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Chapter 1

Convex Modules

The notion of convex modules has first been introduced by Neumann and Morgenstern

in [9]. Convex modules give a generalization of convex subsets of linear spaces. In the

first section basic definitions and properties of convex modules as given in [1], [3], [4],

[5] and [6] are presented. A criterion is given for a convex module to be isomorphic to

a convex subset of a linear space, namely being preseparated. Then, an affine function

is constructed, that maps a convex module into a preseparated convex module and that

is initial under such functions.

In the second part a semimetric on convex modules, introduced by Pumplün in [11], is

discussed. Criteria on the semimetric being a metric are given.

In the final section superconvex modules are introduced and the construction of a com-

pletion functor, as described in [11], are displayed.

1.1 Convex Modules

Definition 1.1.1. A set X and a function c : [0, 1] ×X ×X 7→ X are called a convex

module and c is called convex combination if they satisfy the following conditions:

1. c(λ, x, y) = c(1− λ, y, x) for all x, y ∈ X and λ ∈ [0, 1].

2. c(λ, x, x) = x for all x ∈ X and λ ∈ [0, 1].

3. c(0, x, y) = x for all x, y ∈ X.

4. c(λ, x, c(µ, y, z)) = (λµ, c(λ(1−µ)1−λµ , x, y), z) for all x, y, z ∈ X and λ, µ ∈ (0, 1).
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Remark 1.1.2. For a convex module (X, c), c it is also said to be a convex structure on

X. Some authors call convex modules ”semiconvex sets”.

The above notation is rather unintuitive. The following notation will make the implica-

tions of these conditions much clearer.

Definition 1.1.3. Let (X, c) be a convex module, let αj ∈ (0, 1] for all j ∈ {1, .., n}
such that

∑n
j=1 αj = 1 and let xj ∈ X for all j ∈ {1, .., n}. Define the formal sum∑n

j=1 αjxj inductively as
∑m+1

j=1
αj∑m+1
k=1 αk

xj := c( αm+1∑m+1
k=1 αk

,
∑m

j=1
αj∑m
k=1 αk

xj , xm+1) and∑1
j=1 xj = x1.

Let (X, c) be a convex module, let αj ∈ [0, 1] for all j ∈ N such that all but finitely

many αj are equal to zero and such that
∑∞

j=1 αj = 1. Let xj ∈ X for all j ∈ {1, .., n}.
Define

∑∞
j=1 αjxj by omitting those indices j with αj = 0 in the above induction.

In this new notation the conditions in definition 1.1.1 read as follows:

1. (1− λ)x+ λy = λy + (1− λ)x.

2. (1− λ)x+ λx = x.

3. 1x+ 0y = x.

4. (1− λ)x+ λ((1− µ)y + µz) = ((1− λ)x+ λ(1− µ)y) + λµz.

Thus, the notation as a formal sum is justified. For the remainder of this paper, this

notation will be used.

Example 1.1.4. Any convex subset of a real vector space is a convex module by identifying

the formal addition with the vector space addition.

For the remainder of this paper, whenever a subset of a real vector space is considered, it

is assumed to be equipped with this convex structure. As the following example shows,

there are convex modules which cannot be equivalent to a convex subsets of a real vector

spaces.

Example 1.1.5. Let X := {x, y}, let (1−λ)x+λx = x for λ ∈ [0, 1], let (1−λ)y+λy = y

for λ ∈ [0, 1], let (1 − λ)x + λy = x for λ ∈ [0, 1), let (1 − λ)x + λy = x for λ ∈ (0, 1],

let 0x+ 1y = y and let 1y + 0x = y. It is easily seen, that X is a convex module. Since

x = 1
2x+ 1

2y and x 6= y, it cannot be a subset of a real vector space.

The following definition characterizes those convex modules that can be considered as

convex subsets of real vector spaces.
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Definition 1.1.6. A convex module X is called preseparated if for all x, y, z ∈ X and

λ ∈ [0, 1):

(1− λ)x+ λz = (1− λ)y + λz implies x = y.

Remark 1.1.7. preseparated convex modules are called cancellative by some authors.

Lemma 1.1.8. Let X be a convex module, let x, y, z ∈ X and let λ ∈ [0, 1), such that

(1− λ)x+ λz = (1− λ)y + λz. Then (1− α)x+ αz = (1− α)y + αz for all α ∈ (0, 1].

Proof. For α = 1 and α = λ the equation is trivial. Let x, y, z, λ be as above. Show that

the equation holds for all α ∈ (λ, 1):

(1− α)x+ αz = (1− α)x+
λ(1− α)

1− λ
z + (1− 1− α

1− λ
)z =

=
1− α
1− λ

((1− λ)x+ λz) + (1− 1− α
1− λ

)z =
1− α
1− λ

((1− λ)y + λz) + (1− 1− α
1− λ

)z =

= (1− α)y +
λ(1− α)

1− λ
z + (1− 1− α

1− λ
)z = (1− α)y + αz

Next let λ(1) := λ
2−λ , then:

(1−λ(1))x+λ(1)z =
1− λ
2− λ

x+
1

2− λ
((1−λ)x+λz) =

1− λ
2− λ

x+
1

2− λ
((1−λ)y+λz) =

=
1− λ
2− λ

x+
1− λ
2− λ

y +
λ

2− λ
z =

1− λ
2− λ

y +
1

2− λ
((1− λ)x+ λz) =

=
1− λ
2− λ

y +
1

2− λ
((1− λ)y + λz) = (1− λ(1))y + λ(1)z

Since the equation holds for λ(1), the equation holds for all α ∈ [λ(1), 1]. Now we can

iterate this process with λ(n+1) := λ(n)

2−λ(n) . Since λ ≤ 1 and λ(n) = λ(n−1)

2−λ(n−1) ≤ λ(n−1)

2−λ ≤
λ

(2−λ)n the equation holds for all α ∈ (0, 1].

Definition 1.1.9. Let X and Y be convex modules. A mapping f : X → Y is called

affine, if for all xj ∈ X and
∑∞

j=1 αj = 1, such that αj ≥ 0 for all j ∈ N and αj = 0 for

all but finitely many j ∈ N:

f(

∞∑
j=1

αjxj) =

∞∑
j=1

αjf(xj)

Clearly, the convex modules together with affine mappings as morphisms form a category.

Let Conv denote this category and let Conv(X,Y ) denote the set of all affine mappings

from X to Y .

Lemma 1.1.10. Any bijective, affine mapping is an isomorphism.
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Proof. f(
∑∞

j=1 αjf
−1(xj)) =

∑∞
j=1 αjxj and thus applying f−1 to both sides results in

f−1(
∑∞

j=1 αjxj) =
∑∞

j=1 αjf
−1(xj).

Lemma 1.1.11. Let X be a convex module and let Y be a real vector space. Let f :

X → Y be affine, then f(X) is convex.

Proof. Let x, y ∈ X and λ ∈ [0, 1], then (1 − λ)f(x) + λf(y) = f((1 − λ)x + λy) ∈
f(X).

In the following let R+ denote the positive reals including 0 and let R++ denote the

positive reals excluding 0.

Theorem 1.1.12. A convex module X is isomorphic to a convex subset of a real vector

space, if and only if X is preseparated.

Proof. Every convex subset of a real vector space is preseparated, so clearly any convex

module isomorphic to a convex subset of a real vector space is preseparated.

For the other direction, let X be a preseparated convex module. Let C := (R++)×X.

For (µ, x) ∈ C and λ ∈ R++ let λ(µ, x) := (λµ, x). For (µ, x) ∈ C and (ν, y) ∈ C

let (µ, x) + (ν, y) := (µ + ν, µ
µ+νx + ν

µ+ν y). Define on C × C an equivalence relation:

(w, x) ∼ (y, z) iff w+z = x+y. Let V be the set of all equivalence classes and let [(x, y)]

denote the equivalence class of (x, y) for x, y ∈ C. To define a vector space structure

on V let [(w, x)]+[(y, z)]:=[(w + y, x + z)]. If (s, t) ∼ (u, v) and (w, x) ∼ (y, z), then

(s, t) + (w, x) ∼ (u, v) + (y, z), thus addition on V is well-defined and with −[(x, y)] :=

[(y, x)] it is an abelian group. For λ ∈ R++ define λ[(x, y)] := [(λx, λy)], for λ ∈ −R++

define λ[(x, y)] := [(−λy,−λx)] = −[(−λx,−λy)] and define 0[(x, y)] = [(x, x)]. Clearly

addition and scalar multiplication are distributive and hence V is a real vector space.

Let (λ, z) ∈ C be fixed. Let f : X → V be defined as f(x) := [((1, x) + (λ, z), (λ, z))].

f(

∞∑
j=1

αjxj) = [((1,

∞∑
j=1

αjxj) + (λ, z), (λ, z))] = [(

∞∑
j=1

((αj , xj) + (αjλ, z)),

∞∑
j=1

(αjλ, z))] =

=
∞∑
j=1

[((αj , xj) + (αjλ, z), (αjλ, z))] =

∞∑
j=1

αj [((1, xj) + (λ, z), (λ, z))] =
∞∑
j=1

αjf(xj)

Thus, f is affine and its image is convex. For injectivity, let x 6= y with x, y ∈ X and

assume f(x) = f(y). Then, ((1, x)+(λ, z), (λ, z)) ∼ ((1, y)+(λ, z), (λ, z)), which implies

(1 + 2λ,
1

1 + 2λ
x+

2λ

1 + 2λ
z) = (1, x) + (λ, z) + (λ, z) =
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= (1, y) + (λ, z) + (λ, z) = (1 + 2λ,
1

1 + 2λ
y +

2λ

1 + 2λ
z)

But 1
1+2λx + 2λ

1+2λz = 1
1+2λy + 2λ

1+2λz contradicts X being preseparated, hence f is

injective. Thus, f is an affine bijection. The inverse of any affine bijection is also affine,

hence f is an isomorphism.

Definition 1.1.13. A subset C of a real vector space X is called a cone if the following

conditions are satisfied:

1. αx ∈ C, for all x ∈ C, α ∈ R+.

2. x+ y ∈ C, for all x, y ∈ C.

Remark 1.1.14. Clearly, any cone is convex.

Definition 1.1.15. Let X be a real vector space. A cone C is called proper if C∩(−C) =

{0}. A cone C is called generating if C − C = X.

Definition 1.1.16. A real vector space X is called an ordered vector space with order

≤, if ≤ is a partial order that satisfies:

1. x ≤ y implies αx ≤ αy, for all x, y ∈ X, α ∈ R+.

2. x ≤ y implies x+ z ≤ y + z, for all x, y, z ∈ X.

Remark 1.1.17. For any ordered vector space X, C := {x ∈ X : x ≥ 0} defines a proper

cone. On the other hand, for any given proper cone C, x ≤ y :↔ (y − x) ∈ C defines

a partial order satisfying the conditions of an ordered vector space. Hence an ordered

vector space can equally be defined by defining a proper cone.

Definition 1.1.18. A real vector space X is called base ordered vector space with base

B, if B ⊆ X is convex, if for all α1, α2 ∈ R+, b1, b2 ∈ B: α1b1 = α2b2 implies α1 = α2,

and if R+B − R+B = X.

Remark 1.1.19. In the definition above C := R+B is a cone and the conditions imply

that C is proper and generating, i.e. C ∩ (−C) = {0} and C − C = X. Thus, any base

ordered vector space is an ordered vector space.

Lemma 1.1.20. For any base ordered vector space X with base B, the affine hull of B

is proper, i.e. it does not include 0.

Proof. Assume x, y ∈ B, λ ∈ R such that x+λ(y−x) = 0. If λ ≥ 1, then (λ− 1)x = λy

implies λ = λ− 1, thus a contradiction. If λ ≤ 0, then (1−λ)x = −λy implies λ = λ− 1

aswell. If 0 ≤ λ ≤ 1, then x+λ(y− x) = 0, implies 0 ∈ B. But then, 0 · 0 = 1 · 0 implies

0 = 1. Thus, the affine hull of B does not contain 0.
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Definition 1.1.21. Let BOVec denote the category of base ordered vector spaces with

morphisms linear mappings which satisfy that the domain’s base is mapped into the

codomain’s base. Let Bs : BOVec → Conv denote the functor which assigns to each

base ordered vector space its base and to each linear function the restriction to its base.

Remark 1.1.22. Obviously this defines a functor, since the restriction of a linear mapping

is still linear and hence affine. The composition of morphism is the usual composition

of functions in both categories.

Remark 1.1.23. Bs can also be treated as a functor to the full and faithful subcategory

of preseparated convex modules PresepConv.

Definition 1.1.24. Let X be a convex module. Conv(X,R) is a real vector space. Let

Conv(X,R)∗ denote its algebraic dual. Define ρ̃ : X → Conv(X,R)∗ as ρ̃(x)(f) = f(x).

Let R(X) denote the subspace of Conv(X,R)∗ generated by ρ̃(X). Let ρ be defined as

the corestriction of ρ̃ to R(X) and let ρ̂ be defined as the corestriction of ρ̃ to its image.

Lemma 1.1.25. ρ is affine and R(X) is a base ordered vector space with base ρ(X).

Proof. ρ(x) is defined by acting on affine functions f therefore,

ρ(

∞∑
j=1

αjxj)(f) = f(

∞∑
j=1

αjxj) =

∞∑
j=1

αjf(xj) = (

∞∑
j=1

αjρ(xj))(f)

Thus ρ is affine and ρ(X) is convex. The constant function c1 : x 7→ 1 is an element

of Conv(X,R). Let x, y ∈ X and α1, α2 ∈ R+ with α1ρ(x) = α2ρ(y), then α1 =

α1ρ(x)(c1) = α2ρ(y)(c1) = α2. R(X) is generated by ρ(X) and ρ(X) is convex, thus

R+ρ(X)− R+ρ(X) = X.

Lemma 1.1.26. X is preseparated if and only if ρ is injective.

Proof. Assume that x 6= y and αx+ (1− α)z = αy + (1− α)z with α ∈ (0, 1], then

αρ(x) + (1− α)ρ(z) = ρ(αx+ (1− α)z) = ρ(αy + (1− α)) = αρ(x) + (1− α)ρ(z)

Therefore ρ(x) = ρ(y) and consequently ρ is not injective. On the other hand if X is

preseparated, then X is isomorphic to a convex subset of some real vector space and

thus for any x 6= y with x, y ∈ X there exists a function f ∈ Conv(X,R) such that

f(x) 6= f(y). Hence ρ(x)(f) 6= ρ(y)(f).

Corollary 1.1.27. X is preseparated if and only if ρ̂ is an isomorphism.

Proof. This follows directly from lemmata 1.1.26 and 1.1.10.
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Lemma 1.1.28. Let X1, X2 be base ordered vector spaces with bases B1, B2. Let f :

B1 → B2 be affine. Then there exists a unique linear extension F : X1 → X2.

Proof. Let x, y ∈ B and let λ, µ ∈ R+. Define F (λx− µy) := λf(x)− µf(y). Then:

F (λ1x1 − µ1y1 + λ2x2 − µ2y2) =

= F ((λ1 + λ2)(
λ1

λ1 + λ2
x1 +

λ2
λ1 + λ2

x2)− (µ1 + µ2)(
µ1

µ1 + µ2
y1 +

µ2
µ1 + µ2

y2)) =

= (λ1 + λ2)f(
λ1

λ1 + λ2
x1 +

λ2
λ1 + λ2

x2)− (µ1 + µ2)f(
µ1

µ1 + µ2
y1 +

µ2
µ1 + µ2

y2) =

= λ1f(x1) + λ2f(x2)− µ1f(y1)− µ2f(y2) = F (λ1x1 − µ1y1) + F (λ2x2 − µ2y2)

F (ν(λx− µy)) = νλf(x)− νµf(y) = νF (λx− µy)

Hence, F is additive and homogeneous. Thus, it suffices to show that F is independent

of representation at 0, for F to be well-defined. Let λx − µy = 0, then since B1 is a

base, λ = µ and hence x = y. Therefore, F (λx − µy) = λf(x) − λf(x) = 0. Since

F (ν(λx − µy)) = νλf(x) − νµf(y) = νF (λx − µy), F is linear. Since any other linear

extension has to satisfy the defining equation of F , the extension is unique.

Theorem 1.1.29. Let X be a convex module, let Y be a base ordered vector space

with base B and let f : X → B be affine. Then there is a unique linear mapping

F : R(X)→ Y , such that F ◦ ρ = f .

Proof. First, show that there is a unique affine mapping F̃ : ρ(X) → Y satisfying

F̃ ◦ ρ = f . For such a function to be well-defined f(x) 6= f(y) has to imply ρ(x) 6= ρ(y),

for all x, y ∈ X. Let x and y be, such that f(x) 6= f(y). Since Y is a real linear

space there is a linear functional g : Y → R, such that g(f(x)) 6= g(f(y)). Since g ◦ f
is an affine function to the reals, ρ(x) 6= ρ(y). In order to show that F̃ is affine, let

xj ∈ ρ(X) and let y ∈ X such that ρ(yj) = xj for all j ∈ N. Thereby, F̃ (
∑∞

j=1 αjxj) =

F̃ (ρ(
∑∞

j=1 αjyj)) = f(
∑∞

j=1 αjyj) =
∑∞

j=1 αjf(yj) =
∑∞

j=1 αjF̃ (xj). Since R(X) is a

base ordered vector space with base ρ(X), there is a unique linear extension F of F̃ ,

according to the preceding lemma.

Definition 1.1.30. Let R : Conv→ BOVec denote the functor along ρ, which assigns

to each convex module X the base ordered vector space R(X) and to each affine mapping

f : X → Y , the unique linear mapping F : R(X)→ R(Y ) from the preceding theorem.

Remark 1.1.31. Note that ρ̂ : X → Bs ◦R(X) constitutes an affine function.

Corollary 1.1.32. R : Conv → BOVec is left adjoint to Bs : BOVec → Conv,

i.e. for each convex module X, for each base ordered vector space Y and for each affine
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f : X → Bs(Y ), there is a unique linear function g : R(X) → Y that maps ρ(X) into

the base of Y , such that Bs(g) ◦ ρ̂ = f .

Proof. Let ι denote the inclusion of Bs(Y ) into Y . According to the preceding theorem,

there is a unique linear function g : R(X) → Y , such that ρ(X) is mapped into the

base of Y and such that g ◦ ρ = ι ◦ f . Let x ∈ X, then Bs(g)(ρ̂(x)) = g(ρ̂(x)) =

g(ρ(x)) = ι(f(x)) = f(x). According to lemma 1.1.28, g is the unique function with this

property.

Corollary 1.1.33. The categories PresepConv and BOVec are equivalent.

Proof. For each X ∈ PresepConv the affine function ρ̂X : X → Bs ◦ R(X) is an

isomorphism. For each Y ∈ BOCVec, let FY : R ◦ Bs(Y ) → Y be the unique linear

and base preserving function that extends the inclusion of Bs(Y ) into Y . FY is an

isomorphism.

1.2 A Semimetric on Convex Modules

Definition 1.2.1. Let X be convex module. Let the convex semimetric d : X×X → R
of X be defined as:

d(x, y) := inf{ α

1− α
: α ∈ [0, 1]; x̃, ỹ ∈ X; (1− α)x+ αx̃ = (1− α)y + αỹ}

Proposition 1.2.2. d is a semimetric.

Proof. Clearly, d is symmetric. For the triangle inequality let X be a convex module, let

x, y, z ∈ X and let ε > 0 be fixed. Let αx
1−αx ≤ d(x, z) + ε, let

αy
1−αy ≤ d(y, z) + ε and let

x̃, ỹ, z̃x, z̃y ∈ X, such that (1−αx)x+αxx̃ = (1−αx)z+αz̃x and that (1−αy)y+αyỹ =

(1−αy)z+αz̃y. Let α :=
αx+αy−2αxαy

1−αxαy , let x̂ :=
αx(1−αy)

αx+αy−2αxαy x̃+
(1−αx)αy

αx+αy−2αxαy z̃y and let

ŷ =
(1−αx)αy

αx+αy−2αxαy ỹ +
αx(1−αy)

αx+αy−2αxαy z̃x. Then:

(1− α)x+ αx̂ =
(1− αx)(1− αy)

1− αxαy
x+

αx(1− αy)
1− αxαy

x̃+
(1− αx)αy
1− αxαy

z̃y =

=
(1− αx)(1− αy)

1− αxαy
z +

αx(1− αy)
1− αxαy

z̃x +
(1− αx)αy
1− αxαy

z̃y

(1− α)y + αŷ =
(1− αx)(1− αy)

1− αxαy
y +

(1− αx)αy
1− αxαy

ỹ +
αx(1− αy)
1− αxαy

z̃x =

=
(1− αx)(1− αy)

1− αxαy
z +

(1− αx)αy
1− αxαy

z̃y +
αx(1− αy)
1− αxαy

z̃x
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Thus, we get the equations:

(1− α)x+ αx̂ = (1− α)y + αŷ

α

1− α
=

αx
1− αx

+
αy

1− αy

Since ε was arbitrary, d(x, y) ≤ d(x, z) + d(z, y).

Remark 1.2.3. Let x̃ = y, let ỹ = x and let α = 1
2 . Then the equation (1− α)x+ αx̃ =

(1− α)y + αỹ becomes 1
2x+ 1

2y = 1
2y + 1

2x. Hence d(x, y) ≤ 1 for all x, y ∈ X.

Lemma 1.2.4. Every affine mapping f : X1 → X2 satisfies for all x, y ∈ X1:

d2(f(x), f(y)) ≤ d1(x, y)

Proof. Let ε > 0 be fixed and let x, y ∈ X1. Let α ∈ [0, 1], x̃, ỹ ∈ X1, such that
α

1−α ≤ d1(x, y) + ε and that (1−α)x+αx̃ = (1−α)y+αỹ. Then (1−α)f(x) +αf(x̃) =

f((1− α)x+ αx̃) = f((1− α)y + αỹ) = (1− α)f(y) + αf(ỹ). Thus, d2(x, y) ≤ α
1−α and

since ε was arbitrary d2(f(x), f(y)) ≤ d1(x, y).

Corollary 1.2.5. Any affine mapping is continuous. Any isomorphism in Conv is an

isometry.

Proposition 1.2.6. Let X be a convex module. If the convex semimetric is a metric,

X is preseparated.

Proof. Let x, y, z ∈ X and let λ ∈ [0, 1), such that x 6= y and (1−λ)x+λz = (1−λ)y+λz.

Because of lemma 1.1.8, (1 − α)x + αz = (1 − α)y + αz for all α ∈ (0, 1] and therefore

d(x, y) = 0. Hence, (X, d) cannot be metric.

Definition 1.2.7. A convex module X is called linearly bounded if all affine mappings

f : R++ → X are constant.

Lemma 1.2.8. Let X be a linearly bounded convex module. Then:

• Any convex submodule Y of X, i.e. a subset that carries the same convex structure,

is linearly bounded.

• If X is a subset of a real vector space that carries the inherited convex structure

and λ ∈ R, then λX is linearly bounded, too.

Proof. Let f : R++ → Y be affine. Let ι : Y → X denote the inclusion. ι obviously

is affine and injective. Since X is linearly bounded, ι ◦ f has to be constant. Since ι is

injective, f is constant, too.
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First assume λ 6= 0. Let f : R++ → Y be affine. Let gλ : λ · X → X be defined

as: gλ(x) = 1
λx. Since gλ is an affine bijection and linearly boundedness is invariant

under isomorphisms, λX is linearly bounded if and only if X is linearly bounded. In

case λ = 0, 0X consist of a single point and hence any function with codomain 0X is

constant.

Lemma 1.2.9. Let X be a convex module, let I be an open, possibly infinite, real interval

and let f : I → X be an affine mapping and let λ, µ ∈ I, such that λ 6= µ. If f(λ) = f(µ),

then f is constant.

Proof. Without loss of generality, let λ < µ and let ξ ∈ I, with ξ > µ. Then the

following equation holds:

µ− ξ
λ− ξ

f(λ) +
λ− µ
λ− ξ

f(ξ) = f(
µ− ξ
λ− ξ

λ+
λ− µ
λ− ξ

ξ) =

= f(µ) = f(λ) =
µ− ξ
λ− ξ

f(λ) +
λ− µ
λ− ξ

f(λ)

According to lemma 1.1.8, αf(λ) + (1 − α)f(ξ) = αf(λ) + (1 − α)f(λ) = f(λ) for all

α ∈ (0, 1]. Since αf(λ) + (1 − α)f(ξ) = f(αλ + (1 − α)ξ), this implies f(ζ) = f(λ) for

all ζ ∈ [λ, ξ). Since ξ > µ was arbitrary this holds for all ζ ≥ λ. The proof for ζ ≤ µ is

analogous.

Lemma 1.2.10. Let X be a convex module and let f : R++ → X be an affine mapping.

For all x, y ∈ f(R++): d(x, y) = 0.

Proof. Let µ1, µ2 ∈ R++, such that µ1 < µ2 and let α ∈ (0, 1], then:

(1− α)f(µ1) + αf(
µ2 − (1− α)µ1

α
) = f(µ2) = (1− α)f(µ2) + αf(µ2)

Thus, d(f(µ1), f(µ2)) = 0.

Lemma 1.2.11. A convex and balanced subset C of a real vector space X is linearly

bounded if and only if for all x ∈ X\{0} there exists a λ ∈ R, such that λx is not in C.

Proof. Assume that there is an x ∈ C such that Rx ⊆ C. Define f : R++ → C by

f(λ) := λx. Thus, C cannot be linearly bound. For the other direction, assume that

there is an affine and nonconstant f : R++ → C. Let λ > 0 be arbitrary and let

x := 1
2f(1)− 1

2f(0) ∈ C. Then, 1
λf(λ)+(1− 1

λ)f(0) = f(1) and λx = λ
2f(1)+ 1−λ

2 f(0)−
1
2f(0) = 1

2(λf(1)+(1−λ)f(0))− 1
2f(0) = 1

2f(λ)− 1
2f(0) ∈ C. Since λ > 0 was arbitrary

and C is convex and balanced, Rx ⊆ C.
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Lemma 1.2.12. Let X be a real vector space and let ‖ · ‖ denote the seminorm induced

by the Minkowski functional of a convex, balanced and absorbing subset C. Let x ∈ X.

Then, ‖x‖ = 0 if and only if Rx ⊆ C.

Proof. If ‖x‖ = 0, then for all λ ∈ R++, x ∈ λC and hence 1
λx ∈ C. If Rx ⊆ C, then

x ∈ λC for all λ ∈ R++ and hence ‖x‖ = 0.

Definition 1.2.13. Let X be a real vector space and let B ⊆ X. Let conv(B) denote

the convex closure of B, i.e. the intersection of all convex sets containing B.

Remark 1.2.14. The convex closure of B is the smallest convex set containing B.

Definition 1.2.15. For any base ordered vector space X with base B let ‖ · ‖ denote

the seminorm induced by the Minkowski functional of conv(B ∪ (−B)). Call ‖ · ‖ the

base seminorm of X. If ‖ · ‖ is a norm call it the base norm of X and call X a base

normed vector space.

Remark 1.2.16. Clearly, conv(B ∪ (−B)) is convex and balanced and, since B is gener-

ating, conv(B ∪ (−B)) is absorbing too. Hence ‖ · ‖ is indeed a seminorm.

Corollary 1.2.17. Any base ordered vector space X with base B is a base normed vector

space if and only if conv(B ∪ (−B)) is linearly bounded.

Proof. Follows directly from lemmata 1.2.12 and 1.2.11.

Lemma 1.2.18. Let X be a base ordered vector space with base B and let Bλ := {12(1 +

λ)x− 1
2(1− λ)y : x, y ∈ B}. Then:

• conv(B ∪ (−B)) = {αx− (1− α)y : x, y ∈ B,α ∈ [0, 1]} =
⋃
λ∈[−1,1]Bλ

• There is a linear function π : X → R, such that π(Bλ) = {λ}.

• The affine spaces generated by Bλ, λ ∈ R are pairwise disjoint.

Proof. To show the first equation, let w, x, y, z ∈ B and let α, β, γ ∈ [0, 1]. Then:

(1−α)(βw−(1−β)x)+α(γy−(1−γ)z) = ((1−α)βw+αγy)−((1−α)(1−β)x+α(1−γ)z) =

= (β − α+ αγ)(
β − αβ

β − α+ αγ
w +

αγ

β − α+ αγ
y)+

+(1− β + αβ − αγ)(
1− α− β + αβ

1− β + αβ − αγ
x+

α− αγ
1− β + αβ − αγ

z)

Since (β−α+αγ) ∈ [−1, 1] the convex combination is contained in D := {αx−(1−α)y :

x, y ∈ B,α ∈ [0, 1]} and thus D is convex. Let v = αx − (1 − α)y ∈ D be arbitrary.
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Since v is a convex combination of x and −y, v must be in conv(B ∪ (−B)) and since

conv(B ∪ (−B)) is the smallest convex set containing B ∪ (−B), the first equation holds

true. The second equation is trivial.

For the second part let b ∈ B be fixed and let x ∈ X be arbitrary. X is generated by

B − B and thereby there are y, z ∈ B and µ, ν ∈ R+ such that x = µy − νz. Define

π(x) := µ − ν. To show that π is well-defined assume x = µy − νz = ζu − ηv, with

µ, ν, ζ, η ∈ R+ and y, z, u, v ∈ B. Thus, (µ+η)( µ
µ+ηy+ η

µ+ηv) = (ν+ζ)( ν
ν+ζ z+ ζ

ν+ζu) and

since ( µ
µ+ηy+ η

µ+ηv) ∈ B and ( ν
ν+ζ z+ ζ

ν+ζu) ∈ B, definition 1.1.18 implies µ+η = ν+ζ.

To show that π is linear let µ, ν, ζ, η, λ ∈ R+, let y, z, u, v ∈ B and let x = µy − νz,w =

ζu− ηv. Then:

π(x+ λy) = π(µy − νz + λ(ζu− ηv)) =

= π((µ+λζ)(
µ

µ+ λζ
y+

λζ

µ+ λζ
u)− (ν+λη)(

ν

ν + λη
z+

λη

ν + λη
v)) = (µ− ν) +λ(ζ − η)

Thus π is linear. Obviously, this implies π(Bλ) = {λ} and hence the third statement is

true.

Proposition 1.2.19. Let X be a base ordered vector space with base B. For any x, y ∈ B
the base seminorm and the convex semimetric d on B satisfy:

‖x− y‖ = 2d(x, y)

Proof. Let x, y, x̃, ỹ ∈ B and α ∈ [0, 1), such that (1− α)x+ αx̃ = (1− α)y + αỹ. This

yields x− y = α
1−α(ỹ − x̃) and thus:

‖x− y‖ =
α

1− α
‖ỹ − x̃‖ ≤ α

1− α
(‖ỹ‖+ ‖x̃‖) =

2α

1− α

Hence, ‖x− y‖ ≤ 2d(x, y).

For the other direction, first consider the case that ‖x − y‖ > 0. Let ε > 0 be fixed

and z := 1−ε
‖x−y‖(x − y). Since ‖z‖ = 1 − ε, there are x̃, ỹ ∈ B and β ∈ [0, 1] such that

z = (1− β)ỹ − βx̃. Since x and y are in the affine hull of B1 = {12(1 + 1)u− 1
2(1− 1)v :

u, v ∈ B}, according to lemma 1.2.18, z is in the affine hull of B0 and hence β = 1− β.

Thus 1−ε
‖x−y‖(x − y) = 1

2 ỹ −
1
2 x̃. Let α := ‖x−y‖

2−2ε+‖x−y‖ , then ‖x−y‖
2(1−ε) = α

1−α and thus

(1− α)x+ αx̃ = (1− α)y + αỹ. Since ε was arbitrary, ‖x− y‖ = 2d(x, y) follows.

In case that ‖x−y‖ = 0, for all λ ∈ R++ there is a z ∈ B such that z = λ(x−y). Again,

since z is in the affine subspace generated by B0, there are x̃, ỹ ∈ B, such that λ(x−y) =
1
2 ỹ−

1
2 x̃. Let α := 1

1+2λ , so that 1
2λ = α

1−α . Thereby (1−α)x+αx̃ = (1−α)y+αỹ and

since λ was arbitrary, d(x, y) = 0 follows.
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Corollary 1.2.20. The convex semimetric of a convex module X is a metric if and only

if ρ is injective and conv(ρ(X) ∪ (−ρ(X))) is linearly bounded.

Proof. If ρ is injective, it is an isomorphism and thereby an isometry. According to 1.2.17

and 1.2.19 it is metric if and only if conv(ρ(X) ∪ (−ρ(X))) is linearly bounded. In case

X is metric, X is preseparated according to 1.2.6 and hence ρ is an isomorphism.

Proposition 1.2.21. Let X be a base ordered vector space with base B. Let B0 :=
1
2(B −B) be linearly bounded, then Bλ := {12(1 + λ)x− 1

2(1− λ)y : x, y ∈ B} is linearly

bounded for any λ ∈ R.

Proof. Since B−λ = −Bλ, we can assume that λ ≥ 0. First consider the case λ ≥ 1.

Then, Bλ = λB, hence it suffices to show that B is linearly bounded. Let b ∈ B be fixed

let f : R++ → B be an affine mapping and let g : B → B0 be defined as g(z) := 1
2z−

1
2b.

Clearly, g is affine and injective. Since B0 is linearly bounded g ◦ f must be constant

and because g is injective, f must be constant too. Thus, B is linearly bounded.

Next, let λ ∈ [0, 1). Again, let b ∈ B be fixed and let f : R++ → Bλ be an affine

mapping. Define g : Bλ → B0 by: g(z) := 1
1+λz −

λ
1+λb. To assure that the image of g

is contained in B0, let z = 1
2(1 + λ)x− 1

2(1− λ)y, with x, y ∈ B. Then:

g(z) =
1

1 + λ
(
1

2
(1 + λ)x− 1

2
(1− λ)y)− λ

1 + λ
b =

1

2
x− 1

2
(
1− λ
1 + λ

y +
2λ

1 + λ
b)

Indeed g maps Bλ into B0 and clearly g is affine and injective. Since B0 is linearly

bounded g ◦ f must be constant and because g is injective, f must be constant, too.

Hence Bλ is linearly bounded.

Proposition 1.2.22. Let B be the base of a base ordered vector space X. The following

statements are equivalent:

• 1
2(B −B) is linearly bounded.

• conv(B ∪ (−B)) is linearly bounded.

Proof. First let conv(B ∪ (−B)) be linearly bounded. Since 1
2(B − B) is a subset of

conv(B ∪ (−B)), it is linearly bounded too. For the other direction let f : R++ →
conv(B ∪ (−B)) be affine. Let π be the linear functional of lemma 1.2.18. Since π ◦ f
is affine and π(conv(B ∪ (−B))) = [−1, 1], π ◦ f must be constant. Thereby there exist

λ ∈ [−1, 1], such that f(R++) ⊆ Bλ := {(λ + 1
2)x − (λ − 1

2)y : x, y ∈ B}. According to

the preceding proposition Bλ is linearly bounded and thereby f is constant.
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Corollary 1.2.23. The semimetric of a convex module X is a metric if and only if ρ

is injective and ρ(X)− ρ(X) is linearly bounded.

Proof. Follows directly from the preceding proposition and corollary 1.2.20.

The following example shows that the linearly boundedness of a convex module B does

not imply the linearly boundedness of B − B and hence the condition of ρ(X) − ρ(X)

being linearly bounded cannot be reduced to a condition of ρ(X) being bounded.

Example 1.2.24. Let R<N> denote the real vector space freely generated by a countably

infinte set, i.e. all (xn)n∈N ⊆ RN such that xn = 0 for all but finitely many n ∈ N. Let

B := {(xn)n∈N ∈ R<N> : |xn| ≤ n ∀n > 1; |x0| ≤
∑∞

j=1 |xj |}. To show that B is convex

it is sufficient to show convexity for all finite dimensional subspaces, since for each convex

combination of two vectors, all but finitely many components are zero already. Define

Bm := {(xn)n∈N ∈ R<N> : |xm| ≤ m; |x0| ≤ |xm|;xn = 0 ∀n > 1, n 6= m}. Clearly

Bm is convex for each positive integer m. Let (xn)n∈N, (yn)n∈N ∈ B and p ∈ N, such

that xj = 0 and yj = 0 for all j > p. Since |x0| ≤
∑p

j=1 |xj | and |y0| ≤
∑p

j=1 |yj |,
(xn)n∈N, (yn)n∈N ∈

∑p
j=1Bj . The sets Bj are convex for all j, hence

∑p
j=1Bj is convex.

Therefore there exists a convex combination of (xn)n∈N and (yn)n∈N in
∑p

j=1Bj ⊆ B,

hence B is convex.

To show that B is linearly bounded let f : R++ → B. Let n ∈ N be such that the n-th

component of f(2)−f(1) is not equal to zero. Let this difference be denoted by δ. In case

n > 0, f(1 + 2n
|δ| ) = f(1) + 2n

|δ| (f(2)− f(1)) /∈ B, because the absolute value of the n-th

component is larger than n. In case n = 0, let p be such that all k-th components with

k > p of f(1) and f(2) vanish. Then = f(1+ 2p(p+1)
|δ| ) = f(1)+ 2p(p+1)

δ (f(2)−f(1)) cannot

be in B, since the absolute value of the 0-th component is larger than p(p+1)
2 =

∑p
j=1 j.

Hence f(2)− f(1) = 0, which implies that f is constant.

Now consider B − B. Let en denote the n-th unit vector and let d·e denote the ceiling

function, i.e. rounding up to the next integer. For λ ∈ R define g1(λ) := λ
2 e0 + λ

2 ed|λ
2
|e ∈

B and g2(λ) := −λ
2 e0 + λ

2 ed|λ
2
|e ∈ B. Thus; g1(λ) − g2(λ) = λe0 and λe0 ∈ B − B for

all λ ∈ R. Now define the function f(λ) := λe0, which is clearly affine and nonconstant.

Hence B −B cannot be linearly bounded.

1.3 Superconvex Modules and the Completion

Definition 1.3.1. A family (λn)n∈N of countably infinite many real numbers is called a

superconvex combination if 0 ≤ λn ≤ 1 for all n ∈ N and
∑∞

n=1 λn = 1. Let Ωsc denote

the set of all superconvex combinations.
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Definition 1.3.2. A set X and a function c : Ωsc × XN → X, which is written as

c((λn)n∈N, (xn)n∈N) =:
∑∞

n=1 λnxn, are called a superconvex module and c a superconvex

combination if they satisfy the following conditions:

1.
∑∞

n=1 λnxn =
∑∞

n=1 λσ(n)xσ(n), for any bijection σ : N→ N

2.
∑∞

n=1 µn(
∑∞

m=1 λn,mxm) =
∑∞

m=1(
∑∞

n=1 µnλn,m)xm for all (xn)n∈N ∈ XN, and

(λn,m)m∈N, (µn)n∈N ∈ Ωsc.

3.
∑∞

n=1 λnxn = xi if λi = 1 and λj = 0 for all j 6= i, for (xn)n∈N ∈ XN.

Remark 1.3.3. Clearly the latter term in the second condition is well-defined since

(
∑∞

n=1 µnλn,m)m∈N is a superconvex combination.

Every superconvex module is as a convex module too: Let
∑N

i=1 λi = 1 be arbitrary.

Let λ̃i := λi for i ≤ N and λ̃i := 0 for i > N . Define the operation of a convex

module on X by letting
∑N

i=1 λi :=
∑∞

i=1 λ̃i. One easily sees that the first condition

of definition 1.3.2, the commutativity of the formal sum, implies the first condition in

1.1. The second condition, the associativity of the formal sum, implies the second and

the fourth condition of 1.1 and the third condition in 1.3.2 implies the third condition

in 1.1. From now on, when a superconvex module is considered, define this as its

canonical underlying structure as a convex module. A superconvex module is said to be

preseparated or linearly bounded if the underlying convex module has that property. Let

the semimetric on a superconvex module be defined as the semimetric on its underlying

convex module.

Definition 1.3.4. Let X and Y be superconvex modules. A mapping f : X → Y is

called superaffine, if for all xj ∈ X and (λj)j∈N ∈ Ωsc:

f(
∞∑
j=1

λjxj) =
∞∑
j=1

λjf(xj)

Let SConv denote the category of superaffine modules with superaffine mappings as

morphisms. Since every superaffine mapping is affine too, SConv is a subcategory of

Conv.

Lemma 1.3.5. Every preseparated superconvex module is linearly bounded.

Let X be a preseparated convex module and let f : R++ → X be an affine function.

Then:

1

3
f(1) +

∞∑
j=0

1

3 · 2j
f(2j + 1) =

∞∑
j=1

1

3 · 2j
f(1) +

1

3
f(2) +

∞∑
j=1

1

3 · 2j
f(2j + 1) =
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=
1

3
f(2) +

∞∑
j=1

1

3 · 2j−1
(
1

2
f(2j + 1) +

1

2
f(1)) =

1

3
f(2) +

∞∑
j=1

1

3 · 2j−1
f(2j−1 + 1) =

=
1

3
f(2) +

∞∑
j=0

1

3 · 2j
f(2j + 1)

Since X is preseparated, this implies f(1) = f(2). According to lemma 1.2.9, f is

constant.

Definition 1.3.6. Let X be a normed real vector space. A subset C ⊆ X is called

superconvex if there exists a superconvex structure on C such that the underlying convex

module coincides with the linear structure on C.

Lemma 1.3.7. Let X be a normed real vector space and let B ⊆ X be bounded and

superconvex. Then, the superconvex structure on B extending the linear structure of B

is unique and satisfies:
∞∑
j=1

αjxj = lim
N→∞

N∑
j=1

αjxj

If X is a Banach space and B ⊆ X is convex, bounded and closed, then B is a super-

convex set.

Proof. To show uniqueness, it satisfies to show that the equation holds true. Let∑∞
j=1 αjxj be an arbitrary superconvex combination and let c ∈ R+ such that ‖x‖ ≤ c

for all x ∈ X. Then:

∞∑
`=1

α`x` =
(∑N

j=1 αj∑∞
k=1 αk

) N∑
`=1

α`
∑∞

m=1 αm∑N
n=1 αn

x` +
(∑∞j=N+1 αj∑∞

k=1 αk

) ∞∑
`=N+1

α`
∑∞

m=1 αm∑∞
n=N+1 αn

x`

‖
∞∑
`=1

α`x` −
N∑
`=1

α`x`‖ ≤
(∑∞j=N+1 αj∑∞

k=1 αk

)
‖

∞∑
`=N+1

α`
∑∞

m=1 αm∑∞
n=N+1 αn

x`‖ ≤
(∑∞j=N+1 αj∑∞

k=1 αk

)
c→ 0

Thus, the superconvex combination has to coincide with the limit of the series. For

the second part, the boundedness implies ‖
∑∞

j=N+1 αjxj‖ ≤
∑∞

j=N+1 αj‖xj‖ → 0. The

series converges and hence is well-defined. Since the series converges absolutely this

definition does not depend on the order of the summands and
∑∞

j=1 βj(
∑∞

k=1 αj,kxk) =∑∞
k=1(

∑∞
j=1 βjαj,kxk). Hence, this indeed defines a superconvex module.

Definition 1.3.8. Let X be a Banach space and let B ⊆ X. Let superconv(B) denote

the superconvex closure of B, i.e. the intersection of all superconvex sets containing B.

Lemma 1.3.9. Let X be a Banach space and let B ⊆ X be a bounded subset. Then,

superconv(B) = {limN→∞
∑N

j=1 αjxj :
∑∞

j=1 αj = 1;xj ∈ X for all j ∈ N} ⊆ conv(B).
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Proof. Since B is bounded the series does converge absolutely, hence the set is well-

defined. Clearly, D := {limN→∞
∑N

j=1 αjxj :
∑∞

j=1 αj = 1;xj ∈ X for all j ∈ N}
contains conv(B). Since any element of D is the limit of a sequence in conv(B), it is

contained in conv(B) and hence still bounded. Thus, for all βj , αj,k ∈ [0, 1], such that∑∞
j=1 βj = 1 and

∑∞
k=1 αj,k = 1 for all j ∈ N, and for all xj,k ∈ X:

lim
N→∞

N∑
j=1

βj( lim
M→∞

M∑
j=1

αj,kxj,k) = lim
M→∞

( lim
N→∞

N∑
j=1

M∑
j=1

βjαj,kxj,k)

is well-defined. Since
∑∞

j=1

∑∞
k=1 βjαj,k = 1, it is also in D.

Lemma 1.3.10. Let X be a superconvex module, let Y be a bounded, closed, convex

subset of a Banach sapce and let f : X → Y be an affine mapping. Then f is superaffine.

Proof. Let
∑∞

`=1 αjxj be an arbitrary convex combination in X and let c ∈ R+, such

that ‖y‖ ≤ c for all y ∈ Y . Since f is affine the following equations holds true:

f(

∞∑
`=1

α`x`) =
(∑N

j=1 αj∑∞
k=1 αk

)
f(

N∑
`=1

α`
∑∞

m=1 αm∑N
n=1 αn

x`)+

+
(∑∞j=N+1 αj∑∞

k=1 αk

)
f(

∞∑
`=N+1

α`
∑∞

m=1 αm∑∞
n=N+1 αn

x`) =

=

N∑
`=1

αjf(xj) +
(∑∞j=N+1 αj∑∞

k=1 αk

)
f(

∞∑
`=N+1

α`
∑∞

m=1 αm∑∞
n=N+1 αn

x`)

‖f(
∞∑
`=1

α`x`)−
N∑
`=1

αjf(xj)‖ = ‖
(∑∞j=N+1 αj∑∞

k=1 αk

)
f(

∞∑
`=N+1

α`
∑∞

m=1 αm∑∞
n=N+1 αn

x`)‖ =

=
(∑∞j=N+1 αj∑∞

k=1 αk

)
‖f(

∞∑
`=N+1

α`
∑∞

m=1 αm∑∞
n=N+1 αn

x`)‖ ≤
(∑∞j=N+1 αj∑∞

k=1 αk

)
c→ 0

Hence f(
∑∞

`=1 α`x`) = limN→∞
∑N

`=1 α`f(x`) =
∑∞

`=1 α`f(x`). Thus, f is superaffine.

Definition 1.3.11. A base normed vector space X with base B is called base ordered

Banach space, if X is a Banach space in regard to its base norm.

Proposition 1.3.12. Let X be a base ordered vector space with superconvex base B.

Then X is a base ordered Banach space with base B.

Proof. Since B is superconvex, B − B is superconvex too and hence linearly bounded.

According to proposition 1.2.22 and corollary 1.2.17, X is a base normed vector space.
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To show completeness, let (xj)j∈N be an arbitrary Cauchy sequence. Let (yj)j∈N be a

subsequence such that ‖yj−yk‖ < 2−j for all k ≥ j. Let z1 := y1 and let zj := yj−yj−1 for

all j > 1, then yj =
∑j

k=1 zk. Since ‖zk‖ < 2−k+1, zk ∈ conv((2−k+1B)∪ (−2−k+1B)) ⊆
[0, 2−k+1]B − [0, 2−k+1]B. Hence there are αj , βj ∈ [0, 2−k+1] and uj , vj ∈ B, such that

zj = αjuj − βjvj . To show that the sequence converges, it is sufficient to show that the

series
∑N

j=1 αjuj and
∑N

j=1 βjvj do. Since |αj | ≤ 2−j+1 the series
∑N

j=1 αj converges

absolutely and
∑∞

j=1 αj is well-defined. In case that all but finitely many αj vanish

the series clearly converges. In case this does not happen, the rules for superconvex

combinations yield the following equation:

( ∞∑
k=1

αk
) ∞∑
j=1

αj∑∞
l=1 αl

uj =
( N∑
k=1

αk
) N∑
j=1

αj∑N
l=1 αl

uj +
( ∞∑
k=N+1

αk
) ∞∑
j=N+1

αj∑∞
l=N+1 αl

uj

Since
∑∞

j=N+1
αj∑∞

l=N+1 αl
uj ∈ B, its norm is not greater than 1. Hence:

lim
N→∞

‖
( ∞∑
k=1

αk
) ∞∑
j=1

αj∑∞
l=1 αl

uj −
( N∑
k=1

αk
) N∑
j=1

αj∑N
l=1 αl

uj‖ = lim
N→∞

‖
∞∑

k=N+1

αk‖ = 0

The proof for
∑N

j=1 βjvj is identical. By that,

lim
m→∞

zm =
( ∞∑
k=1

αk
) ∞∑
j=1

αj∑∞
l=1 αl

uj −
( ∞∑
k=1

βk
) ∞∑
j=1

βj∑∞
l=1 βl

vj

Definition 1.3.13. Let X be an ordered vector space. An element e ∈ X is called order

unit, if for any x ∈ X there is a λ ∈ R+, such that x ≤ λe.

Definition 1.3.14. Let X be an ordered vector space with order unit e. Let the order

unit (semi-)norm of e be definied as:

‖x‖e := inf{λ ∈ R : −λe ≤ x ≤ λe}

Remark 1.3.15. The infimum is well-defined, because the set is non-empty, since e is

an order unit. The homogeneity and the triangle equation follow directly from the

corresponding properties of the partial ordering.

Definition 1.3.16. Let X be an ordered vector space. A function f : X → R is called

a positive linear functional, if it is linear and if for all x ∈ X, 0 ≤ x implies 0 ≤ f(x).

Lemma 1.3.17. Let X be an ordered vector space with order unit e and order unit

(semi-)norm ‖ · ‖e. For any positive linear functional f the following equation holds:

|f(x)| ≤ ‖x‖ef(e)
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Proof. Let ε > 0 be arbitrary. Then, x ≤ (‖x‖e + ε)e implies that (‖x‖e + ε)e − x ≥ 0.

Hence f((‖x‖e + ε)e − x) ≥ 0 and, since f is linear, f(x) ≤ (‖x‖e + ε)f(e). Since ε

was arbitrary this shows the inequality for f(x) ≥ 0. For f(x) ≤ 0 insert −x instead of

x.

Theorem 1.3.18. Let X be an ordered vector space with order unit e. Let Y be a

subspace of X, such that e ∈ Y and equipped with the inherited order. Let f be a

positive linear functional on Y . Then there exists a positive linear functional F on X,

such that f(y) = F (y) for all y ∈ Y .

Proof. Let p(x) := inf{f(y) : y ∈ Y and x ≤ y}. Clearly, p(λx) = λp(x) for all λ ∈ R+

for all x ∈ X and f(x+z) ≤ f(x)+f(z) for all x, z ∈ X. Also, p(y) = f(y) for all y ∈ Y ,

since for any z ∈ Y with y ≤ z, f(z) = f(z− y) + f(y) ≥ f(y). Hence the Hahn-Banach

theorem can be applied and yields a linear extension F of f . To show that F is positive

let x ≥ 0. Thus, f(−x) ≤ p(−x) ≤ 0 and hence f(x) ≥ 0.

Theorem 1.3.19. Let X be an ordered vector space with order unit e and order unit

norm ‖ · ‖e. Let f be in the topological dual of X, denoted by X ′. Then there exist

positive linear functionals g, h ∈ X ′, such that f = g − h and ‖f‖ = ‖g‖+ ‖h‖, whereat

‖ · ‖ is the operator norm.

Proof. Let Y := X × X and define a partial order on Y by (u, v) ≤ (w, x), whenever

u ≤ w and v ≤ x. Clearly (e, e) is a order unit of Y . Now define Z := {(λe−x, λe+x) :

λ ∈ R, x ∈ X}. Let f ∈ X ′ be arbitrary. Define f̂ : Z → R as f̂((λe − x, λe + x)) :=

λ‖f‖ − f(x). Obviously f̂ is linear. To show that f̂ is positive let (λe− x, λe+ x) ≥ 0.

Since −λe ≤ x ≤ λe, ‖x‖e ≤ λ and thereby λ‖f‖−f(x) ≤ 0. Thus we can apply theorem

1.3.18 and get a linear positive extension of f̂ to Y called F . Let h(x) := F (x, 0) and

let g(x) := F (0, x). Then g and h are positive linear functionals and g(x) − h(x) =

F (x,−x) = f̂(x,−x) = f(x) for all x ∈ X. According to lemma 1.3.17, g and h are

continuous and the equation ‖g‖+‖h‖ = g(e)+h(e) = F (e, e) = f̂(e, e) = ‖f‖ holds.

Definition 1.3.20. Let C be a convex module. Define Affb(C) as the set of all bounded

affine functions from C to the reals, i.e. all affine f ∈ Conv(C,R) such that there is a

c ∈ R+ with |f(x)| < c for all x ∈ C.

Lemma 1.3.21. Let C be a convex module. With the usual addition of functions and

multiplications with reals, Affb(C) is an ordered Banach space with order unit the con-

stant 1-function.

Proof. Clearly, Affb(C) is a real vector space and the supremum norm ‖ · ‖∞ makes it a

Banach space. Let 1C denote the constant 1-function. Define a partial order on Affb(C)
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by f ≤ g if and only if f(x) ≤ g(x) for all x ∈ C. Clearly, 1C is an order unit. Since

−1 ≤ f(x) ≤ 1 for all x ∈ C if and only if ‖f‖∞ ≤ 1, the order unit (semi-)norm

coincides with the supremum norm.

Proposition 1.3.22. Let C be a convex module and let Affb(C)′ denote the topological

dual of Affb(C). Then, Affb(C)′ equipped with the operator norm is a base ordered

Banach space with base B := {f ∈ Affb(C)′ : f(1C) = 1 and ‖f‖ ≤ 1}.

Proof. As the topological dual of a Banach space, Affb(C)′ equipped with the operator

norm clearly is a Banach space. To show that B is a base, let b1, b2 ∈ B and α ∈ [0, 1].

Then, ‖(1 − α)b1 + αb2‖ ≤ (1 − α)‖b1‖ + α‖b2‖ ≤ 1 and ((1 − α)b1 + αb2)(1C) =

(1− α)b1(1C) + αb2(1C) = 1, hence B is convex. Next, let α1, α2 ∈ R+, b1, b2 ∈ B and

α1b1 = α2b2, then α1 = α1b1(1C) = α2b2(1C) = α1. Let f ∈ Affb(C)′ be an arbitrary

positive linear functional. Then, according to lemma 1.3.17, ‖f‖ = f(1C) and hence
1

f(1C)
f ∈ B. According to theorem 1.3.19, any f ∈ Affb(C)′ can be decomposed into the

difference of two positive linear functionals and hence R+B − R+B = Affb(C)′. Thus,

B is a base. To show that the base norm coincides with the operator norm, let the base

norm be denoted by ‖ · ‖B. Any element f ∈ Affb(C)′ with ‖f‖B < 1 can be written

as f = α1b1 − α2b2 with α1, α2 ∈ [0, 1) and b1, b2 ∈ B, such that α1 + α2 < 1. Since

‖f‖ ≤ α1‖b1‖+ α2‖b2‖ = α1 + α2 < 1 and q was arbitrary, ‖ · ‖ ≤ ‖ · ‖B. On the other

hand let f < 1, then, according to theorem 1.3.19, there are positive linear functionals

g and h, such that f = g − h and ‖f‖ = ‖g‖ + ‖h‖. Since 1
‖g‖g ∈ B and 1

‖h‖h ∈ B,

the following equation holds: f = ‖g‖ 1
‖g‖g − ‖h‖

1
‖h‖h. Since ‖g‖ + ‖h‖ ≤ 1, this shows

‖f‖B < 1 and thus ‖ · ‖ ≥ ‖ · ‖B.

Definition 1.3.23. Let X be a convex module. Let τ̃ : X → Affb(X)′ be defined as

(τ̃(x))(f) := f(x). Let B̃ := superconv(τ̃(X)), i.e. the intersection of all superconvex

sets containing τ̃(X). Let T (X) := R+B̃−R+B̃ and let τ be defined as the corestriction

of τ̃ to T (X).

Lemma 1.3.24. In the above definition τ̃ and τ are well-defined, affine functions. T (X)

is a base ordered Banach space with base B̃.

Proof. Let x, y ∈ X, let α ∈ [0, 1] and let f ∈ Affb(X), then (τ̃((1 − α)x + αy))(f) =

f((1 − α)x + αy) = (1 − α)f(x) + αf(y) = (1 − α)(τ̃(x))(f) + α(τ̃(y))(f), hence τ̃ is

affine. Since ‖τ̃(x)‖ ≤ 1, τ̃(x) is continuous and hence in Affb(X)′, for all x ∈ X. Since

(τ̃(x))(1X) = 1, the image of τ̃ is a convex subset of the base B := {f ∈ Affb(C)′ :

f(1C) = 1 and ‖f‖ ≤ 1}. Since B is the base of the norm it is bounded and thus

τ̃(X) is bounded. Let H be the affine proper hyperplane generated by B. According to

lemma 1.3.9, B̃ is contained in τ̃(X) and hence contained in H. Since B̃ is contained in
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the proper affine hyperplane H ∩ T (X) it satisfies that for all α1, α2 ∈ R+, b1, b2 ∈ B̃,

α1b1 = α2b2 implies α1 = α2. Thereby B̃ is a base of T (X) = R+B̃ − R+B̃. Since B̃ is

superconvex, T (X) is a base ordered Banach space. Obviously the corestriction of τ̃ to

the subspace T (X) is affine.

Theorem 1.3.25. Let X be a convex module and let Y be a base normed Banach space

with base B. Let f : X → B be affine. Then there exists a unique linear continuous

function F : T (X)→ Y , such that F ◦ τ = f . This function satisfies ‖F‖ ≤ 1.

Proof. First show that there is a unique affine mapping F̃ : τ(X) → B satisfying

F̃ ◦ τ = f . For such a function to be well-defined f(x) 6= f(y) has to imply τ(x) 6= τ(y),

for all x, y ∈ X. Let x and y be fixed, such that f(x) 6= f(y). Since Y is a Ba-

nach space there is a continuous linear functional g : Y → R, such that g(f(x))) 6=
g(f(y)). Since B is bounded, g ◦ f is a bounded, affine function to the reals, thus

τ(x) 6= τ(y). In order to show that F̃ is affine, let xj ∈ τ(X) and let yj ∈ X such that

τ(yj) = xj for all j ∈ N. Thereby, F̃ (
∑∞

j=1 αjxj) = F̃ (τ(
∑∞

j=1 αjyj)) = f(
∑∞

j=1 αjyj) =∑∞
j=1 αjf(yj) =

∑∞
j=1 αjF̃ (xj). According to lemma 1.1.28, there is a unique linear

extension F̂ : R+τ(X) − R+τ(X) of F̃ . Let x ∈ τ(X) − τ(X) with ‖x‖ ≤ 1. Since

conv(τ(X) ∪ (−τ(X))) is dense in conv(superconv(τ(X)) ∪ (−superconv(τ(X)))), there

is a sequence (xn)n∈N in conv(τX1(X1) ∪ (−τX1(X1))) converging towards x. There are

yn, zn ∈ τ(X) and αn, βn ∈ [0, 1], such that αnyn − βnzn = xn and αn + βn = 1 for all

n ∈ N. Then:

‖F̂ (xn)‖ = ‖αnF̂ (yn)− βnF̂ (zn)‖ ≤ αn‖F̂ (yn)‖+ βn‖F̂ (zn)‖ ≤ αn + βn = 1

Hence ‖F̂ (x)‖ ≤ 1. Now, F̂ is a continuous linear function, defined on a dense subspace

of T (X). Hence there exists a unique linear continuous extension F : T (X)→ Y .

Lemma 1.3.26. Let X be a convex module and let T (X) and B̃ be as above. Then B

is superconvex and is a base of T (X).

Proof. As the closure of a convex and bounded set, B is superconvex, according to

lemma 1.3.9. The closure of B is contained in the same affine hyperplane as B, hence

it fulfills that for all α1, α2 ∈ R+, b1, b2 ∈ B̃, α1b1 = α2b2 implies α1 = α2. Thus

T (X) = R+B̃ − R+B̃ and B̃ ⊆ B, imply that B is a base. Since conv(B̃ ∪ (−B̃)) ⊆
conv(B ∪ (−B)) ⊆ conv(B̃ ∪ (−B̃)), the Minkowski-functionals and hence the norms

coincide.

Corollary 1.3.27. Let X be a superaffine module, then τ is superaffine.
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Proof. Since B is a bounded and convex subset of a Banach space, this follows directly

from lemma 1.3.10.

Definition 1.3.28. Let BNBan denote the category of base normed Banach space with

closed bases and with morphisms linear functions that map the domain’s base into the

codomain’s base. Clearly, BNBan is a full subcategory of BOVec. Let B̂s denote the

restriction of Bs to BNBan. Let T : Conv → BNBan denote the functor along τ ,

which assigns to each convex module X the base normed Banach space T (X) with base

τ(X) = B̃ and to each affine mapping f , the unique linear contnous extension of ρ ◦ f
according to theorem 1.3.25.

Remark 1.3.29. Note that, since the extension in continuous ant the bases are closed,

T(f) maps the domain’s base into the codomain’s base.

Remark 1.3.30. Note that for any convex module that is isomorphic to a closed, bounded,

convex subset of a Banach space, Affb(X) is point separating and τ(X) = τ(X), hence

B̂s ◦T is an isomorphism.

Definition 1.3.31. Let τ̂ denote the corestriction of τ̃ to τ̃(X).

Corollary 1.3.32. T : Conv→ BNBan is left adjoint to B̂s : BNBan→ Conv, i.e.

for each convex module X, for each base normed Banach space Y and for each affine

f : X → B̂s(Y ), there is a unique linear continuous function g : T(X) → Y that maps

τ(X) into the base of Y, such that B̂s(g) ◦ τ̂ = f .

Proof. Let ι denote the inclusion of B̂s(Y ) into Y . According to theorem 1.3.25, there

is a unique linear continuous function g : T(X) → Y , such that τ(X) is mapped into

the base of Y and such that g ◦ τ = ι ◦ f . Let x ∈ X, then Bs(g)(τ̂(x)) = g(τ̂(x)) =

g(τ(x)) = ι(f(x)) = f(x). According to lemma 1.1.28, g is the unique function with this

property.

Definition 1.3.33. A convex module X is called separated, if for any x, y ∈ X there is

an affine function f : X → [0, 1], such that f(x) 6= f(y).

Theorem 1.3.34. For a convex module X the following statements are equivalent:

1. X is metric.

2. ρ is injective and conv(ρ(X) ∪ (−ρ(X))) is linearly bounded.

3. ρ is injective and conv(B ∪ (−B)) is linearly bounded.

4. X is separated.

5. τ is injective.
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Proof. The equality of the first three statements has been shown in corollaries 1.2.20,

1.2.22 and 1.2.23.

To show that the third statement implies the fourth, let x, y ∈ X be arbitrary. Let V be

the one dimensional subspace of R(X) generated by ρ(y)−ρ(x) and let g : V → R be an

arbitrary nonconstant linear function such that |g(v)| ≤ ‖v‖ for all v ∈ V , in which ‖ · ‖
denotes the base norm. According to the Hahn-Banach theorem, there exists a linear

function G, which extends g to R(X), that satisfies |G(z)| ≤ ‖z‖ for all z ∈ Z. Now,

G(ρ(x)) ⊆ [−1, 1], hence f : X → [0, 1] defined by f(w) := 1
2G(ρ(w)) + 1

2 is an affine

function which separates x and y.

To show that the fourth statement implies the first, let x, y ∈ X be arbitrary, such that

d(x, y) = 0. Hence there are sequences (xn)n∈N, (yn)n∈N, (αn)n∈N, such that xn, yn ∈ X,

αn ∈ [0, 1], (1−αn)x+αnxn = (1−αn)y+αnyn, for all n ∈ N and limn→∞ αn = 0. Now,

let f : X → [0, 1] be an affine function. Then, (1−αn)f(x) +αnf(xn) = (1−αn)f(y) +

αnf(yn) for all n ∈ N implies that (1−αn)|f(x)− f(y)| ≤ α|f(xn)− f(yn)| ≤ 2α for all

n ∈ N. Hence f(x) = f(y) and since f was arbitrary, x = y. Thus, X is metric.

To show that the fourth statement implies the fifth, assume there are x, y ∈ X, such

that x 6= y and let f : X → [0, 1] be an affine function separating x and y. Then,

(τ̃(x))(f) = f(x) 6= f(y) = (τ̃(y))(f). Since τ is the corestriction of τ̃ , it is injective.

To show that, on the other hand, that the fifth implies the fourth statement, let x, y ∈ X,

such that x 6= y. Since τ is injective, τ̃ is injective aswell, hence the exists an g ∈ Affb(X)

such that g(x) = (τ̃(x))(g) 6= (τ̃(y))(g) = g(y). Let c ∈ R++ such that ‖g‖∞ ≤ c. Let

f(z) := 1
2cg(z) + 1

2 . Clearly f is affine and separates x and y.

Lemma 1.3.35. Let X be a convex module. If τ in injective, τ is isometric.

Proof. Consider R+τ(X)−R+τ(X) as a subspace of T (X). Since τ(X) is a convex subset

of the base B and it generates R+τ(X)−R+τ(X), τ(X) is a base of R+τ(X)−R+τ(X).

Since conv(τ(X)∪(−τ(X))) is a dense subset of conv(B∪(−B)), the base norms coincide.

Since τ is injective, τ(X) is isomorphic to X. According to proposition 1.2.19, the metric

on B coincides on τ(X) with the convex metric on τ(X), hence τ is isometric.

Remark 1.3.36. Clearly, the corestriction of an affine isometry to its image is an isomor-

phism.

Theorem 1.3.37. Any convex module X is metric and complete, if and only if τ̂ is

isomorphic.

Proof. If τ̂ is isomorphic, X is isomorphic to a closed and bounded subset of a Banach

space and hence metric and complete. If X is metric and complete, τ(X) is a closed,
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bounded, convex subset of the Banach space T (X), since τ(X) is isomorphic to X and

therefore complete. Thereby, τ(X) = superconv(τ(X)) = superconv(τ(X)). Thus, X is

surjective and hence isomorphic.

Corollary 1.3.38. Any complete metric convex module is superaffine.

Proof. According to the preceding theorem, any complete metric convex module is iso-

morphic to a closed, bounded, convex subset of a Banach space.

Corollary 1.3.39. Let X and Y be complete metric convex modules and let f : X → Y

be affine. Then f is superaffine.

Proof. Any affine function between closed, bounded convex subsetes of Banach spaces

can be regarded as a superconvex function.

Definition 1.3.40. Let ComplConv denote the category of complete metric convex

modules with morphisms affine (and therefore superaffine) functions.

Remark 1.3.41. Clearly, ComplConv is a full and faithful subcategory of Conv.

Theorem 1.3.42. ComplConv is a reflective subcategory of Conv with reflection B̂s◦
T, i.e. for any X ∈ Conv, any Y ∈ ComplConv and any affine function f : X → Y ,

there is a unique affine function g : B̂s ◦T(X)→ Y , such that g ◦ τ̂ = f .

Proof. Let f̃ := τ̂ ◦ f . According to theorem 1.3.32, there is a unique affine function

g̃ : T(X)→ Y , such that g̃ ◦ τ̂ = f̃ . Since Y is complete and hence τ̂ is an isomorphism,

g := τ̂−1 ◦ g̃ uniquely satisfies g ◦ τ̂ = τ̂−1 ◦ f̃ = f .



Chapter 2

Positively Convex Modules

In this chapter positively convex modules, i.e. convex modules with a distinguished

element called 0, are discussed. In the first part basic definition are given and some

results about convex modules are transferred.

In the second section a semimetric is introduced. Metric positively convex modules are

characterized and a metrization functor is constructed. This construction coincides with

the construction in [12].

In the final section the metrization functor is extended to a completion functor. This

part of the construction is different from the construction in [12], since one of the proofs

in [12] is faulty.

2.1 Positively Convex Modules and Positively Supercon-

vex Modules

Definition 2.1.1. A pair consisting of a convex module X and an element 0 ∈ X is

called a positively convex module. A pair of a superconvex module X and an element

0 ∈ X is called a positively superconvex module. In both cases 0 is called the zero

element of X.

For the remainder of this paper, that zero element will always be denoted by 0.

Definition 2.1.2. Let X be a positively convex or positively superconvex module. Let

(αj)j∈N, such that αj ∈ [0, 1] for all j ∈ N and
∑∞

j=1 αj < 1. Let (xj)j∈N, such that

25
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xj ∈ X for all j ∈ N. In case
∑∞

j=1 αj 6= 0, define:

∞∑
j=1

αjxj := (
∞∑
j=1

αj)
∞∑
j=1

αj∑∞
j=1 αj

xj + (1−
∞∑
j=1

αj)0

In case
∑∞

j=1 αj = 0, define:
∞∑
j=1

αjxj := 0

Remark 2.1.3. Some authors do define positively convex modules as a pair of a set X and

a function c : {(α, β) ∈ R2
+ : α+β ≤ 1}×X ×X → X, such that c(α, β, x, y) = αx+βy

satisfying analogous axioms as the convex combination in 1.1.1. To show that these

definitions are equivalent, one just has to repeat the steps at the beginning of the previous

chapter.

Example 2.1.4. Any real vector space with 0 being the zero vector and the usual addition

clearly is a positively convex module.

From now on whenever a positively convex structure on real vector space is considered,

the zero element is assumed to be the zero vector.

Definition 2.1.5. Any affine function is called positively affine if it maps its domain’s

zero element to its codomain’s zero element. Let PosConv denote the category of

positively convex modules with morphisms positively affine functions.

Lemma 2.1.6. Let X1, X2 be positively convex modules and let f : X1 → X2. The

function f is positively affine if and only if for all sequences (αj)j∈N, such that αj ∈ [0, 1]

for all j ∈ N and
∑∞

j=1 αj < 1 and all (xj)j∈N, such that xj ∈ X1 for all j ∈ N the

following equation holds:

f(

∞∑
j=1

αjxj) =

∞∑
j=1

αjf(xj)

Proof. Let all αj = 0, then the equation reads f(0) = 0, hence it maps the zero element

to the zero element. Since the equation clearly implies the affinity of the f , it is positively

convex. To show the other direction, first assume
∑∞

j=1 αj 6= 0, then:

f(

∞∑
j=1

αjxj) = (

∞∑
j=1

αj)f(

∞∑
j=1

αj∑∞
j=1 αj

xj) + (1−
∞∑
j=1

αj)f(0) =

= (
∞∑
j=1

αj)
∞∑
j=1

αj∑∞
j=1 αj

f(xj) + 0 =
∞∑
j=1

αjf(xj)

The case
∑∞

j=1 αj 6= 0 reads f(0) = 0, which was the premise.
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Definition 2.1.7. A real vector space X is called preordered vector space with order

≤, if ≤ is a preorder that fulfills:

1. x ≤ y implies αx ≤ αy, for all x, y ∈ X, α ∈ R+.

2. x ≤ y implies x+ z ≤ y + z, for all x, y, z ∈ X.

Remark 2.1.8. For any preordered vector space X, C := {x ∈ X : 0 ≤ x} defines a

cone. On the other hand, for any given cone C, x ≤ y ↔ (y− x) ∈ C defines a preorder

satisfying the condition for a preordered vector space. Hence a preordered vector space

could equally be defined by giving a cone.

Next, theorems similar to 1.1.29 and 1.1.32 are proved.

Definition 2.1.9. Let POVec denote the category with objects preordered vector

spaces and with morphisms linear functions, such that the image of the domain’s cone

is contained in the codomain’s cone.

Definition 2.1.10. LetX be a positively convex module. Then, PosConv(X,R), i.e. the

set of positively affine functions to the reals, is a real vector space. Let PosConv(X,R)∗

denote its algebraic dual. Define ψ̃ : X → Conv(X,R)∗ as (ψ̃(x))(f) = f(x). Let

P (X) denote the subspace of Conv(X,R)∗ generated by ψ̃(X). Let ψ be defined as the

corestriction of ψ̃ to P (X) and let ψ̂ be defined as the corestriction of ψ̃ to its image.

Lemma 2.1.11. ψ is positively affine and P (X) is a preordered vector space with cone

R+ψ(X) and R+ψ(X)− R+ψ(X) = P (X).

Proof. ψ(x) is defined by acting on affine functions f therefore,

ψ(
∞∑
j=1

αjxj)(f) = f(
∞∑
j=1

αjxj) =
∞∑
j=1

αjf(xj) = (
∞∑
j=1

αjψ(xj))(f)

Thus ψ is positively affine and ψ(X) is convex. Let x, y ∈ X and λ, µ ∈ R++, then

λx + µy = (λ + µ)( λ
λ+µx + µ

λ+µy) ∈ R+ψ(X). Thus R+ψ(X) is a cone and hence its

span coincides with R+ψ(X)− R+ψ(X).

Lemma 2.1.12. X is preseparated if and only if ψ is injective.

Proof. Assume that x 6= y and αx+ (1− α)z = αy + (1− α)z with α ∈ (0, 1], then

αψ(x) + (1− α)ψ(z) = ψ(αx+ (1− α)z) = ψ(αy + (1− α)) = αψ(x) + (1− α)ψ(z)

Therefore ψ(x) = ψ(y) and consequently ψ is not injective. On the other hand if X is

preseparated, then X is isomorphic to a convex subset of some real vector space and thus
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for any x 6= y with x, y ∈ X there exists a function f̃ ∈ Conv(X,R) such that f̃(x) 6=
f̃(y). Then, f(z) := f̃(z)− f̃(0) is positively affine. Hence ψ(x)(f) 6= ψ(y)(f).

Corollary 2.1.13. X is preseparated if and only if the corestriction of ψ to its image

is an isomorphism.

Proof. This follows directly from lemmata 2.1.12 and 1.1.10.

Lemma 2.1.14. Let X,Y be a real vector space and let P ⊆ X and Q ⊆ Y be positively

convex sets. Let f : P → Q be positively affine. Then there is a unique linear extension

F : span(P )→ Y , such that F (x) = f(x) for all x ∈ P .

Proof. Let (λj)j∈N, (µj)j∈N ∈ R+, such that
∑∞

j=0 λj <∞, that
∑∞

j=0 µj <∞ and that

all but finitely many summands are equal to zero in both cases. Let (pj)j∈N, (qj)j∈N ∈ P ,

then define F : span(P )→ Y as:

F (

∞∑
j=0

λjpj −
∞∑
j=0

µjqj) := (

∞∑
j=0

λj)f(

∞∑
j=0

λj∑∞
j=0 λj

pj)− (

∞∑
j=0

µj)f(

∞∑
j=0

µj∑∞
j=0 µj

qj)

Since f is additive and homogeneous, F is linear. Thereby, for F to be well-defined

it suffices to show that F (0) is independent of its representation. Let
∑∞

j=0 λjpj −∑∞
j=0 µjqj be a representation for 0, then:

F (
∞∑
j=0

λjpj −
∞∑
j=0

µjqj) = (
∞∑
i=0

λi)f(
∞∑
j=0

λj∑∞
k=0 λk

pj)− (
∞∑
i=0

µi)f(
∞∑
j=0

µj∑∞
k=0 µk

qj) =

= (

∞∑
i=0

λi)f

(∑∞
k=0 λk +

∑∞
k=0 µk∑∞

m=0 λm

∞∑
j=0

λj∑∞
n=0 λn +

∑∞
n=0 µn

pj

)
−

(
∞∑
i=0

µi)f

(∑∞
k=0 λk +

∑∞
k=0 µk∑∞

m=0 µm

∞∑
j=0

µj∑∞
n=0 λn +

∑∞
n=0 µn

qj

)
=

= (

∞∑
k=0

λk +

∞∑
k=0

µk)f(

∞∑
j=0

λj∑∞
n=0 λn +

∑∞
n=0 µn

pj)−

(
∞∑
k=0

λk +
∞∑
k=0

µk)f(
∞∑
j=0

µj∑∞
n=0 λn +

∑∞
n=0 µn

qj)

Since
∑∞

j=0
λj∑∞

n=0 λn+
∑∞
n=0 µn

pj =
∑∞

j=0
µj∑∞

n=0 λn+
∑∞
n=0 µn

qj , this verifies that F (0) = 0.

Since any different extension has to satisfy the defining equation of F , this extension is

unique.
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Theorem 2.1.15. Let X be a positively convex module, let Y be a preordered vector

space with cone C and let f : X → C be affine. Then there is a unique linear mapping

F : P (X)→ Y , such that F ◦ ψ = f and F (R+ψ(X)) ⊆ C.

Proof. First, show that there is a unique affine mapping F̃ : ψ(X) → Y satisfying

F̃ ◦ψ = f . For such a function to be well-defined f(x) 6= f(y) has to imply ψ(x) 6= ψ(y),

for all x, y ∈ X. Let x and y be, such that f(x) 6= f(y). Since Y is a real linear

space there is a linear functional g : Y → R, such that g(f(x)) 6= g(f(y)). Since g ◦ f
is a positively affine function to the reals, ψ(x) 6= ψ(y). In order to show that F̃ is

affine, let xj ∈ ψ(X) and let y ∈ X such that ψ(yj) = xj for all j ∈ N. Thereby,

F̃ (
∑∞

j=1 αjxj) = F̃ (ψ(
∑∞

j=1 αjyj)) = f(
∑∞

j=1 αjyj) =
∑∞

j=1 αjf(yj) =
∑∞

j=1 αjF̃ (xj).

Since P (X) is a preordered vector space with generating cone R+ψ(X), there is a unique

linear extension F of F̃ , according to the preceding lemma. Clearly, ψ(X) ⊆ C implies

R+ψ(X) ⊆ C.

Definition 2.1.16. Let P : Conv→ POVec denote the functor along ψ, which assigns

to each convex module X the preordered vector space P (X) and to each affine mapping

f : X → Y , the unique linear mapping F : P (X)→ P (Y ) uniquely satisfying F ◦ ψX =

ψY ◦ f according to the preceding theorem. Let Cone : POVec → PosConv denote

the functor that maps a preordered vector spaces to its cone and morphisms to their

corresponding restrictions.

Remark 2.1.17. Note that ψ̂ : X → Cone ◦P(X) constitutes an affine function.

Corollary 2.1.18. P : Conv → POVec is left adjoint to Cone : POVec → Conv,

i.e. for each convex module X, for each preordered vector space Y and for each affine

f : X → Cone(Y ), there is a unique linear function g : P(X)→ Y that maps R+ψ(X)

into the cone of Y , such that Cone(g) ◦ ψ̂ = f .

Proof. Let ι denote the inclusion of Cone(Y ) into Y . According to the preceding theo-

rem, there is a unique linear function g : P(X) → Y , such that Rψ(X) is mapped into

the cone of Y and such that g ◦ψ = ι ◦ f . Let x ∈ X, then Cone(g)(ψ̂(x)) = g(ψ̂(x)) =

g(ψ(x)) = ι(f(x)) = f(x), hence g uniquely satisfies this equation.

2.2 A Semimetric on Positively Convex Modules

It is possible to use the same semimetric for positively convex modules as we did in the

previous chapter for convex modules, but instead a new semimetric is introduced which

has some properties in common with a norm, such that 0 is the zero element in regard

to the norm.
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Definition 2.2.1. Let X be a positively convex module. Define dP : X ×X → R+ as

dP (x, y) := inf{ α2β : α, β ∈ R++;µ, ν ∈ R+;u, v, w ∈ X;α + β ≤ 1;µ + β ≤ 1; ν + β ≤
1;βx+αw = βy+ νv;βy+αw = βx+ µu} and call it the positively convex semimetric

on X.

Theorem 2.2.2. dP is a semimetric.

Proof. Clearly dP is symmetric. For the triangle inequality let X be a positively convex

module, let x1, x2, y ∈ X and let ε > 0 be fixed. Let α1, α2, β1, β2 ∈ (0, 1], µ1, µ2, ν1, ν2 ∈
[0, 1], u1, u2, v1, v2, w1, w2 ∈ X, such that α1

2β1
≤ dP (x1, y) + ε, α1 + β1 ≤ 1, µ1 + β1 ≤ 1,

ν1 + β1 ≤ 1, β1x1 + α1w1 = β1y + ν1v1, β1y + α1w1 = β1x1 + µ1u1,
α2
2β2
≤ dP (x2, y) + ε,

α2 + β2 ≤ 1, µ2 + β2 ≤ 1, ν2 + β2 ≤ 1, β2x2 + α2w2 = β2y + ν2v2 and β2y + α2w2 =

β2x2 + µ2u2. The following inequalities hold:

β1β2 + α1β2 + α2β1 = (β1 + α1)β2 + α2β1 ≤ β2 + α2β1 ≤ β2 + α2 ≤ 1

β1β2 + ν1β2 + µ2β1 = (β1 + ν1)β2 + µ2β1 ≤ β2 + µ2β1 ≤ β2 + µ2 ≤ 1

β1β2 + µ1β2 + ν2β1 = (β1 + µ1)β2 + ν2β1 ≤ β2 + ν2β1 ≤ β2 + ν2 ≤ 1

Next, let u3 := ν1β2
ν1β2+µ2β1

v1 + µ2β1
ν1β2+µ2β1

u2, let u4 := µ1β2
µ1β2+ν2β1

u1 + ν2β1
µ1β2+ν2β1

v2 and let

w3 := α1β2
α1β2+α2β1

w1 + α2β1
α1β2+α2β1

w2. Then, the following equations hold true, since the

sum of coefficients of any occurring positively convex combination is less than 1:

β1β2x1+(α1β2+α2β1)w3 = β1β2x1+(α1β2+α2β1)(
α1β2

α1β2 + α2β1
w1+

α2β1
α1β2 + α2β1

w2) =

= β1β2x1 +α1β2w1 +α2β1w2 = β2(β1x1 +α1w1)+α2β1w2 = β2(β1y+ν1v1)+α2β1w2 =

= β1β2y + β2ν1v1 + α2β1w2 = β1(β2y + α2w2) + β2ν1v1 = β1(β2x2 + µ2u2) + β2ν1v1 =

= β1β2x2 + (ν1β2 + µ2β1)(
ν1β2

ν1β2 + µ2β1
v1 +

µ2β1
ν1β2 + µ2β1

u2) = β1β2x2 + (ν1β2 + µ2β1)u3

β1β2x2+(α1β2+α2β1)w3 = β1β2x2+(α1β2+α2β1)(
α1β2

α1β2 + α2β1
w1+

α2β1
α1β2 + α2β1

w2) =

= β1β2x2 +α1β2w1 +α2β1w2 = β1(β2x2 +α2w2)+α1β2w1 = β1(β2y+ν2v2)+α1β2w1 =

= β1β2y + β1ν2v2 + α1β2w1 = β2(β1y + α1w1) + β1ν2v2 = β2(β1x1 + µ1u1) + β1ν2v2 =

= β1β2x1 + (µ1β2 + ν2β1)(
µ1β2

µ1β2 + ν2β1
u1 +

ν2β1
µ1β2 + ν2β1

v2) = β1β2x1 + (µ1β2 + ν2β1)u4

Hence, with α3 := α1β2 + α2β1, β3 := β1β2, µ3 := ν1β2 + µ2β1 and µ4 := µ1β2 + ν2β1,

one gets β3x1+α3w3 = β3x2+µ3u3 and β3x2+α3w3 = β3x1+µ4u4. Thus, dP (x1, x2) ≤
α3
2β3

= α1β2+α2β1
2β1β2

= α1
2β1

+ α2
2β2
≤ dP (x1, y) + dP (x2, y) + 2ε. Since ε was arbitrary, this

asserts the inequality.
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Remark 2.2.3. Let u := y, let v := x, let w := 1
2x+ 1

2y, let α = µ = ν = 2
3 and let β = 1

3 .

Then α+β = 1, µ+β = 1, ν+β = 1, βx+αw = 1
3x+ 2

3(12x+ 1
2y) = 1

3y+ 2
3x = βy+νv,

βy + αw = 1
3y + 2

3(12x+ 1
2y) = 1

3x+ 2
3y = βx+ µu. Hence d(x, y) ≤ 1 for all x, y ∈ X.

Lemma 2.2.4. Let X be a positively convex module. For all x, y ∈ X, λ ∈ [0, 1],

dP (λx, λy) = λdP (x, y).

Proof. Let ε > 0. Let α, β ∈ (0, 1], µ, ν ∈ [0, 1] and u, v, w ∈ X, such that α
2β ≤

dP (x, y)+ε, α+β ≤ 1, µ+β ≤ 1, ν+β ≤ 1, βx+αw = βy+νv and βy+αw = βx+µu.

Then, βλx+ αλw = βλy + νλv and βy + αw = βx+ µu. Also, αλ+ β ≤ 1, µλ+ β ≤ 1

and νλ+β ≤ 1, hence dP (λx, λy) ≤ αλ
2β ≤ λdP (x, y)+λε. Thus, dP (λx, λy) ≤ λdP (x, y).

For the other direction, first consider the case λ 6= 0. Let ε > 0. Let α, β ∈ (0, 1],

µ, ν ∈ [0, 1] and u, v, w ∈ X, such that α
2β ≤ dP (λx, λy) + ε, α + β ≤ 1, µ + β ≤ 1,

ν + β ≤ 1, βλx + αw = βλy + νv and βλy + αw = βλx + µu. Then α + βλ ≤ 1,

µ + βλ ≤ 1 and ν + βλ ≤ 1, hence dP (x, y) ≤ α
2βλ ≤

1
λdP (λx, λy) + ε

λ . Thereby,

λdP (x, y) ≤ dP (λx, λy). The case λ = 0 is trivial, since dP is a semimetric.

Proposition 2.2.5. Let X1, X2 be positively convex modules. Let f : X1 → X2 be a

positively affine function. Then f satisfies for all x, y ∈ X1:

dP,2(f(x), f(y)) ≤ dP,1(x, y)

Proof. Let ε > 0. Let α, β ∈ (0, 1], µ, ν ∈ [0, 1] and u, v, w ∈ X1, such that α
2β ≤

dP,1(x, y)+ε, α+β ≤ 1, µ+β ≤ 1, ν+β ≤ 1, βx+αw = βy+νv and βy+αw = βx+µu.

Then, βf(x)+αf(w) = f(βx+αw) = f(βy+νv) = βf(y)+νf(v) and βf(y)+αf(w) =

f(βy+αw) = f(βx+µu) = βf(x)+µf(u), hence dP,2(f(x), f(y)) ≤ α
2β ≤ dP,1(x, y)+ ε.

Since ε was arbitrary, this meets the assertion.

Proposition 2.2.6. Let X be a positively convex module. All x, y ∈ X fulfill the fol-

lowing equation:

dP (x, y) ≤ d(x, y)

Proof. Let ε > 0 be fixed and let x, y ∈ X. Let α ∈ [0, 1], x̃, ỹ ∈ X, such that
α

1−α ≤ d(x, y) + ε and that (1−α)x+αx̃ = (1−α)y+αỹ. Let u := x̃, let v := ỹ and let

w := 1
2 x̃ + 1

2 ỹ. Let α̃ = µ = ν := 2α
1+α and let β := 1−α

1+α . Then the following equations

hold true:

βx+ α̃w =
1− α
1 + α

x+
2α

1 + α
(
1

2
x̃+

1

2
ỹ) =

1

1 + α
((1− α)x+ αx̃) +

α

1 + α
ỹ =

=
1

1 + α
((1− α)y + αỹ) +

α

1 + α
ỹ =

1− α
1 + α

y +
2α

1 + α
ỹ = βy + νv
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βy + α̃w =
1− α
1 + α

y +
2α

1 + α
(
1

2
x̃+

1

2
ỹ) =

1

1 + α
((1− α)y + αỹ) +

α

1 + α
x̃ =

=
1

1 + α
((1− α)x+ αx̃) +

α

1 + α
x̃ =

1− α
1 + α

x+
2α

1 + α
x̃ = βx+ µu

Since α̃+ β = µ+ β = ν + β = 2α
1+α + 1−α

1+α = 1, this implies that dP (x, y) ≤ α̃
2β = α

1−α ≤
d(x, y) + ε. Hence dP (x, y) ≤ d(x, y).

The following example shows that the inverse inequation does not hold true in general.

Example 2.2.7. Let X := {(x, y) ∈ [−1, 1] × [0, 1] : x2 ≤ y}. As a convex subset of

real linear space that includes 0, this obviously defines a positively convex module. Let

t ∈ [0, 1] be arbitrary, let x := (−t, t2), let y := (t, t2) and let w := (0, t). Let µ = ν = 1
2 .

For all ε ∈ (0, 1], let uε := (εt, ε2t2), let vε := (−εt, ε2t2), let βε := ε
4 , let αε := ε2

2 . Then:

βεx+αεw =
ε

4
(−t, t2) +

ε2

2
(0, t) = (−εt

4
,
εt2

4
+
ε2t

2
) =

ε

4
(t, t2) +

1

2
(−εt, ε2t2) = βεy+νεvε

βεy + αεw =
ε

4
(t, t2) +

ε2

2
(0, t) = (

εt

4
,−εt

2

4
+
ε2t

2
) =

ε

4
(−t, t2) +

1

2
(εt, ε2t2) = βεx+ µεuε

Since αε+βε = ε2

2 + ε
4 ≤ 1, µ+βε = 1

2 + ε
4 ≤ 1 and ν+βε = 1

2 + ε
4 ≤ 1, dP (x, y) ≤ αε

2βε
= ε.

Since ε was arbitrary, dP (x, y) = 0. On the other hand, {1} × X is a base of R3 and

according to proposition 1.2.19, the convex metric coincides with the base norm up to a

factor 2. In particular x 6= y implies d(x, y) 6= 0. (Furthermore, one can calculate that

dP (x, y) = t.) Hence the inverse of the inequation of the preceding proposition does not

hold true in general.

Corollary 2.2.8. Let X be a positively convex module. If dP is a metric, then X is

preseparated.

Proof. According to the preceding proposition, dP being a metric implies that d is a

metric and thus X is preseparated.

Definition 2.2.9. An normed and ordered vector space X with cone C and norm ‖ · ‖
is called regularly ordered if the following equation is fulfilled for all x ∈ X:

‖x‖ = inf{‖c‖ : c ∈ C;−c ≤ x ≤ c}

Remark 2.2.10. Note that this implies that C is generating.

Proposition 2.2.11. Let X be a regularly ordered vector space with cone C and norm

‖ · ‖. Let P be positively affine, such that {c ∈ C : ‖c‖ < 1} ⊆ P ⊆ {c ∈ C : ‖c‖ ≤ 1}.
Then the positively convex metric dP on P and the norm fulfill for all x, y ∈ P :

dP (x, y) =
1

2
‖x− y‖
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Proof. Let ε > 0. Let α, β ∈ (0, 1], µ, ν ∈ [0, 1] and u, v, w ∈ P , such that α
2β ≤

dP (x, y)+ε, α+β ≤ 1, µ+β ≤ 1, ν+β ≤ 1, βx+αw = βy+νv and βy+αw = βx+µu.

Then:

− α

2β
w ≤ − α

2β
w +

ν

2β
v =

1

2
(x− y) =

α

2β
w − µ

2β
u ≤ α

2β
w

Since ‖w‖ ≤ 1, this means that 1
2‖x−y‖ ≤

α
2β = dP (x, y)+ε. Hence 1

2‖x−y‖ ≤ dP (x, y).

For the other direction, let ε > 0 and let w̃ ∈ C, such that −w̃ ≤ 1
2(x − y) ≤ w̃ and

‖w̃‖ ≤ ‖12(x − y)‖ + ε. The lefthand inequality implies, that there is a ṽ ∈ C, such

that 1
2y + ṽ = 1

2x + w̃. The righthand inequality implies, that there is a ũ ∈ C, such

that 1
2x + ũ = 1

2y + w̃. Now, let D := 2 max{(1 + ε)‖w̃‖, (1 + ε)‖ũ‖, (1 + ε)‖ṽ‖, 1}.
Let w := 1

(1+ε)‖w̃‖ w̃, let u := 1
(1+ε)‖ũ‖ ũ, let v := 1

(1+ε)‖ṽ‖ ṽ. Then, 1
2Dy + (1+ε)‖ṽ‖

D v =
1
2Dx+ (1+ε)‖w̃‖

D w and 1
2Dx+ (1+ε)‖ũ‖

D u = 1
2Dy+ (1+ε)‖w̃‖

D w. Hence dP (x, y) ≤ (1+ε)‖w̃‖ ≤
(1 + ε)(‖12(x− y)‖+ ε). Since ε was arbitrary, dP (x, y) ≤ 1

2‖x− y‖.

Definition 2.2.12. Let X be a preordered vector space with cone C. A set E ⊆ X

is called absolutely dominated, if for any x ∈ E, there is a y ∈ E, such that −y ≤
x ≤ y. A set E ⊆ X is called absolutely order convex, if for any x ∈ E the interval

[−x, x] := {y ∈ X : −x ≤ y ≤ x} is contained in E. A set is called solid if it is both

absolutely dominated and absolutely order convex. Let the solid hull of E be defined as

sol(E) :=
⋃
x∈E [−x, x].

Remark 2.2.13. Since −x ≤ x is equivalent to 0 ≤ 2x, the set [−x, x] is nonempty if and

only if x ∈ C. Hence, sol(E) =
⋃
x∈E∩C [−x, x].

Lemma 2.2.14. Let X be a preordered linear space with cone C and let E ⊆ X. Then

sol(E) is solid. If in addition E is absolutely dominated, then sol(E) is the smallest solid

set containing E.

Proof. Let x ∈ sol(E) be arbitrary. Then there exists a y ∈ E, such that −y ≤ x ≤ y.

Hence sol(E) is absolutely dominated. Let x ∈ sol(E) be arbitrary. Then there exists a

y ∈ E, such that −y ≤ x ≤ y. Thus, [−x, x] = {z ∈ X : −x ≤ z ≤ x} ⊆ {z ∈ X : −y ≤
z ≤ y} = [−y, y] ⊆ sol(E). Hence sol(E) is absolutely order convex, and thus solid.

Let E be absolutely dominated. To show that sol(E) is the smallest solid set containing

E, let F be an arbitrary solid set containing E. For any x ∈ E there is a y ∈ E∩C, such

that −y ≤ x ≤ y. Since F is absolutely order convex, [−y, y] ⊆ F . Hence, [−x, x] ⊆ F .

Since x ∈ E was arbitrary, this shows that sol(E) ⊆ F .

Lemma 2.2.15. Let X be a regularly ordered vector space with cone C and norm ‖ · ‖.
Then the open unit ball and the closed unit ball are both solid.
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Proof. Let B denote either the open or the closed unit ball. Let b ∈ B and let x ∈ [−b, b].
Then, ‖x‖ ≤ ‖b‖, hence x ∈ B.

Proposition 2.2.16. Let X be an ordered linear space with cone C. Let P ⊆ C be

positively convex, such that R+P = C and let Q := C ∩ sol(P ). Then the semimetric

dp,P of P coincides with the semimetric dp,Q of Q for any pair of points in P .

Proof. Let x, y ∈ P be arbitrary. Since P ⊆ Q, dp,Q(x, y) ≤ dp,P (x, y). For the other

direction let ε > 0. Let α, β ∈ (0, 1], µ, ν ∈ [0, 1] and u, v, w ∈ Q, such that α
2β ≤

dp,Q(x, y) + ε, α + β ≤ 1, µ + β ≤ 1, ν + β ≤ 1, βx + αw = βy + νv and βy + αw =

βx + µu. Since w ∈ Q, there is a w̃ ∈ P , such that w ≤ w̃, i.e. w̃ − w ∈ C. Hence

µu+ α(w̃ −w) ∈ C and νv + α(w̃−w) ∈ C. Since R+P = C, there is a λ ∈ (0, 1], such

that λ(µu+ α(w̃ − w)) ∈ P and λ(νv + α(w̃ − w)) ∈ P . Then:

λβ

2
x+

λα

2
w̃ =

λβ

2
y +

λν

2
v +

λα

2
(w̃ − w) =

λβ

2
y +

1

2
(λ(νv + α(w̃ − w)))

λβ

2
y +

λα

2
w̃ =

λβ

2
x+

λµ

2
u+

λα

2
(w̃ − w) =

λβ

2
x+

1

2
(λ(µu+ α(w̃ − w)))

Also, λβ
2 + λα

2 ≤ 1 and λβ
2 x + 1

2 ≤ 1. Thus, dp,P (x, y) ≤
λα
2

2λβ
2

= α
2β ≤ dp,Q(x, y) + ε.

Hence the semimetrics coincide.

Lemma 2.2.17. Let X be a preordered linear space with cone C. Let E ⊆ X be convex,

solid and absorbing. Then the Minkowski functional ‖·‖E of E is a seminorm and fulfills

for all x ∈ X:

‖x‖E = inf{‖c‖E : c ∈ C;−c ≤ x ≤ c}

If in addition E is linearly bounded, then ‖ · ‖E is a norm and X is a regularly ordered

vector space with cone C.

Proof. Since E =
⋃
x∈E [−x, x] is symmetric, convex and absorbing, ‖·‖E is a seminorm.

Let ‖x‖inf := inf{‖c‖E : c ∈ C;−c ≤ x ≤ c}. Let µ := ‖x‖E and let ε > 0 be arbitrary.

Since E is absolutely dominated, there is a y ∈ E ∩C, such that −y ≤ 1
µ+εx ≤ y. Hence

−µy ≤ x ≤ µy and ‖x‖inf ≤ ‖x‖E .

For the other direction let µ := ‖x‖inf and let ε > 0. Let y ∈ C such that −y ≤ x ≤ y and

‖y‖E ≤ µ+ ε. Then, 1
µ+2εy ∈ E ∩C and since E is absolutely order convex, 1

µ+2εx ∈ E.

Hence ‖x‖E ≤ µ+ 2ε and thus ‖x‖E ≤ ‖x‖inf .

For the additional part let x ∈ X, such that ‖x‖E = 0. Let f : R++ → E defined as

f(λ) := λx. Since f is constant, this implies x = 0. Let c ∈ C ∩ (−C), then 0 ≤ c ≤ 0,

hence ‖c‖E = 0. Thereby, c = 0 and thus C is proper and X is a regularly ordered

vector space.
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Lemma 2.2.18. Let X be a preordered vector space with cone C, such that X = C −C
and let P ⊆ C be positively convex, such that R+P = C. Then sol(P ) is positively

convex, solid and absorbing. The Minkowski functional of sol(P ) is a seminorm that

fulfills:

‖x‖ = inf{‖c‖ : c ∈ C;−c ≤ x ≤ c}

If in addition sol(P ) is linearly bounded, then X is a regularly ordered vector space.

Proof. Since P ⊆ C, it is absolutely dominated and thereby sol(P ) is solid. To show

that sol(P ) is positively convex, let x1, x2 ∈ sol(P ) be arbitrary, let p1, p2 ∈ P and

c1, c2, d1, d2 ∈ C, such that x1 = p1 − c1 = −p1 + d1 and x2 = p2 − c2 = −p2 + d2. Let

λ ∈ [0, 1] be arbitrary, then (1−λ)p1+λp2 ∈ P , (1−λ)c1+λc2 ∈ C and (1−λ)d1+λd2 ∈
C. Hence, (1−λ)x1 +λx2 = ((1−λ)p1 +λp2)− ((1−λ)c1 +λc2) = −((1−λ)p1 +λp2)+

((1− λ)d1 + λd2). Clearly, 0 ∈ sol(P ), hence sol(P ) is positively convex.

To show that sol(P ) is absorbing, let x ∈ 1
2P −

1
2P and let x1, x2 ∈ P , such that

x = 1
2x1 −

1
2x2. Then, x ∈ [−(12x1 + 1

2x2),
1
2x1 + 1

2x2], hence x ∈ sol(P ) and thus
1
2P −

1
2P ⊆ sol(P ). Since 1

2P −
1
2P is absorbing, sol(P ) is absorbing too. According

to the preceding lemma the Minkowski functional of sol(P ) is a seminorm, the equation

for the seminorm is verified and the additional statements hold true, if sol(P ) is linearly

bounded.

Definition 2.2.19. Let P be a positively convex module. Let Aff+
b (P ) denote the

Banach space of bounded, positively affine function f : P → R with point-wise addition

and multiplication, equipped with the supremum norm. Let C0(P ) ⊆ Aff+
b (P ) denote

the set of positive functions, i.e. f(x) ≥ 0 for all x ∈ P . Let Q0(P ) := C0(P )− C0(P ).

Lemma 2.2.20. Let P be a positively convex module. Then, Q0(P ) is a regularly ordered

vector space with cone C0(P ) and with norm

‖f‖ := {‖g‖∞ ∈ C0(P ) : −g ≤ f ≤ g}

Proof. Let f1, f2 ∈ Q0(P ), then ‖f1 + f2‖ = {‖g‖∞ ∈ C0(P ) : −g ≤ f1 + f2 ≤ g} ≤
{‖g‖∞ ∈ C0(P ) : −g ≤ f1 ≤ g} + {‖g‖∞ ∈ C0(P ) : −g ≤ f2 ≤ g} = ‖f1‖ + ‖f2‖. Let

f ∈ Q0(P ) and λ ∈ R\{0}, then ‖λf‖ = {‖g‖∞ ∈ C0(P ) : −g ≤ λf ≤ g} = {‖g‖∞ ∈
C0(P ) : − 1

λg ≤ f ≤
1
λg} = {‖λg‖∞ ∈ C0(P ) : −g ≤ f ≤ g} = |λ|‖f‖. Hence this defines

a seminorm. Let f ∈ Q0(P ) and g ∈ C0(P ), such that −g ≤ f ≤ g. Let h1, h2 ∈ C0(P ),

such that f = g − h1 = −g + h2. Since h1 and h2 are positive, this implies f ≥ g and

f ≤ −g. Hence, ‖f‖∞ ≤ ‖g‖∞. Thus, ‖f‖∞ ≤ ‖f‖, which implies that ‖ · ‖ indeed is

a norm. Let f ∈ C0(P ) ∩ (−C0(P )) and p ∈ P , then f(p) ≥ (0) and f(p) ≤ 0, hence

f = 0. Thus, C0(P ) is proper.
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Definition 2.2.21. Let Q(P ) denote the topological dual of Q0(P ), in regard to the

norm defined in the preceding lemma, equipped with the dual norm. Let σ : P → Q(P )

denote the canonical identification, i.e. (σ(x))(f) = f(x). Let C(P ) be defined as

C(P ) := R+σ(P ) and let S(P ) := C(P )− C(P ).

Lemma 2.2.22. σ is positively affine and S(P ) equipped with the Minkowski functional

of sol(σ(P )) and with the cone C(P ) is a regularly ordered vector space.

Proof. Let f ∈ Q0(P ), then (σ(0))(f) = f(0) = 0, let x, y ∈ P and λ ∈ [0, 1], then

((1−λ)σ(x)+λσ(y))(f) = (1−λ)f(x)+λf(y) = f((1−λ)x+λy) = (σ((1−λ)x+λy))(f).

Since σ(P ) is the image of a positively convex module under a positively convex mapping,

it is positively convex according to lemma 1.1.11.

To show that sol(σ(P )) is linearly bounded, it suffices to show that it is bounded in

regard to the norm on Q(P ). Let ε > 0 be arbitrary. Let x ∈ sol(σ(P )) and let p ∈ P
and c1, c2 ∈ C(P ), such that x = σ(p) − c1 = −σ(p) + c2. Let f ∈ Q0(P ), such

that ‖f‖ ≤ 1, be arbitrary. Because of the definition of the norm on Q0(P ), there are

g, h1, h2 ∈ C0(P ), such that ‖g‖∞ ≤ 1 + ε and f = g− h1 = −g+ h2. This implies, that

‖h1‖ ≤ 2 + ε and ‖h2‖ ≤ 2 + ε. Let k1, k2 ∈ C0(P ), such that h1 ≤ k1 and ‖k1‖∞ ≤ 2 + ε

and that h1 ≤ k1 and ‖k1‖∞ ≤ 2 + ε. Then:

x(f) = x(−g) + x(h2) = −(σ(p))(−g) + c2(−g) + (σ(p))(h2)− c1(h2) =

= g(p)− c2(g) + h2(p)− c1(h2) ≤ g(p) + h2(p) ≤ g(p) + k2(p) ≤ ‖g‖∞ + ‖k2‖∞ ≤ 3 + 3ε

x(f) = x(g) + x(−h1) = −(σ(p))(g) + c2(g) + (σ(p))(−h1)− c1(−h1) =

= −g(p) + c2(g)− h1(p) + c1(h1) ≥ −g(p)− h1(p) ≥ −g(p)− k1(p) ≥ −‖g‖∞−‖k1‖∞ ≥

≥ −3− 3ε

Thus, |x(f)| ≤ 3 + 3ε and since f and ε were arbitrary, ‖x‖ ≤ 3. According to lemma

2.2.18, S(P ) is a regularly ordered vector space.

Lemma 2.2.23. Let Y be a normed vector space with norm ‖ · ‖ and let X ⊆ Y be a

regularly ordered vector space with cone C and norm ‖ · ‖ restricted to X. Then C is a

proper cone. If in addition X = Y , then X equipped with the cone C and with ‖ · ‖ is a

regularly ordered vector space.

Proof. Since addition and scalar multiplication are continuous, C indeed is a cone. To

show that C ∩ (−C) = {0}, let z ∈ C ∩ (−C) and let ε > 0 be arbitrary. Let x, y ∈ C,

such that ‖x− z‖ ≤ ε and ‖ − y − z‖ ≤ ε. Since ‖x + y‖ ≤ 2ε and since X is regularly

ordered, there are p ∈ C and c ∈ C, such that ‖p‖ ≤ 1 and that x+y = 4εp−c. Thereby,
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x = 4εp − (c + y). Let d := x + 4εp, then x = d − 4εp, hence ‖x‖ ≤ 4ε. Therefore,

‖z‖ ≤ ‖x‖+ ‖x− z‖ ≤ 5ε. Since ε was arbitrary, z = 0.

For the second part it suffices to show that if x ∈ X and c, c1, c2 ∈ C satisfy x =

c − c1 = −c + c2, then ‖x‖ ≤ ‖c‖ follows. Let ε > 0 be arbitrary and let c̃1, c̃2 ∈ C,

such that ‖c1 − c̃1‖ ≤ ε and ‖c2 − c̃2‖ ≤ ε. There are d1, d̃1 ∈ C, such that ‖d̃1‖ ≤ ε and

c1 − c̃1 = d1 − d̃1, and there are d2, d̃2 ∈ C, such that ‖d̃2‖ ≤ ε and c2 − c̃2 = d2 − d̃2.
Thereby, x = (c + d̃1 + d̃2) − (c̃1 + d1 + d̃2) = −(c + d̃1 + d̃2) + (c̃2 + d̃1 + d2). Since

(c̃1+d1+d̃2) ∈ C and (c̃2+d̃1+d2) ∈ C, ‖x‖ ≤ ‖c+d̃1+d̃2‖ ≤ ‖c‖+‖d̃1‖+‖d̃2‖ ≤ ‖c‖+2ε.

Since ε was arbitrary, this verifies the assertion.

Lemma 2.2.24. Let X be a regularly ordered vector space with cone C and norm ‖ · ‖.
Let P ⊆ C be positively convex, such that R+P = C and that ‖ · ‖ is the Minkowski

functional of sol(P ). Let x, y ∈ P . If x 6= y, then exists a continous positive linear

functional f : X → R, such that f(x) 6= f(y).

Let V denote the subspace spanned by x, y and 0. In case V is 0-dimensional, let

f̃ : V → R be defined as f̃(z) := 0. In case x = 0 and y 6= 0, let f̃ be such that f̃(y) = 1

and in case y = 0 and x 6= 0, let f̃ be such that f̃(x) = 1. In case x 6= 0, y 6= 0, x = µy

with µ ∈ R+, let f̃(λx) := λ. In case V is 2-dimensional, there exists a hyperplane H,

such that C ∩H = {0}, because C is proper, according to the preceding lemma. Since

C∩V is closed in V , there exist h1 ∈ H and ε > 0, such that (h1+ε(sol(P )∩V ))∩C = ∅.
Since C ∩ V is a cone, all h2 ∈ h1 + ε(sol(P ) ∩ V ) satisfy Rh̃2 ∩ C = {0}. Hence, there

are at least two different hyperplanes the intersect C only at 0. Let W be a hyperplane

satisfying this condition, such that y−x /∈W . Let f̃ be such that ker(f̃) = W and that

f̃(X) > 0.

In all cases, f̃ satisfies f̃(C ∩ V ) ⊆ R+ and f(x) 6= f(y). Since V ∩ sol(P ) is linearly

bounded and convex and since V is finite-dimensional V ∩ sol(P ) is bounded by the

euclidean norm on V . Let D ∈ R++ be such that f̃(V ∩ sol(P )) ⊆ [−D,D]. Hence,
1
D f̃(V ∩ (sol(P )−C)) ⊆ (−∞, 1]. Let g denote the Minkowski functional of the convex

and absorbing set sol(P ) − C. Then 1
D f̃(z) ≤ g(z), for all z ∈ V . Thus, there exists a

linear extension f : X → R, such that f(z) ≤ g(z), for all z ∈ X. In particular, f(z) ≤ 1,

for z ∈ sol(P ). Thus f is continuous. Since C is a cone and f is linear, f(z) ≥ −1, for

all z ∈ C implies that f(z) ≥ 0, for all z ∈ C. Hence f is positive.

Definition 2.2.25. A positively convex module P is called positively separated, if for

any x, y ∈ X there is a positively affine function f : P → [0, 1], such that f(x) 6= f(y).

Theorem 2.2.26. For a positively convex module P the following statements are equiv-

alent:
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1. P is metric.

2. ψ is injective and sol(ψ(P )) is linearly bounded.

3. P is positively separated.

4. σ is injective.

Proof. Let P be metric, then P is preseparated, according to lemma 2.2.8 and hence

ψ is injective. Then P(P ) = R+ψ(P ) − R+ψ(P ) implies that sol(ψ(P )) is positively

convex, according to lemma 2.2.18. Assume that sol(ψ(P )) is not linearly bounded,

then there exists an x ∈ sol(ψ(P )), such that x 6= 0 and R+x ⊆ sol(ψ(P )). There are

p1, p2 ∈ P and λ ∈ R+, such that x = ψ(p1) − λψ(p2). By substituting p1 with λp1

if λ < 1 and substituting x with λx and p2 with 1
λp2 if λ > 1, we can assume that

x = ψ(p1) − ψ(p2). Let ε > 0 be arbitrary. There are q, c1, c2 ∈ P and η1, η2 ∈ R+,

such that 1
εx = ψ(q) − η1ψ(c1) = −ψ(q) + η2ψ(c2). Choose δ ∈ R++, such that δ ≤

min{ ε
1+ε ,

ε
1+εη1

, ε
1+εη2

}. Thus:

ψ(
δ

ε
p1 + δη1c1) =

δ

ε
ψ(p1) + δη1ψ(c1) =

δ

ε
ψ(p2) + δψ(q) = ψ(

δ

ε
p2 + δq)

ψ(
δ

ε
p2 + δη2c2) =

δ

ε
ψ(p2) + δη2ψ(c2) =

δ

ε
ψ(p1) + δψ(q) = ψ(

δ

ε
p1 + δq)

Since P is preseparated, ψ is injective and thus δ
εp1+δη1c1 = δ

εp2+δq and δ
εp2+δη2c2 =

δ
εp1 + δq. Hence, dP (p1, p2) ≤ ε

2 and since ε was arbitrary dP (p1, p2) = 0. Thereby,

p1 = p2 and x = p1 − p2 = 0 which contradicts the assumption.

Let ψ be injective and sol(P ) be linearly bounded. According to lemma 2.2.18, P(P )

is a regularly ordered vector space with cone R+ψ(P ) and the Minkowski functional of

sol(ψ(P )) as is a norm. Ler x, y ∈ P , such that x 6= y. Since ψ is injective, ψ(x) 6= ψ(y)

follows. According to lemma 2.2.24, there is a continuous positive linear functional f ,

such that f(ψ(x)) 6= f(ψ(y)) and ‖f‖ ≤ 1. Then, since f(ψ(P )) ⊆ [0, 1] and since x and

y were arbitrary, P is positively separated.

Let P be positively separated. Let x, y ∈ P , such that x 6= y and let f : P → [0, 1]

be positively affine such that f(x) 6= f(y). Then, f ∈ C0(P ) and (σ(x))(f) = f(x) 6=
f(y) = (σ(y))(f). Hence σ is injective.

Let σ be injective. Then σ : P → σ(P ) is isomorphic as a positively affine mapping. Let

Q := sol(σ(P )) ∩ C(P ) and let x, y ∈ P be arbitrary. According to propositions 2.2.11

and 2.2.16, dP (x, y) = dσ(P )(σ(x), σ(y) = dQ(σ(x), σ(y) = 1
2‖σ(x)− σ(y)‖. Thereby, dP

is metric.
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Theorem 2.2.27. Let P be a convex module and let Y be a regularly ordered vector space

with cone C and norm ‖·‖. Let f : P → C be positively affine, such that ‖f(x)‖ ≤ 1, for

all x ∈ P . Then there exists a unique positive linear continuous function F : S(X)→ Y ,

such that F ◦ σ = f . This function satisfies ‖F‖ ≤ 1.

Proof. Let B denote the closed unit ball of Y . First show that there is a unique positively

affine mapping F̃ : σ(P )→ B ∩ C satisfying F̃ ◦ σ = f . For such a function to be well-

defined f(x) 6= f(y) has to imply σ(x) 6= σ(y), for all x, y ∈ P . Let x and y be fixed,

such that f(x) 6= f(y). Since Y is a regularly ordered vector space there is a continuous

positive linear functional g : Y → R, such that g(f(x))) 6= g(f(y)), according to lemma

2.2.24. Then, g ◦ f is a bounded, positively affine function to the interval [0, 1], thus

σ(x) 6= σ(y). In order to show that F̃ is positively affine, let xj ∈ σ(P ) and let yj ∈ P
such that σ(yj) = xj for all j ∈ N. Thereby, F̃ (

∑∞
j=1 αjxj) = F̃ (σ(

∑∞
j=1 αjyj)) =

f(
∑∞

j=1 αjyj) =
∑∞

j=1 αjf(yj) =
∑∞

j=1 αjF̃ (xj). According to the lemma 2.1.14, there

is a unique linear extension F : S(P )→ Y . Since f(C(P )) = F (R+(σ)(P )) ⊆ R+C = C,

this extension is positive. To show that ‖F‖ ≤ 1, let x ∈ sol(σ(P )), let p ∈ P and let

c1, c2 ∈ C(P ), such that x = σ(p) − c1 = −σ(p) + c2. Then, F (x) = F (σ(p)) −
F (c1) = −F (σ(p)) + F (c2) is contained in sol(B) = B, since F (σ(p)) = f(p) ∈ B and

F (c1), F (c2) ∈ C. Hence F is continuous and satisfies ‖F‖ ≤ 1.

Definition 2.2.28. Let ROVec denote the category with objects regularly ordered vec-

tor space and morphisms positive linear contractions, i.e. the domain’s cone is mapped

into the codomain’s cone and the domain’s closed unit ball is mapped into the codomain’s

close unit ball. Let S : PosConv→ ROVec denote the functor along σ mapping P to

S(P ) and mapping positively affine mappings f : P → Q to the unique linear extension

of σ ◦ f , according to the preceding theorem. Let U : ROVec→ PosConv denote the

functor assigning to a regularly ordered vector space with cone C the positively convex

set {c ∈ C : ‖c‖ ≤ 1}.

2.3 The Completion

Definition 2.3.1. A regularly ordered vector space is called a regularly ordered Banach

space if it is a Banach space in regard to its norm. The category of regularly ordered

Banach spaces with positive linear contractions, i.e. the domain’s cone is mapped into

the codomain’s cone and the domain’s closed unit ball is mapped into the codomain’s

close unit ball, is denoted by ROBan.

Remark 2.3.2. Clearly, ROBan is a full and faithful subcategory of ROVec.
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Proposition 2.3.3. Let X be an ordered vector space with cone C, such that X = C−C.

Let P ⊆ C be a positively superconvex set, such that R+P = C and that sol(P )∩C = P .

Then X equipped with the Minkowski functional of sol(P ) is a regularly ordered Banach

space.

Proof. The set 1
2P −

1
2P is superconvex and absorbing. Since it is linearly bounded, its

Minkowski functional defines a norm. Let this norm be denoted by ‖·‖. Let x ∈ 1
2P−

1
2P

and let x1, x2 ∈ P , such that x = 1
2x1−

1
2x2. Then, x ∈ [−(12x1+ 1

2x2),
1
2x1+ 1

2x2], hence

x ∈ sol(P ) and thus 1
2P−

1
2P ⊆ sol(P ). Hence the Minkowski functional of sol(P) indeed

induces a seminorm that fulfills: ‖x‖sol(P ) = inf{‖c‖sol(P ) : c ∈ C;−c ≤ x ≤ c} for all

x ∈ X. On the other hand let x ∈ sol(P ). Let x0, such that x0 ∈ P and x ∈ [−x0, x0].
Hence there is an x1 ∈ C, such that x+ x1 = x0. Since ‖x1‖sol(P ) = ‖x0 − x‖sol(P ) ≤ 2,

x1 ∈ 2sol(P ) ∩ C = 2P follows. Hence sol(P ) ⊆ 2P − 2P .

Thus, it suffices to show that ‖ ·‖ is the norm of a Banach space. To show completeness,

let (xj)j∈N be an arbitrary Cauchy sequence. Let (yj)j∈N be a subsequence such that

‖yj − yk‖ < 2−j for all k ≥ j. Let z1 := y1 and let zj := yj − yj−1 for all j > 1, then

yj =
∑j

k=1 zk. Since ‖zk‖ < 2−k+1, zk ∈ 2−kP −2−kP . Hence there are αk, βk ∈ [0, 2−k]

and uk, vk ∈ P , such that zk = αkuk − βkvk. To show that the sequence converges, it

is sufficient to show that the series
∑N

j=1 αjuj and
∑N

j=1 βjvj do. Since |αj | ≤ 2−j the

series
∑N

j=1 αj converges absolutely and
∑∞

j=1 αj is well-defined. In case that all but

finitely many αj vanish the series clearly converges. In case this does not happen, the

rules for superconvex combinations yield the following equation:

( ∞∑
k=1

αk
) ∞∑
j=1

αj∑∞
l=1 αl

uj =
( N∑
k=1

αk
) N∑
j=1

αj∑N
l=1 αl

uj +
( ∞∑
k=N+1

αk
) ∞∑
j=N+1

αj∑∞
l=N+1 αl

uj

Since
∑∞

j=N+1
αj∑∞

l=N+1 αl
uj ∈ P , its norm is equal or less than 1. Hence:

lim
N→∞

‖
( ∞∑
k=1

αk
) ∞∑
j=1

αj∑∞
l=1 αl

uj −
( N∑
k=1

αk
) N∑
j=1

αj∑N
l=1 αl

uj‖ = lim
N→∞

‖
∞∑

k=N+1

αk‖ = 0

The proof for
∑N

j=1 βjvj is identical. Hence,

lim
m→∞

zm =
( ∞∑
k=1

αk
) ∞∑
j=1

αj∑∞
l=1 αl

uj −
( ∞∑
k=1

βk
) ∞∑
j=1

βj∑∞
l=1 βl

vj

Theorem 2.3.4. Let X be a regularly ordered vector space with cone C and norm ‖ · ‖.
Let P ⊆ C be positively convex, such that R+P = C and that ‖ · ‖ is the Minkowski
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functional of sol(P ). Let X be the completion of X. Then X equipped with the cone C

and the completion of ‖ · ‖ is a regularly ordered Banach space.

Proof. Since addition and scalar multiplication are continuous, C indeed is a cone. Let

Y := C − C. According to the lemma 2.2.23, C is proper and hence Y is an ordered

linear space. Let solX denote the solid closure in X in regard to C and let solY denote

the solid closure in Y in regard to C. Let B denote the closed unit ball in X. Next,

show that solY (B ∩ C) ∩ C = B ∩ C. Clearly, solY (B ∩ C) ∩ C ⊇ B ∩ C, since B ∩ C
is absolutely dominated. To show the other inclusion, it suffices to show that B ∩ Y
is solid in regard to C. Therefore, let x ∈ sol(B ∩ Y ) be arbitrary, let p ∈ B ∩ C
and let c1, c2 ∈ C, such that x = p − c1 = −p + c2. Let (c1,n)n∈N, (c2,n)n∈N ∈ C,

such that limn→∞ c1,n = c1 and limn→∞ c2,n = c2. Since addition is continuous, this

implies limn→∞
1
2(c1,n + c2,n) = 1

2(c1 + c2) = p. Thus, pn := 1
2(c1,n + c2,n) satisfies

limn→∞ pn = p. Let ε > 0 be arbitrary. Let Nε ∈ N be, such that ‖pn − p‖ ≤ ε for all

n ≥ Nε. In particular ‖pn‖ ≤ (1 + ε) for all n ≥ Nε. Let xn := pn − c1,n = c2,n − pn.

Then for all n ≥ Nε,

xn ∈ solX((1 + ε)(B ∩X)) ⊆ solX((1 + 2ε)solX(P )) = (1 + 2ε)solX(solX(P )) =

= (1 + 2ε)solX(P ) ⊆ (1 + 2ε)B

Since ε was arbitrary, x = limn→∞ xn ∈ B. According to proposition 2.3.3, Y equipped

with the cone C and with the Minkowski functional of sol(B ∩C) is a regularly ordered

Banach space. Since sol(B ∩ C) = sol(B ∩ Y ) = B ∩ Y , the Minkowski functional

coincides with the norm on X. By uniqueness of the completion, Y = X follows.

Definition 2.3.5. Let J : ROVec → ROBan the functor assigning to a regularly

ordered vector space its completion ordered by the closure of its cone and assigning to a

positive linear contraction its unique extension. Let j denote the canonical embedding.

Remark 2.3.6. Since the extension is continuous the closure of the domain’s cone (unit

ball) is mapped into the closure of the codomain’s cone (unit ball), hence the extension

is a positive linear contraction.

Corollary 2.3.7. Let X be a convex module and let Y be a regularly ordered Banach

space with closed cone C and norm ‖ · ‖. Let f : X → C be positively affine, such that

‖f(x)‖ ≤ 1, for all x ∈ X. Then there exists a unique positive linear continuous function

F : S(X)→ Y , such that F ◦ j ◦ σ = f . This function satisfies ‖F‖ ≤ 1.

Proof. According to theorem 2.2.27, there exists a unique positive linear continuous

contraction F̃ : S(X)→ Y , such that F̃ ◦ σ = f and that ‖F‖ ≤ 1. Let F : S(X)→ Y
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be its completion. Since C is closed and C(X) is dense in the cone of S(X), this defines

a positive linear continuous function that satisfies F ◦ j ◦ σ = f and ‖F‖ ≤ 1. Let G be

an arbitrary function satisfying the conditions of the theorem. Then, its restriction to

S(X) is a positive linear continuous function such that F̃ ◦σ = f and that ‖F‖ ≤ 1. By

uniqueness in theorem 2.2.27, G = F .

Definition 2.3.8. Let W : PosConv → ROBan be defined as W := J ◦ S and let

O : ROBan→ PosConv be the restriction of U to ROBan.

Corollary 2.3.9. W : PosConv → ROBan is left adjoint to O : ROBan →
PosConv, i.e. for each positively convex module X, for each regularly ordered Ba-

nach space Y and for each positively affine f : X → O(Y ), there is a unique positive

linear contraction g : W(X)→ Y , such that O(g) ◦ j ◦ σ = f .

Proof. Let ι denote the inclusion of O(Y ) into Y . According to corollary 2.3.7, there

exists a unique positive linear contraction g : W(X)→ Y , such that g ◦ j ◦σ = ι◦f . Let

x ∈ X, then O(g)(j(σ(x)) = g(j(σ(x))) = ι(f(x)) = f(x). Hence, g uniquely satisfies

this equation.

Definition 2.3.10. Let ComplPosConv denote the category of complete metric pos-

itively convex modules with morphisms positively affine functions. Let V denote the

functor that assigns to a positively convex module X the complete metric positively con-

vex module jX(σX(X)) and to each positively affine function f : X → Y the restriction

of W(f) to jX(σX(X)).

Remark 2.3.11. Since W(f) is continuous and (W(f))(jX(σ(XX))) ⊆ jY (σY (Y )), the

image of jX(σX(X)) is contained in jY (σY (Y )).

Theorem 2.3.12. ComplPosConv is a reflective subcategory of PosConv with re-

flection functor V, i.e. for all X ∈ PosConv, all Y ∈ ComplPosConv and all affine

function f : X → Y , there is a unique positively affine function g : V(X) → Y , such

that g ◦ jX ◦ σX = f .

Proof. According to corollary 2.3.7, W(f) : W(X)→W(Y ) is the unique positive linear

contraction satisfying W(f)◦jX ◦σX = jY ◦σY ◦f . Since Y is metric, jY ◦σY is isometric

up to a factor 2 and hence injective. Ssince Y is complete, jY ◦ σY : Y → jY (σY (Y ))

is bijective and hence an isomorphism in ComplPosConv. Let k denote its inverse.

Then g := k ◦W(f) uniquely satisfies g ◦ jX ◦ σX = f .
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Appendix

A.1 A Flaw in the Construction of the Completion Functor

in ”Positively Convex Modules and Ordered Linear

Spaces”

In ”Positively convex modules and ordered linear spaces” ([12]) a different construction

of W is given. But the construction is incomplete, since the proof of the following

proposition, similar to 2.3.3, is faulty:

Proposition A.1.1. Let X be an ordered vector space with cone C, such that X = C−C.

Let P ⊆ C be a positively superconvex set, such that R+P = C. Then X equipped with

the Minkowski functional of sol(P ) is a regularly ordered Banach space.

To show that sol(P ) is linearly bounded, the proof attempts to show that sol(P ) ⊆
2P − 2P . But this inclusion does not hold true in general as the following example

shows:

Example A.1.2. Let X := R × R, let C := {(x, y) : x ≤ y;−x ≤ y} and let P :=

{(x, y) : x ≤ y;−x ≤ y; 8x+ y ≤ 1;−8x+ y ≤ 1}. (P is the closed polygon with vertices

(0, 0),(19 ,
1
9),(1, 0) and (−1

9 ,
1
9).) Clearly, C defines a cone. Let (x, y) ∈ C ∩ (−C), then

x ≤ y and −x ≤ −y imply x = y, and −x ≤ y implies (x, y) = (0, 0). Thus, C is proper.

Let (x, y) ∈ X, then (x, y) = (x, y + |x| + |y|) − (0, |x| + |y|) ∈ C ∩ (−C). Thus C is

generating. Clearly, P is a subset of C. To show that R+P = C, let (x, y) ∈ C and

assume that (x, y) 6= (0, 0). Let (u, v) := ( x
8|x|+|y| ,

y
8|x|+|y|). Since (8|x| + |y|)(u, v) =

(x, y), it suffices to show (u, v) ∈ P . The condition x ≤ y implies x
8|x|+|y| ≤

y
8|x|+|y|

and −x ≤ y implies − x
8|x|+|y| ≤

y
8|x|+|y| . Next, 8u + v = 8 x

8|x|+|y| + y
8|x|+|y| ≤ 8 |x|

8|x|+|y| +
|y|

8|x|+|y| = 1 and −8u+v = −8 x
8|x|+|y|+

y
8|x|+|y| ≤ 8 |x|

8|x|+|y|+
|y|

8|x|+|y| = 1. Thus, (u, v) ∈ P .

43
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The case (x, y) = (0, 0) is obvious, since (0, 0) ∈ P . Hence R+P = C. P is a closed,

bounded and convex subset of the Banach space R × R and contains (0, 0), hence it

is positively superconvex. Thereby E, C and P fulfill all conditions in the preceding

lemma.

The solid hull of P can easily be calculated as follows: Let (x, y) ∈ P be arbitrary, then

−x ≤ 1
8−

1
8y ≤ 1−y and x ≤ 1

8−
1
8y ≤ 1−y, in which the second inequalities hold because

y = 1
2y + 1

2y ≤
1
2 − 4x+ 1

2 + 4x = 1. Hence (0,−1) ≤ −(x, y) ≤ (0, 0) ≤ (x, y) ≤ (0, 1).

Then, [−(x, y), (x, y)] = {p ∈ P : −(x, y) ≤ p ≤ (x, y)} ⊆ {p ∈ P : (0,−1) ≤ p ≤
(0, 1)} = [(0,−1), (0, 1)]. Thus, sol(P ) =

⋃
p∈P [−p, p] = [(0,−1), (0, 1)] = {(x, y) : y ≤

1 + x; y ≤ 1− x;−y ≤ 1 + x;−y ≤ 1− x}. In particular, (1, 0) ∈ sol(P ). Any (x, y) ∈ P
satisfies |x| ≤ y ≤ 1− 8|x|, hence |x| ≤ 1

9 . Thus, any (x, y) ∈ 2P − 2P satisfies |x| ≤ 4
9 ,

hence (1, 0) cannot be an element of 2P −2P and the inclusion sol(P ) ⊆ 2P −2P cannot

hold true.

Similar examples show that the inclusion sol(P ) ⊆ λP−λP does not hold true in general

for any λ ∈ R+.

A.2 A List of Categories

• Conv

1. Objects: Convex modules

2. Morphisms: Affine mappings

• PresepConv

1. Objects: Preseparated convex modules

2. Morphisms: Affine mappings

• SConv

1. Objects: Superconvex modules

2. Morphisms: Superaffine mappings

• CompConv

1. Objects: Complete metric (regarding the convex semimetric) convex modules

2. Morphisms: Affine mappings

• PosConv

1. Objects: Positively convex modules
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2. Morphisms: Positively affine mappings

• CompPosConv

1. Objects: Complete metric (regarding the positively convex semimetric) pos-

itively convex modules

2. Morphisms: Positively affine mappings

• BOVec

1. Objects: Base ordered vector spaces, i.e. the base B ⊆ X is convex, for all

α1, α2 ∈ R+, b1, b2 ∈ B, α1b1 = α2b2 implies α1 = α2 and R+B − R+B = X.

2. Morphisms: Linear mappings, that map bases into bases

• BNBan

1. Objects: Base normed Banach spaces with closed bases, i.e. the base B ⊆ X
is convex and closed, for all α1, α2 ∈ R+, b1, b2 ∈ B, α1b1 = α2b2 implies

α1 = α2, R+B−R+B = X and the Minkowski functional of conv(B ∪ (−B))

is a complete norm.

2. Morphisms: Linear mappings, that map bases into bases

• POVec

1. Objects: Preordered vector spaces

2. Morphisms: Linear mappings, that map cones into cones

• ROVec

1. Objects: Regularly ordered vector spaces, i.e. the cone C is proper and

‖x‖ = inf{‖c‖ : c ∈ C;−c ≤ x ≤ c}.

2. Morphisms: Linear mappings, that map cones into cones and unit balls into

unit balls

• ROBan

1. Objects: Regularly ordered Banach spaces, i.e. the cone C is proper and

‖x‖ = inf{‖c‖ : c ∈ C;−c ≤ x ≤ c}.

2. Morphisms: Linear mappings, that map cones into cones and unit balls into

unit balls
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