
that sol(P) is positively convex, let z1,z2 € sol(P) be arbitrary, let p;,ps € P and
c1,¢o,dy,ds € C, such that x1 = p1 —¢1 = —p1 +di and 29 = po — cog = —po + ds. Let
A € [0, 1] be arbitrary, then (1—X)p1+Ap2 € P, (1—-X)c1+Acx € C and (1-N)di +XAds €
C. Hence, (1 =Nz +Aza = (1= XN)p1 +Ap2) — (1 =N)er +Acg) = = (1= X)p1 +Ap2) +
((L = X)di + Adg). Clearly, 0 € sol(P), hence sol(P) is positively convex.

To show that sol(P) is absorbing, let = € %P - %P and let z1,x9 € P, such that
x = iz1 — 3290, Then, z € [—(iz1 + $22), 321 + 322], hence z € sol(P) and thus
3P — 3P C sol(P). Since 1P — 1P is absorbing, sol(P) is absorbing too. According
to the preceding lemma the Minkowski functional of sol(P) is a seminorm, the equation
for the seminorm is verified and the additional statements hold true, if sol(P) is linearly

bounded. O

Definition 2.2.19. Let P be a positively convex module. Let Affi(P) denote the
Banach space of bounded, positively affine function f : P — R with point-wise addition

and multiplication, equipped with the supremum norm. Let Cy(P) C Aﬂ“;r (P) denote
the set of positive functions, i.e. f(z) > 0 for all x € P. Let Qo(P) := Co(P) — Co(P).

Lemma 2.2.20. Let P be a positively convex module. Then, Qo(P) is a reqularly ordered

vector space with cone Co(P) and with norm
£l := {llgllc € Co(P): —g < f < g}

Proof. Let f1, f2 € Qo(P), then [|f1 + fol| = {llgllec € Co(P) : =g < fi+ f2 < g} <
{llgllec € Co(P) : =g < f1 < g} +{llgllc € Co(P) : =g < f2 < g} = |All + I/l Let
f € Qo(P) and A € R\{0}, then [Af[| = {llgllec € Co(P): —g < Af < g} = {llgllo €
Co(P): =39 < f < 39} = {IMllc € Co(P) : =g < f < g} = [N]||f]]. Hence this defines
a seminorm. Let f € Qo(P) and g € Cyp(P), such that —g < f < g. Let hy, hy € Cy(P),
such that f = g — hy = —g + ho. Since hy and hg are positive, this implies f > ¢g and
f < —g. Hence, ||fllco < lglloc- Thus, || fllec < ||fIl, which implies that || - || indeed is
a norm. Let f € Co(P) N (—Cy(P)) and p € P, then f(p) > (0) and f(p) < 0, hence
f =0. Thus, Cy(P) is proper. O
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Definition 2.2.21. Let Q(P) denote the topological dual of Qy(P), in regard to the
norm defined in the preceding lemma, equipped with the dual norm. Let o : P — Q(P)
denote the canonical identification, i.e. (o(z))(f) = f(x). Let C(P) be defined as
C(P):=R4o(P) and let S(P) := C(P)— C(P).

Lemma 2.2.22. ¢ is positively affine and S(P) equipped with the Minkowski functional
of sol(c(P)) and with the cone C(P) is a regularly ordered vector space.

Proof. Let f € Qo(P), then (¢(0))(f) = f(0) = 0, let xz,y € P and A € [0,1], then
(I=Nea(x)+Aa(y))(f) = A=A f(x)+Af(y) = F(A=N)z+Xy) = (((1=A)z+Ay))(f)-

Since o (P) is the image of a positively convex module under a positively convex mapping,

it is positively convex according to lemma 1.1.11.

To show that sol(c(P)) is linearly bounded, it suffices to show that it is bounded in
regard to the norm on Q(P). Let € > 0 be arbitrary. Let z € sol(¢(P)) and let p € P
and c1,co € C(P), such that z = o(p) — c1 = —o(p) + co. Let f € Qo(P), such
that || f]] < 1, be arbitrary. Because of the definition of the norm on Qy(P), there are
g,h1,hy € Co(P), such that ||g|lcc < 1+€and f = g—h; = —g+ ha. This implies, that
|hi|| < 24€and ||he|| < 24e€. Let ki, ko € Co(P), such that hy < k; and ||k1||cc < 2+€
and that hy < ky and ||k1]|cc < 2+ €. Then:

z(f) = 2(—g) + z(h2) = —(c(p))(—9g) + c2(—g) + (¢(p))(h2) — c1(h2) =
= g(p) — c2(g) + ha(p) — c1(h2) < g(p) + ha(p) < g(p) + k2(p) < [|glloc + Ik2lloc < 3+ 3¢
z(f) =z(g) +z(=h1) = —(c(p))(9) + c2(g) + (¢(p))(—h1) — e1(~h1) =
= —g(p) +c2(g) — h1(p) +c1(h1) = —g(p) — h1(p) > —g(p) —k1(p) = —llgllcc — K10 >
> —3— 3¢

Thus, |z(f)| < 3 + 3¢ and since f and e were arbitrary, ||z|| < 3. According to lemma

2.2.18, S(P) is a regularly ordered vector space. O
Lemma 2.2.23. Let Y be a normed vector space with norm || -| and let X CY be a
regularly ordered vector space with cone C' and norm || - || restricted to X. Then C is a

proper cone. If in addition X =Y, then X equipped with the cone C and with || - | is a

reqularly ordered vector space.

Proof. Since addition and scalar multiplication are continuous, C indeed is a cone. To
show that C'N (—C) = {0}, let z € C N (—C) and let € > 0 be arbitrary. Let z,y € C,
such that ||z — z|| < e and || —y — z|| < e. Since ||z + y|| < 2¢ and since X is regularly
ordered, there are p € C' and ¢ € C, such that ||p|| < 1 and that x+y = 4ep—c. Thereby,
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x = 4ep — (c +y). Let d := = + 4ep, then x = d — 4ep, hence ||z|| < 4e. Therefore,

lIzIl < |lz]| + ||= — z|| < 5e. Since € was arbitrary, z = 0.

For the second part it suffices to show that if + € X and ¢,c1,co € C satisfy z =
¢c—c1 = —c+ ¢, then ||z|| < ||c|| follows. Let € > 0 be arbitrary and let é,¢é € C,
such that ||e; — é|| < € and ||z — é2|| < e. There are di,d; € C, such that ||dy|| < e and
c1 — é = dy — di, and there are ds,ds € C, such that ||Jg|| <ecand ¢y — Gy = dy — ds.
Thereby, © = (¢ + di + d~2) — (1 +di + d~2) = —(c+ di + CZQ) + (é2 + di + da). Since
(G1+di+do) € C and (G+dy+dy) € O, ||z|| < |lctdi+da|| < |le||+]di ||+ da]| < |le||+2e.

Since € was arbitrary, this verifies the assertion. O

Lemma 2.2.24. Let X be a regularly ordered vector space with cone C' and norm | -||.
Let P C C be positively convex, such that Ry P = C and that || - || is the Minkowski
functional of sol(P). Let x,y € P. If v # y, then exists a continous positive linear
functional f : X — R, such that f(x) # f(y).

Let V' denote the subspace spanned by x, y and 0. In case V is 0-dimensional, let
f:V = R be defined as f(z) := 0. In case 2 = 0 and y # 0, let f be such that f(y) =1
and in case y = 0 and z # 0, let f be such that f(x) =1. Incase z # 0,y # 0, x = py
with € Ry, let f()m) := A. In case V is 2-dimensional, there exists a hyperplane H,
such that C N H = {0}, because C is proper, according to the preceding lemma. Since
CNV is closed in V, there exist hy € H and € > 0, such that (k1 +¢€(sol(P)NV))NC = 0.
Since C NV is a cone, all hy € hi + e(sol(P) N'V) satisfy Rhy N C = {0}. Hence, there
are at least two different hyperplanes the intersect C only at 0. Let W be a hyperplane
satisfying this condition, such that y —z ¢ W. Let f be such that ker(f) = W and that
f(X)>o0.

In all cases, f satisfies f(CNV) C Ry and f(z) # f(y). Since V Nsol(P) is linearly
bounded and convex and since V' is finite-dimensional V' N sol(P) is bounded by the
euclidean norm on V. Let D € R, be such that f(V Nsol(P)) C [-D,D]. Hence,
%f(V N (sol(P) — C)) C (—o0, 1]. Let g denote the Minkowski functional of the convex
and absorbing set sol(P) — C. Then %f(z) < g(2), for all z € V. Thus, there exists a
linear extension f : X — R, such that f(z) < g(z), for all z € X. In particular, f(z) < 1,
for z € sol(P). Thus f is continuous. Since C'is a cone and f is linear, f(z) > —1, for

all z € C implies that f(z) > 0, for all z € C. Hence f is positive.

Definition 2.2.25. A positively convex module P is called positively separated, if for
any z,y € X there is a positively affine function f : P — [0, 1], such that f(z) # f(y).

Theorem 2.2.26. For a positively convexr module P the following statements are equiv-

alent:
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1. P s metric.
2. 9 is injective and sol(1p(P)) is linearly bounded.
3. P is positively separated.

4. O 18 injective.

Proof. Let P be metric, then P is preseparated, according to lemma 2.2.8 and hence
¢ is injective. Then P(P) = Ry¢(P) — Ry¢(P) implies that sol(¢(P)) is positively
convex, according to lemma 2.2.18. Assume that sol(y(P)) is not linearly bounded,
then there exists an = € sol(¢)(P)), such that z # 0 and Ryz C sol(¢»(P)). There are
p1,p2 € P and A € Ry, such that z = ¢(p1) — M)(p2). By substituting p; with Ap;
if A < 1 and substituting « with Az and py with %pg if A > 1, we can assume that
x = (p1) — ¥(p2). Let € > 0 be arbitrary. There are q,c1,co € P and n1,1m2 € R4,
such that 1z = ¢(q) — mv(c1) = —¢(q) + n2¥0(c2). Choose § € Ry, such that § <
}. Thus:

: € € €
mln{ 1+€e’ 1+en1’ 14en2

91+ Bmer) = Sulpn) + Smu(er) = (o) + 50(a) = ¥(Sp2 + 50

€ €
1) 1) 1) 1)
1/)(2192 + dmpez) = g¢(]02) + 0mtp(ca) = ET/)(Pl) +(q) = @b(gpl + 0q)

Since P is preseparated, 1) is injective and thus %pl +dnic1 = gpg +dq and gpz +dm2co =
%pl + 6q. Hence, dp(p1,p2) < § and since € was arbitrary dp(p1,p2) = 0. Thereby,

p1 = p2 and x = p; — po = 0 which contradicts the assumption.

Let 1 be injective and sol(P) be linearly bounded. According to lemma 2.2.18, P(P)
is a regularly ordered vector space with cone R4 (P) and the Minkowski functional of
sol(¢(P)) as is a norm. Ler x,y € P, such that x # y. Since ® is injective, ¥ (x) # ¥ (y)
follows. According to lemma 2.2.24, there is a continuous positive linear functional f,
such that f(¢(z)) # f(¥(y)) and ||f|| < 1. Then, since f(¢(P)) C [0, 1] and since x and

y were arbitrary, P is positively separated.

Let P be positively separated. Let z,y € P, such that z # y and let f : P — [0, 1]
be positively affine such that f(z) # f(y). Then, f € Co(P) and (o(z))(f) = f(x) #
fly) = (o(y))(f). Hence o is injective.

Let o be injective. Then o : P — o(P) is isomorphic as a positively affine mapping. Let
Q :=sol(c(P)) N C(P) and let x,y € P be arbitrary. According to propositions 2.2.11
and 22,16, dp(z,y) = dy(p)(0(2). 0(4) = dg(o(x),0(y) = Hllo(x) — o(v)]|. Thereby, dp

is metric. O]
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Theorem 2.2.27. Let P be a convex module and let Y be a reqularly ordered vector space
with cone C and norm ||-||. Let f : P — C be positively affine, such that || f(z)|| < 1, for
all x € P. Then there exists a unique positive linear continuous function F: S(X) =Y,
such that F oo = f. This function satisfies |F| < 1.

Proof. Let B denote the closed unit ball of Y. First show that there is a unique positively
affine mapping F : o(P) — BN C satisfying F o o = f. For such a function to be well-
defined f(x) # f(y) has to imply o(z) # o(y), for all z,y € P. Let x and y be fixed,
such that f(x) # f(y). Since Y is a regularly ordered vector space there is a continuous
positive linear functional g : Y — R, such that g(f(x))) # g(f(y)), according to lemma
2.2.24. Then, g o f is a bounded, positively affine function to the interval [0, 1], thus
o(x) # o(y). In order to show that F' is positively affine, let 2; € o(P) and let y; € P
such that o(y;) = z; for all j € N. Thereby, F(Z;’il ajr;) = F(a(zjﬁl ajy;)) =
FOZ ajyy) = 2202 o fy;) = 3252, @ F (). According to the lemma 2.1.14, there
is a unique linear extension F' : S(P) — Y. Since f(C(P)) = F(R4(0)(P)) CRLC =C,
this extension is positive. To show that || F|| < 1, let € sol(o(P)), let p € P and let

c1,c2 € C(P), such that z = o(p) — ¢4 = —o(p) + co. Then, F(x) = F(o(p)) —
F(c1) = —F(o(p)) + F(c2) is contained in sol(B) = B, since F(o(p)) = f(p) € B and
F(c1),F(c2) € C. Hence F' is continuous and satisfies || F|| < 1. O

Definition 2.2.28. Let ROVec denote the category with objects regularly ordered vec-
tor space and morphisms positive linear contractions, i.e. the domain’s cone is mapped
into the codomain’s cone and the domain’s closed unit ball is mapped into the codomain’s
close unit ball. Let S : PosConv — ROVec denote the functor along ¢ mapping P to
S(P) and mapping positively affine mappings f : P — @ to the unique linear extension
of o o f, according to the preceding theorem. Let U : ROVec — PosConv denote the
functor assigning to a regularly ordered vector space with cone C the positively convex

set {ce C: ||c|| < 1}.

2.3 The Completion

Definition 2.3.1. A regularly ordered vector space is called a regularly ordered Banach
space if it is a Banach space in regard to its norm. The category of regularly ordered
Banach spaces with positive linear contractions, i.e. the domain’s cone is mapped into
the codomain’s cone and the domain’s closed unit ball is mapped into the codomain’s

close unit ball, is denoted by ROBan.

Remark 2.3.2. Clearly, ROBan is a full and faithful subcategory of ROVec.
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Proposition 2.3.3. Let X be an ordered vector space with cone C, such that X = C—C.
Let P C C be a positively superconvex set, such that Ry P = C' and that sol(P)NC = P.
Then X equipped with the Minkowski functional of sol(P) is a regularly ordered Banach

space.

Proof. The set %P — %P is superconvex and absorbing. Since it is linearly bounded, its
Minkowski functional defines a norm. Let this norm be denoted by [|-||. Let z € §P—1P
and let x1, 9 € P, such that x = %xl — %3:2. Then, z € [—(%m + %1’2), %1’1 + %$2], hence
z € sol(P) and thus 1 P— 1P C sol(P). Hence the Minkowski functional of sol(P) indeed
induces a seminorm that fulfills: ||z||s1py = inf{[|¢[si(p) : ¢ € C;—c <z < ¢} for all
x € X. On the other hand let x € sol(P). Let zg, such that xop € P and = € [—z0, 0.
Hence there is an @1 € C, such that z + x1 = x¢. Since [|21|so1(p) = [[20 — 2[[so1(P) < 2,

x1 € 2s0l(P) N C = 2P follows. Hence sol(P) C 2P — 2P.

Thus, it suffices to show that || - || is the norm of a Banach space. To show completeness,
let (z;)jen be an arbitrary Cauchy sequence. Let (y;);en be a subsequence such that
ly; — vkl < 277 for all k > j. Let 21 := y; and let z; := y; — y;—1 for all j > 1, then
yj = Zi:1 2g. Since ||z < 2781, 2, € 27 P —27%P. Hence there are az, B € 0,27
and ug,vr € P, such that zp = apup — Brvg. To show that the sequence converges, it
is sufficient to show that the series Zjvzl ajuj and Zjvzl Bjv; do. Since |aj| < 277 the
series Zjvzl a;j converges absolutely and Zj’;l a; is well-defined. In case that all but
finitely many «; vanish the series clearly converges. In case this does not happen, the

rules for superconvex combinations yield the following equation:

00 00 - N N - o)
() u = (Y)Y e w3 ) 3 e,
k=1 j=1 2= i ) AR k=N+1  j=N+1 Zl N+1 M

. o0 Qg . .
Since Zj:N+1 mw € P, its norm is equal or less than 1. Hence:

00 0o N 00
lim [|(D o) Z = (D) Z UjH: lim || )" gl =0
N=eo El 104 k=1 j=1 Zl 1@ N=eo TN

The proof for Z;V: 1 Bjv; is identical. Hence,

y . oo oo O(zj
mgnooz (kz:lak);zll Z/Bk ZZZ 1/6’
]

Theorem 2.3.4. Let X be a regularly ordered vector space with cone C and norm || -||.
Let P C C be positively convez, such that Ry P = C and that || - || is the Minkowski
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functional of sol(P). Let X be the completion of X. Then X equipped with the cone C

and the completion of || || is a reqularly ordered Banach space.

Proof. Since addition and scalar multiplication are continuous, C' indeed is a cone. Let
Y := C — C. According to the lemma 2.2.23, C is proper and hence Y is an ordered
linear space. Let solxy denote the solid closure in X in regard to C' and let soly denote
the solid closure in Y in regard to C. Let B denote the closed unit ball in X. Next,
show that soly (BN C)NC = BNC. Clearly, soly(BNC)NC 2 BNC, since BNC
is absolutely dominated. To show the other inclusion, it suffices to show that BNY
is solid in regard to C. Therefore, let z € sol(B NY) be arbitrary, let p € BN C
and let ¢1,co € C, such that © = p—¢; = —p + 2. Let (¢1.n)nen, (C2.n)neny € C,
such that lim, , c1,, = ¢ and lim, o c2, = c2. Since addition is continuous, this
implies lim,,_s0 %(Cl,n +con) = %(01 + ¢c2) = p. Thus, p, = %(clm + ¢2,) satisfies
lim,, oo pn = p. Let € > 0 be arbitrary. Let N. € N be, such that ||p, — p|| < € for all
n > Ne. In particular ||p,| < (1 +¢€) for all n > N.. Let xy, := p, — c1n = C2,n — Pn-
Then for all n > N,

xn €solx((1+€)(BNX)) Csolx((1+ 2¢)solx(P)) = (1 + 2¢)solx (solx(P)) =

= (1 + 2¢)solx (P) C (1+2¢)B

Since € was arbitrary, £ = lim,,_, , € B. According to proposition 2.3.3, Y equipped
with the cone C' and with the Minkowski functional of sol(B N C) is a regularly ordered
Banach space. Since sol(BNC) = sol(BNY) = BNY, the Minkowski functional

coincides with the norm on X. By uniqueness of the completion, Y = X follows. O

Definition 2.3.5. Let J : ROVec — ROBan the functor assigning to a regularly
ordered vector space its completion ordered by the closure of its cone and assigning to a

positive linear contraction its unique extension. Let j denote the canonical embedding.

Remark 2.3.6. Since the extension is continuous the closure of the domain’s cone (unit
ball) is mapped into the closure of the codomain’s cone (unit ball), hence the extension

is a positive linear contraction.

Corollary 2.3.7. Let X be a convexr module and let Y be a regularly ordered Banach
space with closed cone C and norm || - ||. Let f: X — C be positively affine, such that
|f(x)]| <1, for allz € X. Then there exists a unique positive linear continuous function

F:S5(X)—Y, such that F ojoo = f. This function satisfies | F| < 1.

Proof. According to theorem 2.2.27, there exists a unique positive linear continuous
contraction F : S(X) — Y, such that F oo = f and that ||F|| < 1. Let F: S(X) - Y
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be its completion. Since C'is closed and C(X) is dense in the cone of S(X), this defines
a positive linear continuous function that satisfies F o joo = f and ||F|| < 1. Let G be
an arbitrary function satisfying the conditions of the theorem. Then, its restriction to
S(X) is a positive linear continuous function such that oo = f and that ||F|| < 1. By
uniqueness in theorem 2.2.27, G = F. O

Definition 2.3.8. Let W : PosConv — ROBan be defined as W := J o S and let
O : ROBan — PosConv be the restriction of U to ROBan.

Corollary 2.3.9. W : PosConv — ROBan is left adjoint to O : ROBan —
PosConwv, i.e. for each positively convexr module X, for each reqularly ordered Ba-
nach space Y and for each positively affine f : X — O(Y), there is a unique positive
linear contraction g : W(X) =Y, such that O(g)ojoo = f.

Proof. Let ¢ denote the inclusion of O(Y) into Y. According to corollary 2.3.7, there
exists a unique positive linear contraction g : W(X) — Y, such that gojoo =to f. Let
x € X, then O(g)(j(o(z)) = g(j(o(x))) = o(f(z)) = f(x). Hence, g uniquely satisfies
this equation. O

Definition 2.3.10. Let ComplPosConv denote the category of complete metric pos-
itively convex modules with morphisms positively affine functions. Let V denote the
functor that assigns to a positively convex module X the complete metric positively con-
vex module jx(ox (X)) and to each positively affine function f : X — Y the restriction
of W(f) to jix(ox(X)).

Remark 2.3.11. Since W(f) is continuous and (W(f))(jx(c(Xx))) C jy(oy(Y)), the

image of jx(ox (X)) is contained in jy (oy (Y)).

Theorem 2.3.12. ComplPosConv is a reflective subcategory of PosConv with re-
flection functor V, i.e. for all X € PosConv, all Y € ComplPosConv and all affine
function f: X — Y, there is a unique positively affine function g : V(X) — Y, such
that gojx oox = f.

Proof. According to corollary 2.3.7, W(f) : W(X) — W(Y) is the unique positive linear
contraction satisfying W(f)ojxoox = jyooyof. Since Y is metric, jy ooy is isometric
up to a factor 2 and hence injective. Ssince Y is complete, jy ooy : Y — jy(oy(Y))
is bijective and hence an isomorphism in ComplPosConv. Let k denote its inverse.

Then g := k o W(f) uniquely satisfies go jx oox = f. O
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Appendix

A.1 A Flaw in the Construction of the Completion Functor
in ”Positively Convex Modules and Ordered Linear

Spaces”

In ”Positively convex modules and ordered linear spaces” ([12]) a different construction
of W is given. But the construction is incomplete, since the proof of the following

proposition, similar to 2.3.3, is faulty:

Proposition A.1.1. Let X be an ordered vector space with cone C, such that X = C—C.
Let P C C be a positively superconvex set, such that Ry P = C. Then X equipped with

the Minkowski functional of sol(P) is a regularly ordered Banach space.

To show that sol(P) is linearly bounded, the proof attempts to show that sol(P) C
2P — 2P. But this inclusion does not hold true in general as the following example

shows:

Ezxample A.1.2. Let X := R xR, let C := {(z,y) : z < y;—x < y} and let P :=
{(z,y):x <y;—x <y;8r+y <1;—8x+y < 1}. (P is the closed polygon with vertices

(0,0),(3,3),(1,0) and (—3§,4).) Clearly, C defines a cone. Let (z,y) € C N (—C), then

x <yand —x < —y imply z = y, and —z < y implies (z,y) = (0,0). Thus, C' is proper.
Let (z,y) € X, then (z,y) = (z,y + |z| + [y]) — (0, |z| + |y|) € CN(=C). Thus C is
generating. Clearly, P is a subset of C. To show that R P = C, let (z,y) € C and

assume that (z,y) # (0,0). Let (u,v) := (S\JJIﬁ\yl’m)' Since (8|z| + |y|)(u,v) =

(z,y), it suffices to show (u,v) € P. The condition z < y implies 8|xfi|y| < 8|xﬁr‘y|

_ x Yy |$\
Next, 8u +v = 8grir + gy = Sa +

|z| lyl
85yl T sl — L+ Thus, (u,v) € P.

and —z < v implies — = < v
=y mp 8lzl+Tyl = Blal+1y]

lyl _
W =1 and —8U+U =

— z Y <
SeTairyl T 8l =

43
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The case (x,y) = (0,0) is obvious, since (0,0) € P. Hence Ry P = C. P is a closed,
bounded and convex subset of the Banach space R x R and contains (0,0), hence it
is positively superconvex. Thereby E, C and P fulfill all conditions in the preceding

lemma.

The solid hull of P can easily be calculated as follows: Let (x,y) € P be arbitrary, then
—r < %—%y <l—-gandx < %—%y < 1—y, in which the second inequalities hold because
y=3y+3y<i-—4dz+1+4z =1 Hence (0,—1) < —(z,y) <(0,0) < (z,y) < (0,1).
Then, [~(z,y), (@, y)] ={p e P: —(zy) <p< (,y)} S{pe P:(0,-1) <p<
(0,1} = [(0,~1), (0, 1)]- Thus, s0l(P) = Uy pl—p. 7] = [0, ~1), (0.1)] = {(a,1) : y <
l1+z;y<l—uz;—y <1l+4x;—y <1—=z}. In particular, (1,0) € sol(P). Any (z,y) € P
satisfies |z| <y < 1 — 8z, hence |z| < . Thus, any (z,y) € 2P — 2P satisfies || < 4,
hence (1,0) cannot be an element of 2P —2P and the inclusion sol(P) C 2P —2P cannot

hold true.

Similar examples show that the inclusion sol(P) C AP — AP does not hold true in general

for any A € Ry.

A.2 A List of Categories

e Conv

1. Objects: Convex modules

2. Morphisms: Affine mappings

PresepConv

1. Objects: Preseparated convex modules

2. Morphisms: Affine mappings
e SConv

1. Objects: Superconvex modules

2. Morphisms: Superaffine mappings

CompConv

1. Objects: Complete metric (regarding the convex semimetric) convex modules

2. Morphisms: Affine mappings

PosConv

1. Objects: Positively convex modules
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2. Morphisms: Positively affine mappings
¢ CompPosConv
1. Objects: Complete metric (regarding the positively convex semimetric) pos-

itively convex modules

2. Morphisms: Positively affine mappings
e BOVec
1. Objects: Base ordered vector spaces, i.e. the base B C X is convex, for all
ay,a € Ry by, by € B, a1by = agby implies o = a9 and Ry B — R B = X.

2. Morphisms: Linear mappings, that map bases into bases
e BNBan

1. Objects: Base normed Banach spaces with closed bases, i.e. the base B C X
is convex and closed, for all aj, 9 € Ry, b1,b9 € B, a1by = agbs implies
a1 = ag, Ry B—R; B = X and the Minkowski functional of conv(B U (—B))

is a complete norm.

2. Morphisms: Linear mappings, that map bases into bases
e POVec

1. Objects: Preordered vector spaces

2. Morphisms: Linear mappings, that map cones into cones
¢ ROVec

1. Objects: Regularly ordered vector spaces, i.e. the cone C' is proper and
|z]| = inf{||c|| : c € C; —c < x < ¢}.

2. Morphisms: Linear mappings, that map cones into cones and unit balls into
unit balls

¢ ROBan

1. Objects: Regularly ordered Banach spaces, i.e. the cone C' is proper and
|z|| = inf{||c|| : c € C; —c < x < ¢}

2. Morphisms: Linear mappings, that map cones into cones and unit balls into

unit balls
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