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1. Introduction

When talking about Banach algebras one often has in mind the common ex-
ample of bounded operators on a Hilbert space. However these operator algebras
have more structure than just that of a Banach algebra - for example the adjoint
operation. C*-algebras are Banach algebras that in addition have such an adjoint
operation. The major part of this work will be concerned with showing that the
Banach algebra structure together with this adjoint operation characterizes opera-
tor algebras. In other words we will show that every C*-algebra is isomorphic to
an algebra of operators (that is closed under adjoints) on a Hilbert space.

Section 2 reviews basic results and de�nitions concerning operators on Hilbert
spaces, Banach algebras and C*-algebras. Most important the representation the-
ory for commutative unital C*-algebras will be discussed. The results of Section 2
will be given without proofs. For proofs and further results the reader is referred
to [2, 3].

Section 3 starts with the unitization construction. Using this we will extend
the result of section 2 to non unital commutative C*-algebras. We then go on
with introducing positive elements and establishing some of their most important
properties. The section ends with a proof for the existence of approximate units.

Section 4 starts with a general treatment of *-representations. We will work
out di�erent characterizations of irreducibility using von Neumann's bicommutant
theorem. Afterwards we will introduce the notion of positive functionals in order
to obtain representations via the Gelfand-Naimark-Segal construction (GNS con-
struction). Ultimately, considering direct sums of GNS-representations, we prove
the Gelfand-Naimark theorem which ensures the existence of an irreducible isomet-
ric representation for every C*-algebra.

Most of the results and sketches of proofs are taken from [1]. Furthermore some
results and proofs are taken from [4].
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2. Basics

In this �rst part we will review important de�nitions and facts. For proofs cf.
[2].

2.1. Operators on Hilbert spaces.

De�nition 1. Given a Hilbert space H, we de�ne B(H) as the space of bounded
linear operators on H.

Later on, we will have to deal with direct sums of Hilbert spaces and operators
on them.

De�nition 2. Let (Hi)i∈ Ω be a family of Hilbert spaces. The direct sum ⊕
i∈Ω

Hi is

the space of tuples (ξi)i∈Ω, where
∑
i∈Ω

‖ξi‖2 <∞. With the inner product given by

((ξi)i∈Ω, (ηi)i∈Ω) =
∑
i∈Ω

(ξi, ηi)

this space becomes a Hilbert space.
Given operators Ti ∈ B(Hi), i ∈ Ω such that sup

i∈Ω
‖Ti‖ < ∞, one can consider

their direct sum ⊕
i∈Ω

Ti de�ned by

( ⊕
i∈Ω

Ti)(ξi)i∈Ω = (Tiξi)i∈Ω.

⊕
i∈Ω

Ti is bounded with

∥∥∥∥ ⊕
i∈Ω

Ti

∥∥∥∥ = sup
i∈Ω
‖Ti‖.

If all Hi are the same H, the direct sum is called the ampli�cation of H by
card(Ω). In that case, the ampli�cation T∼ ∈ B( ⊕

i∈Ω
H) of a T ∈ B(H) is de�ned

by
T∼ = ⊕

i∈Ω
Ti.

Recall some of the most important topologies on B(H). For their de�nition we
remember, that a topology is characterized by its convergent nets.

De�nition 3. Let H be a Hilbert space

• The weak topology is de�ned by Ti → T ⇐⇒ (Tiξ, η)→ (Tξ, η), ξ, η ∈ H.
• The strong topology is given by Ti → T ⇐⇒ ‖(T − Ti)ξ‖ → 0, ξ ∈ H.

Remark 4. The strong topology is induced by the family of semi-norms px : T 7→
‖Tx‖ . Let X be a vector space with a topology induced by a family of semi-norms
(pi)i∈I . We recall, that for every x ∈ X a neighborhood basis is given by

{{y ∈ X : pi(x− y) < ε, i ∈ J} : J ⊆ I �nite , ε > 0} .
We will also need the Spectral Theorem for self-adjoint operators. For the proof

and the de�nition of spectral measures cf. Section 7 in [2].

Theorem 5. Let H be a Hilbert space and A ∈ B(H) be a self-adjoint operator.
Let A be the σ-algebra of Borel sets on σ(A). Then there exists a unique spectral
measure E on (σ(A),A, H), such that

A =

ˆ
t dE(t).
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Moreover for T ∈ B(H)

TA = AT ⇐⇒ TE(∆) = E(∆)T, ∆ ∈ A.

The following de�nition will be useful.

De�nition 6. Let B ⊆ B(H) and X ⊆ H. Set

BX := {Tx : T ∈ B, x ∈ X}

Finally, we will state a standard argument as a lemma.

Lemma 7. Let H be a Hilbert space, S, T ∈ B(H) and D ⊆ H dense. If

(Sξ, η) = (Tξ, η) for all ξ, η ∈ D,
then S = T .

Proof. We have ((S − T )ξ, η) = 0 for all ξ, η ∈ D. By the density of D and
continuity of the inner product, this holds for η ∈ H. Thus (S − T )ξ ∈ H⊥ = {0}
for all ξ ∈ D. Again the density of D yields S = T . �

2.2. Banach algebras.

De�nition 8. A Banach algebra is a Banach space (A, ‖.‖) together with an asso-
ciative and distributive multiplication · : A×A→ A , such that

‖x · y‖ ≤ ‖x‖‖y‖ for all x, y ∈ A.
It is called unital if there exists a multiplicative unit. This unit is unique and

will be denoted by 1. The set of invertible elements is denoted by

Inv(A) =
{
x ∈ A : ∃x−1 ∈ A : xx−1 = x−1x = 1

}
.

Furthermore the spectrum of an element x ∈ A is given by

σ(x) = {λ ∈ C : x− λ1 /∈ Inv(A)} .
The spectral radius is given by

r(x) = max {|λ| : λ ∈ σ(x)} .

Remark 9. Note, that for x ∈ A, the multiplicative inverse x−1 is unique.

The following properties concerning the spectrum hold true.

Theorem 10. Let A be a unital Banach algebra and x, y ∈ A. Then

(1) σA(x) is nonempty and compact.
(2) r(x) = limn→∞ ‖xn‖1/n. In particular r(x) ≤ ‖x‖ .
(3) σA(xy) ∪ {0} = σA(yx) ∪ {0}
(4) If B is a Banach sub-algebra of A containing 0, then σA(x) ⊆ σB(x) and

δ(σB(x)) ⊆ δ(σA(x)) where δ is the topological boundary. Equivalently,
ρB(x) is open and closed as subset of ρA(x).

(5) σA(x−1) =
{
λ−1 : λ ∈ σA(x)

}
Many proofs that technically assume the Banach algebra to be unital, can be ex-
tended to the non unital case by the following construction.

Lemma 11. Let A be a non unital Banach algebra. Then A1 := A ⊕ C with
coordinate wise addition, multiplication de�ned by (x;λ)(y;µ) = (xy+µx+λy;λµ)
and ‖(x;λ)‖1 := ‖x‖+ |λ| is a unital Banach algebra.
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Elements of a Banach algebra A can also be viewed as elements of B(A), if we
identify them with their respective multiplication operators.

De�nition 12. Let A be a Banach algebra. For x ∈ A, we de�ne the multiplication
operator Mx ∈ B(A) by

y 7→ xy.

Remark 13. The map x 7→ Mx from A to B(A) is a homomorphism. Moreover,
since ‖xy‖ ≤ ‖x‖ ‖y‖, we have ‖Mx‖ ≤ ‖x‖.

2.3. C*-Algebras.

De�nition 14. A Banach*-algebra is a Banach algebra A with a conjugate-linear
and isometric involution ∗ : A→ A such that

(xy)∗ = y∗x∗ for all x, y ∈ A.
If additionally the so called C*-axiom

‖x∗x‖ = ‖x‖2 for all x ∈ A
holds, A is called a C*-algebra.
Let A,B be Banach*-algebras. An algebra-homomorphism φ : A → B that

satis�es φ(x∗) = φ(x)∗ for all x ∈ A is called a *-homomorphism.
A sub-algebra S ⊆ A, that is *-closed, i.e. S∗ ⊆ S, is called a *-sub-algebra.

Example 15. The following examples are fundamental in the sense that all C*-
algebras, as we will see, can be represented as a *-sub-algebra of one of them.

(1) (Unital commutative C*-algebras) Let C(X) be the set of all continuous
complex-valued functions on a compact topological space X. Equipped
with point-wise operations, the point-wise complex-conjugate and the norm
given by ‖f‖ = sup {f(x) : x ∈ X} it is a C*-algebra.

(2) (Non unital commutative C*-algebras) We consider the space

C0(X) = {f ∈ C(X) : ∀ε > 0∃K compact : f(X \K) ⊆ Uε(0)}
for a locally compact space X. With the same structure as above one again
obtains a C*-algebra.

(3) (Non commutative C*-algebras) Consider the space B(H) of bounded linear
operators on a Hilbert spaceH. With the operation which maps an operator
to its adjoint, the usual algebraic operations - multiplication being the
composition of operators - and the operator-norm, B(H) is a C*-algebra.

In analogy to operators we can de�ne normal, self-adjoint and unitary elements for
C*-algebras.

De�nition 16. For a *-algebra A, x ∈ A is called

• normal if x∗x = xx∗

• self-adjoint if x∗ = x
• unitary if x∗ = x−1for unital A.

Remark 17. The set of self-adjoint elements is denoted by Asa.

We recall the following facts.

Theorem 18. Let A be a unital C*-algebra and x ∈ A.

(1) If x is unitary, then σA(x) ⊆ T where T denotes the unit circle.
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(2) If x is self-adjoint then σA(x) ⊆ R.

Lemma 19. Let B be a unital C*-sub-algebra of a unital C*-algebra A (with the
same unit), then σB(x) = σA(x) for all x ∈ B.

A main characteristic of C*-algebras is, that algebraic (spectrum) properties are
strongly linked to topological (norm) properties. This connection roots in the in-
nocuous looking C*-axiom.

Lemma 20. For a unital C*-algebra, let x ∈ A be normal. Then ‖x‖ = r(x) where
r(x) is the spectral radius. Furthermore, ‖x‖2 = r(x∗x) for arbitrary x ∈ A.

This also results in additional structure for *-homomorphisms.

Lemma 21. Let ϕ : A→ B be a *-homomorphism between unital C*-algebras A,B,
such that ϕ(1A) = 1B. Then ϕ is automatically bounded with ‖ϕ‖ ≤ 1. Moreover,
σ(ϕ(x)) ⊆ σ(x) x ∈ A.

Remark 22. The previous lemma also holds true for the weaker assumption of A
being a Banach *-algebra.

2.4. Unital Commutative C*-algebras. For the proofs in this section, the reader
is referred to Section 1 in [3].

De�nition 23. Let A be a C*-algebra. A multiplicative functional φ : A → C is
a linear functional additionally satisfying φ(ab) = φ(a)φ(b). The Gelfand space or
spectrum of A is de�ned by

Â := {φ : A→ C| φ ismultiplicative; φ 6= 0} .

Lemma 24. Let φ 6= 0 be a multiplicative functional on a C*-algebra A. Then
‖φ‖ = 1. If A is unital, then φ(1) = 1.

We recall that the w∗-topology on any subset Y ⊆ A∗ of the topological dual of
a Banach space A, is the initial topology with respect to the maps

ι(a) : Y → C; φ 7→ φ(a),

where a ∈ A. We denote it by σ(Y, ι(A)). The following Banach-Alaoglu type
theorem for unital C*-algebras holds true.

Theorem 25. Let A be a unital C*-algebra. Its Gelfand space Â is a compact
subspace of the topological dual space A∗ with respect to the w∗-topology.

Remark 26. From now on, if not otherwise stated explicitly, we assume Â to be
endowed with the w∗-topology.

The main result of this section is the following representation theorem.

Theorem 27. Let A be a commutative unital C*-algebra. The map ι : A→ C(Â)
de�ned by ι(a) = (φ 7→ φ(a)) is an isometric isomorphism.

De�nition 28. Let A be a unital C*-algebra. For a normal x ∈ A de�ne

C∗(x) := c.l.s.
{
xj(x∗)k : j, k ∈ N0

}
where x0 := 1.
More generally for commuting x1, x2, . . . , xn, each of which is normal, we de�ne

C∗(x1, x2, . . . , xn) to be the closed linear span of the products of the powers of the
xk and x∗k.
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Remark 29. It is easy to see, that C∗(x) is a commutative C*-sub-algebra of A.
Indeed, it is the smallest one containing x and 1.

As a corollary of Theorem (27) we obtain the continuous functional calculus for
normal elements of unital C*-algebras.

Corollary 30. Let A be a unital C*-algebra. For any normal element x ∈ A,
C∗(x) is isometrically isomorphic to C(σ(x)). The isomorphism Φ maps x to the
identity id : σ(x) → C; t 7→ t. For f ∈ C(σ(x)) we de�ne f(x) := Φ−1(f). The
following properties hold

(1) σ(f(x)) = f(σ(x)).
(2) If f ∈ C(σ(x)), g ∈ C(σ(f(x))), then g◦f ∈ C(σ(x)) and g◦f(x) = g(f(x)).

Proof. The proofs found in Section 1 in [3] may be applied to the present situation.
�

Remark 31. This functional calculus may be used to prove the spectral theorem
for normal operators.

Lemma 32. Let A,B be unital C*-algebras, ϕ : A → B a *-homomorphism be-
tween them, such that ϕ(1A) = 1B and x ∈ A normal. Then ϕ(f(x)) = f(ϕ(x)) for
any f ∈ C(σ(x)).

Proof. We consider the unital commutative sub-algebras C∗(x) ⊆ A, C∗(ϕ(x)) ⊆
B and the induced homomorphism between them. If f(z) =

∑n
j,k=0 λj,kz

j z̄k is
a polynomial, the claim is obvious. By Stone-Weierstrass these polynomials are
dense in C(σ(x)). From Lemma (21) we know that σ(ϕ(x) ⊆ σ(x). Denote by
|σ(ϕ(x)) : C(σ(x)) → C(σ(ϕ(x)) the restriction mapping and by Φx (Φϕ(x)) the
mapping from Corollary (30) applied to x (ϕ(x)).We just showed, that

ϕ ◦ Φ−1
x (f) = Φ−1

ϕ(x) ◦ |σ(ϕ(x))(f)

for any f ∈ C[z, z̄] viewed as an element of C(σ(x)). According to the continuity
of all involved mappings and due to the density of C[z, z̄] we see that the above
equation holds true for all f ∈ C(σ(x)), i.e. ϕ(f(x)) = f(ϕ(x)). �

As a �rst application of the functional calculus, we will strengthen the statement
from Lemma (21).

Lemma 33. Let φ : A → B be a *-homomorphism such that φ(1A) = 1B between
unital C*-algebras A,B. If φ is injective it is an isometry.

Proof. We already know, that ‖φ(x)‖ ≤ ‖x‖ for all x ∈ A, cf. Lemma (21). Let us
suppose there is an x ∈ A, such that this inequality is strict. Then also

r := ‖φ(x∗x)‖ < ‖x∗x‖ =: s.

We now consider the C*-algebra C∗(x∗x) (note, that x∗x is normal) and the induced
injective *-homomorphism φ : C∗(x∗x) → B. It is indeed injective since for x ∈
A∩C∗(x∗x) we have φ(x+λ1) = φ(x)+λ1 where φ(x) and 1 are obviously linearly
independent. Consider the function f := g|σ(x∗x), where g ∈ C([−s, s]) vanishing
on [−s, r] with g(s) = 1. By the functional calculus we have

0 = f(φ(x∗x)) = φ(f(x∗x)).

Since f does not vanish on σ(x∗x), the equality above contradicts the injectivity
of φ. �
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3. Further Structure

In the following A,B, ... will always denote a C*-algebra unless otherwise stated.
Moreover, the word functional always means linear functional.

3.1. Unitization. A C*-algebra need not be unital. However, there is a canonical
way to construct an enveloping unital C*-algebra.

Remark 34. If A is a C*-algebra, the map x 7→ Mx (cf. De�nition (12) ) is an
isometric homomorphism. Only ‖Mx‖ ≥ ‖x‖ is left to proof. Indeed

‖Mx‖ ≥
∥∥∥∥Mx

x∗

‖x∗‖

∥∥∥∥ =
1

‖x∗‖
‖xx∗‖ = ‖x‖ .

Theorem 35. Let A be a non unital C*-algebra. Then A1 := A⊕C with coordinate
wise addition, (x;λ)(y;µ) = (xy + µx + λy;λµ) , ‖(x;λ)‖1 = sup

‖y‖=1

‖xy + λy‖ and

(x;λ)∗ = (x∗;λ) is a unital C*-algebra. The unit is given by (0; 1).

Proof. ‖.‖1 is the operator norm on A1 if its elements are viewed as sums of left
multiplication operators and multiples of the identity on A, i.e. (x, λ) 'Mx + λI.
Thus ‖.‖1 actually is a norm and it also satis�es ‖xy‖1 ≤ ‖x‖1 ‖y‖1.

To show completeness we �rst notice that equipped with the norm ‖(x;λ)‖2 :=
‖x‖ + |λ| and the algebraic rules given above, A1 is a Banach algebra; (cf Lemma
(11)).

The next step is to show, that ‖.‖1 and ‖.‖2 are equivalent. Since ‖xy + λy‖ ≤
‖x‖‖y‖+ |λ|‖y‖ = ‖(x;λ)‖2 for every ‖y‖ = 1 ,

‖(x;λ)‖1 ≤ ‖(x;λ)‖2.
Suppose there is no n ∈ N with ‖(x;λ)‖2 ≤ n‖(x;λ)‖1 for all (x;λ) ∈ A1. Then
there are sequences xn, λn with ‖(xn;λn)‖2 ≥ n‖xny + λny‖ for all ‖y‖ = 1. Take
y = x∗n/‖xn‖ to see, that λn 6= 0 for n > 1. Setting zn := xn/λn one gets

(3.1) ‖zn‖+ 1 ≥ n‖zny + y‖ for all ‖y‖ = 1.

(zn)n∈N cannot be unbounded since for every n ∈ N we may take y := z∗n/‖zn‖, to
obtain

‖zn‖+ 1 ≥ n‖zny + y‖ ≥ n‖zn‖ − n.
Hence

n+ 1

n− 1
≥ ‖zn‖ , n > 1.

So by (3.1) for all n,m ≥ n(ε) and ‖y‖ = 1 we get ‖zny + y‖ ≤ ε/2 and therefore

‖(zn − zm)y‖ ≤ ‖zny + y‖+ ‖zmy + y‖ ≤ ε.
By the previous remark (zn) is a Cauchy sequence. Thus it converges to a limit
z ∈ A satisfying zy = −y for all y. But this is impossible because A is non unital.
So ‖...‖1 is a norm equivalent to ‖...‖2 showing that (A1; ‖...‖1) is complete.

Next we prove that the ∗-operation is an isometry and that the C*-axiom holds
true. In fact

‖(x;λ)‖21 = sup
‖y‖=1

‖xy + λy‖2 = sup
‖y‖=1

‖(xy + λy)∗(xy + λy)‖

= sup
‖y‖=1

‖y∗x∗xy + λy∗x∗y + λ̄y∗xy + |λ|2y∗y‖ ≤
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≤ sup
‖y‖=1

‖x∗xy + λx∗y + λ̄xy + |λ|2y‖ = ‖(xx∗ + λx∗ + λ̄x; |λ|2)‖1

= ‖(x;λ)∗(x;λ)‖1 ≤ ‖(x;λ)∗‖1‖(x;λ)‖1.
We get ‖(x;λ)‖1 ≤ ‖(x;λ)∗‖1 and by symmetry equality. In turn, we see, that

the above inequality is an equality, proving the C*-axiom. The remaining properties
are easily veri�ed by a straight forward calculation. �

Remark 36. By Remark (34) we have that ‖.‖1 |A = ‖.‖ for a non unital A. There-
fore, A can be viewed as the subset A ⊕ {0} of A1 by the isometric embedding
a 7→ (a; 0). As such it is a closed ideal with A1/A ∼= C.

De�nition 37. Let A be a unital C*-algebra. If A is unital, then we set. Otherwise
we set A1 := A ⊕ C and provide this space with the C*-algebra structure from
Theorem (35). Moreover, for a normal x ∈ A we de�ne

C∗(x) := c.l.s.
{
xj(x∗)k : j, k ∈ N0

}
⊆ A1

where x0 := 1. More generally for commuting x1, x2, . . . , xn, each of which is nor-
mal, we de�ne C∗(x1, x2, . . . , xn) to be the closed linear span of the products of the
powers of the xk and x∗k.

Lemma 38. Let X be a non compact but locally compact Hausdor� space. If
ac(X) denotes the one-point (Alexandro�) compacti�cation of X, then C0(X)1

∼=
C(ac(X)) i.e. there exists an isometric *-isomorphism between those C*-algebras.

Proof. We show, that the map Φ : C0(X)1 → C(ac(X)) de�ned by

Φ((f ;λ))(x) =

{
f(x) + λ x ∈ X

λ x =∞

is an isometric *-isomorphism.
It is easy to see, that the map is well-de�ned and a *-isomorphism. By Lemma

(33) it is also isometric .
Alternatively we can show isometry directly. In order to do so, note that f ∈

C0(X) takes its maximum at a point y ∈ X. By de�nition we get ‖(f ;λ)‖1 =
sup {‖f + λg‖ : g ∈ C0(X), ‖g‖ = 1} = f(y) + λ. Since, ‖Φ((f ;λ))‖ = f(y) + λ, Φ

is an isometry. �

Remark 39. Let A,B be C*-algebras and ϕ : A → B a *-homomorphism. If A is
unital, then by the continuity of the product ϕ(1A) is a unit of the *-subalgebra

ϕ(A). Nevertheless it can happen, that B is not unital or that 1B 6= ϕ(1A).

An example for 1B 6= ϕ(1A) is easily constructed:
Let M(n) denote the C*-algebra of n-dimensional matrices (cf. Example (15.3)).

Then the embedding

ι : M(m)→M(n), m < n

given by

A 7→
(
A 0
0 0

)
is a *-homomorphism between this C*-algebras. Obviously, we have ι(En) 6= Em.
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Remark 40. Let A,B be C*-algebras and ϕ : A → B a *-homomorphism. If A is
non unital, then it is easy to check, that (x;λ) 7→ φ(x) + λ1 is a *-homomorphism
from A1 to B1 extending ϕ. This extension will also be denoted by ϕ.

If ϕ(A) is dense in B, then ϕ : A1 → B1 is the unique extension of ϕ : A→ B to
a homomorphism. Assume, that ψ : A1 → B1 is another extension of ϕ : A→ B. If
B = B1, i.e. B is unital, then it follows from the previous remark, that 1B = ψ(1A1)
and by linearity ψ = ϕ on A1. If B is not unital, then ψ(1A1) /∈ B, since otherwise
ψ(1A1

) would be a unit in B, which contradicts our assumption. Consequently,
ψ(A1) is dense in B1. As before, we derive 1B1

= ψ(1A1
) and in turn ψ = ϕ on A1.

Lemma 41. Any *-homomorphism ϕ : A → B between C*-algebras A,B is a
contraction. If ϕ is injective, then it is isometric.

Proof. Replacing B by the closure of ϕ(A), we can assume ϕ to have dense range.
We saw in the previous remark, that ϕ then admits a unique extension ϕ : A1 → B1

which according to Lemma (21) is a contraction.
If ϕ is injective and A is not unital, then 1B1

/∈ ϕ(A), since otherwise injectivity
would give the existence of a unit in A. Thus, also ϕ : A1 → B1 is injective.
According to Lemma (33) ϕ is isometric. �

Corollary 42. If A is a non-unital C*-algebra and B a unital C*-Algebra contain-
ing A, then A+ c.l.s.{1B} is isometrically isomorphic to A1.

Proof. According to Remark (40) the inclusion mapping A → B extends to an
injective *-homomorphism. By the previous lemma this extension is an isometric
isomorphism. �

Remark 43. For a C*-algebra A and x ∈ A, let σ(x) = σA(x) be the spectrum of x,
when x is considered as an element of A1. By the previous corollary and Lemma
(19) we have σA(x) = σB(x) for any C*-algebra B ⊆ A.

3.2. Commutative C*-algebras. In this section we will expand the results of
Section 2.3. to the non unital case. We start with examining the Gelfand space of
a unitization of a non unital C*-algebra A.

Remark 44. By Lemma (24) we have φ(1) = 1 for all φ ∈ Â1 (cf. Def (23)). Thus

by Remark (40), we can uniquely extend any φ ∈ Â to a multiplicative functional
on A1 by setting φ(1) = 1. By default we will identify φ with its unique extension.

Moreover, since it also holds, that φ|A is a multiplicative functional on A for any

φ ∈ Â1, we get Â1 = Â ∪ {φ1} where φ1|A = 0 and φ1(1) = 1.

Indeed an even stronger proposition is true.

Lemma 45. Let A be a non unital C*-algebra. Â1 is homeomorphic to the one

point compacti�cation ac(Â) of Â.

Proof. We use the notation introduced previous to Theorem (25). By the remark

above, (Â, σ(Â, ι(A))) is homeomorphic to (Â1 \ {φ1} , σ(Â1 \ {φ1} , ι(A1))). To see

this let Ψ : Â → Â1 \ {φ1} map φ ∈ Â to its unique extension. Obviously this is
a bijection. For all a ∈ A one has ι(a;λ) ◦ Ψ = ιa + λ and ιa ◦ Ψ−1 = ι(a;0) . The
functions on the right side of the equation are continuous. Thus by the de�nition
of the respective initial topologies, Ψ is bi-continuous.
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By Theorem (25) Â1 is compact. Furthermore Â1 \ {φ1} is open and dense in

(Â1, σ(Â1, ι(A1))). So using the uniqueness of the one point compacti�cation we

get, that Â1 is homeomorphic to ac(Â). �

Corollary 46. (Â,σ(Â, ι(A))) is locally-compact (the existence of a unit is not
required).

Proof. We recall, that a space is locally compact if its one-point compacti�cation
is Hausdor�. Indeed, by the above lemma, the one point compacti�cation is home-
omorphic to the Hausdor� space Â1. �

We now have everything in order, to extend Theorem (27) to the non unital case.

Corollary 47. Let A be a commutative C*-algebra. Then A is isometrically iso-

morphic to C0(Â).

Proof. We already know, that A1 is isometrically isomorphic to C(Â1), so we can

assume, that A is non-unital. By Lemma (45) Â1 is homeomorphic to ac(Â).

Let Φ : Â1 → ac(Â) be the corresponding a homeomorphism. Then the map

Υ(f) = f ◦ Φ from C(Â1) to C(ac(Â)) is an isometric isomorphism. We now

use Lemma (45) to see, that C(ac(Â)) is also isometrically isomorphic to C0(Â)1.

Putting it all together on gets an isometric isomorphism Ω : A1 → C0(Â)1. Taking

a closer look on this isomorphism one sees, that Ω(A) = C0(Â), where we consider

C0(Â) as a subset of C0(Â)1 by Remark (36). �

3.3. positive Elements. Let A be a C*-algebra for the remainder of this section.

De�nition 48. A self-adjoint x is called positive if σ(x) ⊆ [0,∞). The set of all
positive elements is denoted A+. We also write x ≥ 0 to indicate, that x is positive.

Remark 49. Since σ(f) = f(X) for f ∈ C(X) and a compact space X, the positive
elements of C(X) are exactly the non negative functions. By Lemma (45) the same
is true for C0(X).

It is useful to know, that every element can be written as a linear combination
of four positive elements.

Lemma 50. Let y ∈ Asa and x ∈ A then

(1) x = Re(x) + iIm(x) where Re(x) = x+x∗

2 and Im(x) = x−x∗
2i are self-

adjoint.
(2) For y ∈ Asa one has the decomposition y = y+− y− where y+, y− ∈ A+are

unique satisfying y+y− = 0. We also have σ(y−)∩(−∞, 0) = σ(y)∩(−∞, 0)
and σ(y+) ∩ (0,∞) = σ(y) ∩ (0,∞).

Proof. The �rst assertion is immediately seen by a straightforward calculation.
For (2) consider the representation of the (commutative) C*-algebra C∗(y). It

is easy to see, that y+, y− represented by f(t) := max (t, 0), g(t) := −min (t, 0)
respectively, satisfy the conditions. The claim about the spectra follows from the
previous theorem. �

From the functional calculus in the previous section one derives some basic facts
about positive elements.

Lemma 51. For x ∈ A, the following assertions hold true:
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(1) If x is normal then x∗x ≥ 0.
(2) If x ∈ Asa and ‖x‖ ≤ 2, then x ≥ 0⇐⇒ ‖1− x‖ ≤ 1 (in A1).
(3) If x ≥ 0 then there exists a square-root x1/2 ≥ 0.
(4) (x;λ) ≥ 0 in A1 if and only if x∈Asa and λ ≥ ‖x−‖.

Proof. In each case it is possible to consider the C*-algebra C∗(x) instead of A.
Therefore, x can be represented by some f ∈ C(σ(x)). The �rst three properties
then follow immediately using that fact. Concerning (4), note that σ((x−;λ)) =
σ(x−) + λ. Then

σ((x;λ)) ∩ (−∞, 0) = σ((x−;λ)) ∩ (−∞, 0) = (σ(x−) + λ) ∩ (−∞, 0)

yields the fourth property. �

We continue with some further properties. Note, that (2) is a considerable improve-
ment of (1) in the previous lemma.

Theorem 52. Let x ∈ A.

(1) If x, y ≥ 0 then x+ y ≥ 0 , i.e. A+ is a closed cone.
(2) x∗x ≥ 0.
(3) x∗yx = (y1/2x)∗(y1/2x) ≥ 0 for y ≥ 0.

Proof. (1) By Lemma (51) we have,

A+ ∩K1(0) = Asa ∩K1(0) ∩ {x : ‖1− x‖ ≤ 1}

with K1(0) being the closed unit ball in A. Since Asa is closed by the continuity
of ∗ , this is a closed and convex set. For x, y ∈ A+, there is a C > 0 such, that
x
C ,

y
C ∈ A+ ∩K1(0). By convexity

1

2C
(x+ y) ∈ A+ ∩K1(0).

Since positive multiples of positive elements are positive we have x+ y ∈ A+.
(2) To prove the second property, according to Lemma (50) we decompose x∗x =

c+ − c− and de�ne h := xc−. A calculation yields

−h∗h = c3− ≥ 0.

Using Lemma (51),(1) along with (1) we obtain

hh∗ = (h∗h+ hh∗) + (−h∗h) = 2Re(h)2 + 2Im(h)2 + (c3−) ≥ 0.

Since h∗h ≥ 0⇐⇒ hh∗ ≥ 0 by Theorem (10),(3), it follows that c− = 0.
(3) immediately follows from (2). �

Remark 53. By property (2) and the existence of square roots we get that x ∈ A is
positive if and only if there exists y ∈ A such that x = y∗y. This characterization
does not hold in general Banach *-algebras. The reason for this is that one does
not have the functional calculus which is used to obtain the decomposition x∗x =
c+ − c−.

De�nition 54. For x, y ∈ A one writes x ≥ y if x− y ≥ 0.
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Remark 55. This relation de�nes a partial order on A satisfying x ≤ y ⇒ x+ z ≤
y + z for all z ∈ A. To assert transitivity let x ≤ y and y ≤ z. Then

z − x = (z − y) + (y − x) ≥ 0

because the sum of positive elements is positive by the previous theorem. We
get x ≤ z.

Lemma 56. If y ≤ z, then x∗yx ≤ x∗zx and if y ∈ A+, then 0 ≤ x∗yx ≤ ‖y‖x∗x.

Proof. By (3) of the previous theorem, we have x∗(z − y)x ≥ 0 . Hence we get
x∗yx ≤ x∗zx. From Theorem (10),(2) we obtain y ≤ ‖y‖ 1. The second inequality
immediately follows from this fact and the �rst part of the present assertion. �

The next lemma and its corollary will be used in the next section, to proof the
existence of approximate units.

Lemma 57. If 0 ≤ x ≤ y and x ∈ Inv(A) then y ∈ Inv(A) and 0 ≤ y−1 ≤ x−1.

Proof. If x ∈ Inv(A) ∩ A+ then ε1 ≤ x for some ε > 0 as one sees by identifying
x with f ∈ C(σ(x)). Therefore, also ε1 ≤ y. Identifying y with a function g, we
see, that y is invertible. If x and y commute, we may restrict our considerations
to C∗(x, y) and use representation theory from Theorem (27) for commutative C*-
algebras to get the inequaltiy. Indeed, x and y are both represented by functions
f and g, on the Gelfand space of C∗(x, y), respectively, and we have 0 ≤ f ≤ g.
Thus 0 ≤ g−1 ≤ f−1 and �nally 0 ≤ y−1 ≤ x−1. For the general case note, that by
Lemma (56)

y−1/2xy−1/2 ≤ y−1/2yy−1/2 = 1.

From the special case we get

1 ≤ (y−1/2xy−1/2)−1 = y1/2x−1y1/2.

Finally,

y−1 = y−1/21y−1/2 ≤ y−1/2y1/2x−1y1/2y−1/2 = x−1.

�

Corollary 58. If 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖.

Proof. Let λ > r(y), then 0 ≤ λ − y ≤ λ − x . By the previous lemma, since
λ− y ∈ Inv(A) , λ− x is also invertible. Therefore, ‖x‖ = r(x) ≤ r(y) = ‖y‖. �

3.4. Approximate Units.

De�nition 59. An approximate unit for a C*-algebra A is a net (hλ)λ∈Λ of positive
elements in A with ‖hλ‖ ≤ 1 and hλx→ x for all x ∈ A.

There always exists an approximate unit for a C*-algebra. Indeed for any dense
two-sided ideal I ⊆ A there is an approximate unit contained in I.

Theorem 60. If I ⊆ A is a dense two-sided Ideal one de�nes ΛI := {x ∈ I+ : ‖x‖ < 1}
with I+ := A+ ∩ I. Then there exists a direction on ΛI , given by the partial order
≤, such that it is an approximate unit.
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Proof. Step 1: We start showing, that ≤ is a direction on ΛI . To do so, we will
prove, that the map α : x 7→ (1− x)−1 − 1 de�nes an order-isomorphism from ΛI
onto I+, where the order is given by ≤.

Indeed, for x ∈ ΛI , α(x) is well de�ned and belongs to I+, since

(1− x)−1 − 1 =

∞∑
k=1

xk = x

∞

(
∑
k=0

xk) ∈ I+

by ‖x‖ < 1. By Lemma (57) α is order preserving.
If y ∈ I+ then, (1− (1 + y)−1)(1 + y) = y.
The invertibility of (1 + y) (cf. Lemma (57)) yields

1− (1 + y)−1 = y(1 + y)−1 ∈ I+.

Let y be represented by the continuous function g on the Gelfand space of C∗(y).
Then y(1 + y)−1 is represented by g

1+g . The compactness of the Gelfand space

yields ‖y(1 + y)−1‖ < 1. Therefore,

1− (1 + y)−1 ∈ ΛI .

Thus the mapping β : x 7→ 1−(1+x)−1 maps I+ onto ΛI and obviously satis�es
α ◦ β = idI+ , β ◦ α = idΛI

. Hence, α is a bijection with the inverse mapping β.
As I+ is a directed set (x, y ∈ I+ ⇒ x, y ≤ x+ y), the same is true for ΛI .
Step 2: In order to prove, that ΛI is an approximate unit, we have to show, that

the net (x∗(1− y)x)y∈ΛI
converges to 0 for every x ∈ ΛA. Indeed from (1− y)2 =

(1− y)
1
2 (1− y)(1− y)

1
2 ≤ (1− y) we get

‖(1− y)x‖2 =
∥∥x∗(1− y)2x

∥∥ ≤ ‖x∗(1− y)x‖ .

Hence, from the fact, that by Lemma (50) every x ∈ A can be written as a linear
combination of elements from ΛA = {x ∈ A+ : ‖x‖ < 1}this su�ces.

We �rst notice that ΛI is dense in ΛA. Indeed, let y ∈ I be a su�cently good
approximation of x

1
2 for x ∈ ΛA, then by

‖x− yy∗‖ ≤ ‖x 1
2 (x

1
2 − y∗)‖+ ‖(x 1

2 − y)y∗‖

As a consequence without loss of generality we may assume that I = A. We
now �x x ∈ ΛA and view x as a function on the Gelfandspace of C∗(x). For every

ε > 0, that is su�ciently small, there exists a point µ ∈
{
λ ∈ ˆC∗(x) : f(λ) ≥ ε

}
independent of ε, where f obtains its maximum. We see, that for those ε > 0 one
�nds an n ∈ N such that

‖x(1− x 1
n )x‖ ≤

∥∥∥f(1− f 1
n )f

∥∥∥
∞
≤ max

{
f(µ)(1− ε 1

n )f(µ), ε2
}
≤ ε.

By Lemma (56), we see that x∗(1− y)x is decreasing. Therefore, (x∗(1− y)x)y∈ΛI

converges to 0 and the proof is completed.
we get that yy∗ ∈ ΛI approximates x. �

The next lemma establishes some properties of approximate units.

Lemma 61. If (hλ)λ∈Λis an approximate unit in A then

(1) xhλ → x and hλxhλ → x for all x ∈ A.
(2) (hαλ)λ∈Λ is an approximate unit for any α > 0.
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Proof. 1) Since hλ is positive xhλ → x follows from hλx
∗ → x∗. By decomposition

one can assume that x ≥ 0. Then

hλxhλ = (hλx
1
2 )(x

1
2hλ)→ x

1
2x

1
2 = x.

2) One has

‖h2
λx−x‖ ≤ ‖h2

λx−hλxhλ‖+‖hλxhλ−x‖ = ‖hλ‖ ‖hλx− xhλ‖+‖hλxhλ−x‖ → 0.

By induction
‖h2n

λ x− x‖ → 0

for any n ∈ N. Hence, there exits a λ0, such that for all λ ≥ λ0, we have

‖x∗h2n

λ x− x∗x‖ ≤ ε.
If α > 0, choose n with 2n−1 ≥ α. Then

x∗h2n

λ x ≤ x∗h2α
λ x ≤ x∗hαλx ≤ x∗x.

Combining these inequalities, by Corollary (58), we obtain

‖x∗hαλx− x∗h2α
λ x‖ ≤ ε, ‖x∗x− x∗hαλx‖ ≤ ε.

Therefore,

‖x− hαλx‖2 = ‖(x∗ − x∗hαλ)(x− hαλx)‖ = ‖x∗x− 2x∗hαλx+ x∗h2α
λ x‖

≤ ‖x∗x− x∗hαλx‖+ ‖x∗hαλx− x∗h2α
λ x‖ ≤ 2ε.

�

Remark 62. For the approximate unit constructed in Theorem (60) there is an
easier way to see (2). Indeed, if we examine the last part of the proof of Theorem
(60), we see, that there also exists an n ∈ N, such that ‖x(1− xα/n)x‖ ≤ ε.
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4. Representation Theory of C*-Algebras

4.1. Representations.

De�nition 63. A pair (H,π) is called a representation of a Banach *-algebra A if
π : A → B(H) is a *-homomorphism into the space of bounded operators on the
Hilbert space H.

Remark 64. Sometimes we will call just π a representation if it is clear what Hilbert
space is meant.

We introduce some notions for representations.

De�nition 65. Let (H,π) be a representation of a Banach *-algebra A.

• It is called faithful if π is injective.
• It is called irreducible if there are no non trivial closed invariant subspaces
U , i.e. π(A)(U) ⊆ U ⇒ U = {0} ∨ U = H.

• Let B ⊆ B(H) be a *-sub-algebra (i.e. a sub-algebra satisfying B∗ ⊆ B).
Consider the largest subspace N ⊆ H such that B|N = 0 ; i.e. N =⋂
A∈B kerA. Its orthogonal complement X := N⊥ is called the essential

subspace of B. If X = H, we say that B acts nondegenerately on H. The
representation π is called nondegenerate if π(A) ⊆ B(H) acts nondegener-
ately on H.

• ξ ∈ H is called a cyclic vector if π(A)ξ = H. If there exists a cyclic vector
ξ, we call (H,π, ξ) a cyclic representation.

Remark 66. If a representation π is irreducible, then it is also nondegenerate.
Irreducibility is formulated in terms of closed invariant subspaces. Since SU ⊆

SU for all bounded operators S, we have π(A)U ⊆ U ⇒ π(A)U ⊆ U . Hence, the
only invariant non trivial subspaces of an irreducible representation must be dense
in H.

Lemma 67. B ⊆ B(H) acts nondegenerately if and only if BH = H.

Proof. If BH =: X 6= H , then N := X⊥ 6= {0}. Since X is invariant and B is a
*-sub-algebra, N also is. To see this take x ∈ N , then

(Bx,X) = (x,B∗X) = (x,BX)

where BX ⊆ X, because X is invariant. It follows that (Bx,X) = {0}. Hence
BN ⊆ N . as BN ⊆ BH = X⊥N , B acts degenerately. Now suppose B|N = 0 on

some N 6= {0}. Again, because N is invariant X := N⊥ 6= H also is. For x ∈ H we
have (Bx,N) = (x,B∗N) = {0} . Hence, BH ⊆ X and further BH ⊆ X = X. �

Before we give some characterizations of irreducibility we have to prove the von-
Neumann bicommutant theorem.

De�nition 68. For a Hilbert space H and A ⊆ B(H) we de�ne the commutant

A
′

:= {T ∈ B(H) : TS = ST for allS ∈ A}.

Remark 69. Obviously A
′ ⊆ B(H) is a sub-algebra. If A is ∗ closed, than A

′
also

is. Indeed
a∗b = (b∗a)∗ = (ab∗)∗ = ba∗

for a ∈ A′ and all b ∈ A.
Moreover, we have A ⊆ A′′ . Therefore, A′ ⊆ A′′′ . Since A′′′ commutes with A

′′
,

and hence also with A, we get A
′′′ ⊆ A′ and �nally A

′
= A

′′′
.
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Lemma 70. Let A ⊆ B(H). Then the commutant A
′
is closed in the weak topology.

In particular, it is strongly closed.

Proof. Let (Ti)i∈I ∈ A
′
be a net, with (Tiξ, η)→ (Tξ, η) for all ξ, η ∈ H. We need

to prove, that T ∈ A′ . For an arbitrary S ∈ A, we get
(TSξ, η) = lim

i∈I
(TiSξ, η) = lim

i∈I
(STiξ, η) = lim

i∈I
(Tiξ, S

∗η) = (Tξ, S∗η) = (STξ, η).

By Lemma (7) TS = ST . �

Theorem 71. (Bicommutant) Let H be a Hilbert space. If B ⊆ B(H) is a *-sub-

algebra that acts nondegenerately, then B is strongly dense in B
′′
.

Proof. Let T
′′ ∈ A′′ . We have to show, that every strong neighborhood (cf. Remark

(4))

Nε,x1,...,xn(T
′′
) =

{
T ∈ B(H) :

∥∥∥(T
′′
− T )ξj

∥∥∥ < ε, j = 1, . . . , n
}

contains an element of B. Fixing ξ1, ξ2, . . . , ξn ∈ H and ε > 0 a T ∈ B with

max
{∥∥∥(T

′′
− T )ξj

∥∥∥ : j = 1, . . . , n
}
< ε

has to be constructed. Therefore, we consider the ampli�cations (cf. De�nition (2))

H∼ := ⊕
j=1,...,n

H, S∼ := ⊕
j=1,...,n

S

for S ∈ B(H). Moreover, we de�ne B∼ = {S∼ : S ∈ B}. Obviously B∼ is a *-sub-
algebra of B(H∼) that acts nondegeneratly. Now it su�ces to show, that there is
a T∼ ∈ B∼ such that ∥∥∥(T∼ − (T

′′
)∼)ξ

∥∥∥ < ε

where ξ = (ξ1, . . . , ξn).
For this consider X = B∼ξ. Since both X and X⊥ are invariant under B∼, we

have PX ∈ (B∼)
′
for the orthogonal projection PX onto X. Since (T

′′
)∼ commutes

with PX , we get (T
′′
)∼X ⊆ X. If we can show that ξ ∈ X we are done, for then

(T
′′
)∼ξ ∈ X . For all S ∈ B∼ we have

S[(1− PX)ξ] = (1− PX)[Sξ] = 0

since Sξ ∈ X. Because B acts nondegeneratly we may conclude (1−PX)ξ = 0 ,
i.e. ξ ∈ X. �

We will see, that we can reduce our attention to projections if we want to know
whether some T ∈ B(H) belongs to a certain commutant.

Lemma 72. Let B ⊆ B(H) be a *-sub-algebra and T ∈ B(H). Then T ∈ B′ if and
only if the ranges of all spectral projections of Re(T ) and Im(T ) are B-invariant
subspaces.

Proof. For T ∈ B′ we have Re(T ), Im(T ) ∈ B′ as they are linear combinations of
T, T ∗. It follows from Theorem (5) , that their spectral projections E(∆) are in

B
′
. Therefore, their ranges are invariant subspaces. Conversely, if the ranges of all

spectral projections are invariant subspaces, then all projections are in B
′
. Again

by Theorem (5) we get Re(T ), Im(T ) ∈ B′ . Hence, T ∈ B′ . �

Now we have all that we need to prove the following characterizations of irre-
ducible representations.
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Theorem 73. Let (π,H) be a representation of a C*-algebra A. The following
assertions are equivalent:

(1) π is irreducible.

(2) π(A)
′

= C1.

(3) π(A)
′′

= B(H).
(4) π(A) is strongly dense in B(H).
(5) If dim(H) 6= 1 , then every 0 6= ξ ∈ H is a cyclic vector for π.

Proof. Lets start with 1) ⇔ 2). Suppose π is irreducible. If T ∈ π(A)
′
, then

by the previous lemma and the de�nition of irreducibility Re(T ) and Im(T ) are
multiples of the identity. Thus T is a multiple of the identity. On the other hand
if π(A)

′
= C1, then again by the previous lemma the only invariant subspaces are

trivial.
2) ⇒ 3) is trivial. For 3) ⇒ 2) note, that B(H) has no nontrivial invariant

subspaces. By the previous lemma π
′
(A) = π(A)

′′′
= B(H)

′
= C1.

4) ⇒ 3) is immediate by Lemma (70).
3)⇒4) Since 3) implies 1), this follows by the commutant theorem.
We will now prove 1) ⇔ 5). Let π be irreducible. Then for ξ ∈ H, the closed

invariant subspace π(A)ξ must be trivial. If π(A)ξ = {0}, then Cξ is a closed
invariant subspace and thus the whole space, so dim(H) = 1.

For the other direction, consider a nonzero closed invariant subspace U ⊆ H. If
dim(H) = 1, then trivially U = H. If on the other hand every ξ is a cyclic vector,

choose ξ ∈ U . Then H = π(A)ξ ⊆ U . �

De�nition 74. Let A be a C*-algebra and (π1, H1), (π2, H2) representations. We
call T ∈ B(H1, H2) an intertwining operator if

Tπ1(x) = π2(x)T

for every x ∈ A. The set of all intertwining operators is denoted R(π1, π2).
If U ∈ R(π1, π2) is unitary (π1, H1), (π2, H2) are called unitarily equivalent. If in

addition, there exist cyclic vectors ξ1, ξ2 with Uξ1 = ξ2, then (π1, H1, ξ1), (π2, H2, ξ2)
are called unitarily equivalent as cyclic representations.

4.2. Positive Functionals, States. In order to describe commutative C*-algebras
we used multiplicative functionals. This approach fails in general, since a multiplica-
tive functional cannot distinguish between xy and yx for non commuting elements
x, y ∈ A. It turns out, that in order to describe a non-commutative C*-algebra one
has to introduce the more general notion of states.

De�nition 75. Let A be a C*-algebra. A functional ω is called positive if ω(x) ≥ 0
for all x ∈ A+. If it is normalized, i.e. ‖ω‖ = 1, then it is called a state. The set of
states on A is denoted by S(A).

Example 76. By Lemma (24) any multiplicative functional on a commutative
C*-algebra is a state.

Remark 77. For general Banach *-algebras a functional is called positive if ω(x∗x) ≥
0 for all x ∈ A. Indeed this de�ning property is the one that is needed in what
follows (see Lemma (81)). However by Remark (53) we see that this de�nition is
equivalent to the one given above in the case of C*-algebras. Since we do not have
this equivalence for general Banach *-algebras, a lot of the following proofs will not
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work in that case. Nevertheless the majority of these results hold in more general
settings as well, though the proofs are more elaborate.

Let us start by proving that every positive functional is automatically bounded.

Lemma 78. Let ω be a positive functional, then there exists C > 0 such that
‖ω‖ ≤ C.

It is an important fact, that any positive linear functional gives rise to a pre-inner
product.

Proof. After decomposition (cf. Lemma(50)) it su�ces to show that |ω(x)| ≤ C‖x‖
for all x ∈ A+ and a C > 0. Suppose there is no such C. Then for every n ∈ N there

is xn ∈ A+ with ‖xn‖ = 1 and ω(xn) ≥ 4n. We now consider x :=
∑∞

n=1 2−nxn.
This is a well de�ned element of A satisfying ω(x) ≥ 2−nω(xn) ≥ 2n for any n ∈ N,
which cannot be true. �

De�nition 79. (x, y)ω := ω(y∗x) for any positive functional ω on A.

Lemma 80. Let ω be a positive functional. Then ω(x∗) = ω(x).

Proof. If x ∈ Asa, then x = x+ − x− with x+, x− ∈ A+. We get

ω(x) = ω(x+ − x−) = ω(x+)− ω(x−) ∈ R.
For x ∈ A, x = a+ ib with a, b ∈ Asa, we have

ω(x∗) = ω(a− ib) = ω(a)− iω(b) = ω(x)

since ω(a), ω(b) ∈ R. �

Lemma 81. (., .)ω is a pre-inner product on A.

Proof. (x, y)ω = ω(y∗x) = ω(x∗y) = (y, x)ω by Lemma (80), and (x, x)ω =
ω(x∗x) ≥ 0 by Theorem (52). The sesquiliniarity is obvious. �

Since we have shown that (., .)ω is a pre-inner product, one gets the Cauchy-
Schwarz inequality.

Fact 82. |ω(y∗x)|2 ≤ ω(x∗x)ω(y∗y) for any x, y ∈ A.

The next theorem gives a characterization of positive functionals on unital alge-
bras.

Theorem 83. Let ω be a linear functional on A.

(1) If ω ≥ 0, then ‖ω‖ = sup {ω(x) : x ≥ 0, ‖x‖ ≤ 1} = limω(hλ) for an ap-
proximate unit (hλ)λ∈Λ. In particular, if A is unital ‖ω‖ = ω(1) = |ω(1)|.

(2) If ω1, ω2 ≥ 0, then ‖ω1 + ω2‖ = ‖ω1‖+ ‖ω2‖ .
(3) If A is unital, then ‖ω‖ = ω(1)⇐⇒ ω ≥ 0 .

Proof. 1) We have

‖ω‖ ≥ sup {ω(x) : x ≥ 0, ‖x‖ ≤ 1} ≥ lim supω(hλ).

Now on the other hand, for every ε > 0 there is a ‖y‖ = 1 such that,

‖ω‖2 − ε ≤ |ω(y)|2 = lim |ω(h
1/2
λ y)|2 ≤ lim inf ω(hλ)ω(y∗y) ≤ ‖ω‖ lim inf ω(hλ).

2) From (1) it follows, that

‖ω1 + ω2‖ = lim(ω1 + ω2)(hλ) = limω1(hλ) + limω2(hλ) = ‖ω1‖+ ‖ω2‖ .
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3) It su�ces to show, that ω is positive on the C*-sub-algebras C∗(x) where
x ∈ A+ if ω(1) = ‖ω‖. We can use continuous functional calculus for normal ele-
ments, to identify C∗(x) ∼= C(σ(x)). Therefore we may use the Riesz representation
theorem, to identify ω with a complex measure µ. ω(1) = ‖ω‖ yields ‖µ‖ = µ(σ(x)),
which is only possible for µ ≥ 0. Hence, ω ≥ 0. �

An important consequence is, that any state on A uniquely extends to a state on
A1.

Fact 84. Let ω be a positive linear functional on the non unital C*-algebra A.
Then by ω(1) = ‖ω‖, it extends to a positive functional on A1. In particular, the
extension of ω ∈ S(A) belongs to S(A1).

The following estimate, will be useful later on.

Corollary 85. If x ∈ A, then |ω(x)|2 ≤ ω(x∗x) for a state ω.

Proof. ω extends to A1. So one can use Lemma (82) with y = 1. �

4.3. The GNS Construction. In this section we use the fact, that postive func-
tionals induce pre-inner products to obtain representations. For every positive func-
tional ω, the so called Gelfand-Naimark-Segal construction, yields a representation
πω of the C*-algebra.

Theorem 86. Let ω be a positive functional on A.

(1) Nω := {x ∈ A : ω(x∗x) = 0} is a left ideal in A. The pre-inner product
(., .)ω induces a well-de�ned inner product on A/Nω by (x+Nω, y+Nω)ω :=
(x, y)ω. Its completion (Hω, (., .)ω) is a Hilbert space.

(2) Let πω(x)(y + Nω) := xy + Nω for x, y ∈ A. Then πω(x) is a bounded
operator on A/Nω with ‖πω(x)‖ ≤ ‖x‖. It follows that it extends to a
bounded operator on Hω which we will also call πω(x).

(3) The map πω : A→ B(Hω) is a representation, called the GNS representa-
tion of A associated to ω.

Proof. 1) Let us start by showing that Nω is a closed left ideal in A. It is obviously
closed since it is the zero-set of a continuous map. For y, z ∈ A and x ∈ Nω using
Lemma (82) we obtain

|ω((yx)∗yx))|2 = |ω(x∗y∗yx)|2 ≤ ω(x∗y∗y(x∗y∗y)∗)ω(x∗x) = 0.

From |ω(x∗z)|2 ≤ ω(z∗z)ω(x∗x) = 0 we infer

ω((x+z)∗(x+z)) = ω(x∗x+x∗z+z∗x+z∗z) = ω(x∗z)+ω(z∗x)+ω(z∗z) = ω(z∗z).

It follows that Nω is a left ideal (for Nω + Nω = Nω one chooses z ∈ Nω in the
above equation) and by employing the polar formula that the pre-inner product is
well de�ned by acting on the representatives. From

0 = ω((x+Nω)∗(x+Nω)) = ω((x∗ +Nω)(x+Nω)) = ω(x∗x)⇒ x+Nω = 0 +Nω

one concludes that (., .)ω is de�nit on A/Nω.
2) Since Nω is a left ideal πω(x) is a well de�ned operator on N/Nω. Applying

ω to
y∗x∗xy ≤ ‖x‖2y∗y

yields
‖πω(x)‖ ≤ ‖x‖.
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3) πω is obviously a homomorphism. Furthermore

(πω(x∗)(y +Nω), z +Nω)ω = ω(z∗x∗y) = (y +Nω, πω(x)(z +Nω))ω

= (πω(x)∗(y +Nω), z +Nω)ω.

Using Lemma (7), we get πω(x∗) = πω(x)∗. �

We are going to see that representations constructed in this way are always cyclic
and unique in a certain sense.

Theorem 87. Let (Hω, πω) be the GNS-representation of A associated to ω.

(1) There is a vector ξω ∈ Hω satisfying πω(x)ξω = x + Nω and ω(x) =
(πω(x)ξω, ξω). ξω is cyclic for πω with ‖ξω‖2 = ‖ω‖.

(2) Let π be a representation of A on B(H) with a ξ cyclic for π and ω(x) =
(π(x)ξ, ξ). Then (H,π, ξ) is unitarily equivalent to (Hω, πω, ξω).

Proof. 1) In the unital case ξω is simply 1 +Nω. In the general case one considers
the extension ω1 of ω to A1 with ‖ω1‖ = ‖ω‖. By Theorem (83),

ω1(1) = ‖ω‖ = limω(hλ) = limω(h2
λ).

Hence,

lim ‖1− hλ‖2Hω1
= limω1((1− hλ)2) = 0.

It follows that A/Nω is dense in A1/Nω1 and Hω can be identi�ed with Hω1 . Now
ξω = ξω1

satis�es ω(x) = (πω(x)ξω, ξω)H .
2) If there was a unitary operator establishing a unitary equivalence, it must

certainly send π(x)ξ to πω(x)ξω. So we de�ne U : π(A)H → πω(A)Hω by Uπ(x)ξ =
πω(x)ξω. One calculates

(Uπ(x)ξ, Uπ(y)ξ)Hω
= (πω(x)ξω, πω(y)ξω)Hω

= (πω(y∗x)ξω, ξω)Hω
=

ω(y∗x) = (π(y∗x)ξ, ξ)H = (π(x)ξ, π(y)ξ)H .

Thus U is an isometry. In particular, it is well de�ned. Since ξ, ξω are cyclic, it
uniquely extends to a unitary operator also denoted by U from H to Hω. For all
x, y ∈ A we have

πω(x)Uπ(y)ξ = πω(xy)ξω = Uπ(xy)ξ = Uπ(x)π(y)ξ.

Hence, by a density argument πω(x)U = Uπ(x) for all x ∈ A and U establishes
a unitary equivalence. �

Remark 88. As mentioned in Remarks (53, 77) a lot of the things we have done
do not work for Banach *-algebras. However, with some e�ort the results of this
section may be obtained for Banach *-algebras with a bounded approximate iden-
tity. Central in this considerations is the Cohen-Hewitt Factorisation Theorem. For
more details see [4] .
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4.4. The Space of States, Pure States. As mentioned above, so far we did
not need all the structure that comes with a C*-algebra. We have seen that for
every state there exists a representation but this representation is not necessarily
faithful. In order to get a faithful representation we will consider direct sums of
GNS representations. If there are su�ciently many states this approach will work.
Indeed, this is the point where we need most of the structure of C*-algebras.

We will start with a Banach-Alaoglou like theorem.

Theorem 89. If A is a unital C*-algebra, then (S(A), σ(S(A), ι(A)) is a compact
convex subset of the dual space A∗.

Proof. The proof works similar to Theorem (25) or Banach-Alaoglou respectively.
For x ∈ A+ consider the maps

ιx : A
′
→ C; φ 7→ φ(x).

Using these maps, we get

S(A) = KA∗

1 (0) ∩ {φ ∈ A∗ : φ(1) = 1} ∩
⋂
x∈A+

ι−1
x ([0,∞)).

Because the ιx are continuous, this is an intersection of w*-closed sets. Hence,
S(A) is also w*-closed. By Banach-Alaoglou, KA∗

1 (0) is compact. Hence S(A) is
compact.

To see, that S(A) is convex, note, that the sum of positive functionals is always
a positive functional. Moreover, by Theorem (83)

‖λω1 + (1− λ)ω2‖ = λ ‖ω1‖+ (1− λ) ‖ω2‖ = 1

if ω1, ω2 ∈ S(A). Therefore, a convex combination of states is always a state. �

The next theorem one could understand as a version of the algebraic Hahn-
Banach theorem for states.

Theorem 90. If B ⊆ A is C*-sub-algebra and ω is a state on B, then ω extends
to a state ω′ on A.

Proof. By the Hahn-Banach theorem there is an extension ω′ with norm 1. If B
is unital, then by Theorem (83) ω′ is a state since ω′(1) = ω(1) = 1. If B is not
unital, one extends ω to B1 ⊆ A1 and then there is an extension ω′ on A1. By
restricting to A one gets the wanted extension. �

If the set of positive functionals would fully describe a C*-algebra, obviously the
subset of states also would. As it will eventually turn out, there is an even smaller
subset su�cient for that task.

De�nition 91. A state ω is called pure if it is an extrem point of S(A), i.e.
ω = λω1 + (1− λ)ω2 with 0 < λ < 1 and ω1, ω2 ∈ S(A), yields ω1 = ω2 = ω. The
set of pure states is denoted P (A).

Lemma 92. A state ω is pure, if and only if all positive ω∼ with ω∼ ≤ ω are
multiples of ω. Here ω∼ ≤ ω mean, that ω∼(x) ≤ ω(x) for all x ∈ A+.

Proof. Let ω be pure and ω∼ ≤ ω. Since ‖ω − ω∼‖ = ‖ω‖ − ‖ω∼‖ (cf. Theorem
(83),(2)), we may assume, that 1 = ‖ω‖ > ‖ω∼‖. We get

ω = ‖ω∼‖ ω∼

‖ω∼‖
+ (1− ‖ω∼‖) (ω − ω∼)

(1− ‖ω∼‖)



REPRESENTATION THEORY OF C*-ALGEBRAS 23

where by Theorem (83),(2), (ω−ω∼)
(1−‖ω∼‖) is a state. Thus ω∼

‖ω∼‖ = ω.

Now let all ω∼ ≤ ω be multiples of ω. Consider a convex combination ω =
λω1 + (1 − λ)ω2 with 0 < λ < 1. It su�ces to show, that ω1 = ω. Obviously
λω1 = ω − (1 − λ)ω2 ≤ ω. Thus ω1 is a multiple of ω and since it is a state,
ω1 = ω. �

Theorem 93. Let A be a C*-algebra and B ⊆ A a non trivial C*-sub-algebra. If
ω is a pure state on B, then the set ext(ω) of extensions of ω to a state on A is a
compact convex subset of S(A) and any extrem point of this set is a pure state on
A.

Proof. Since S(A) is convex, ext(ω) obviously also is. For compactness, note, that

ext(ω) = KA∗

1 (0) ∩ {φ ∈ A∗ : φ|B = ω} ∩
⋂
x∈A+

ι−1
x ([0,∞)).

Indeed, every functional on the right hand side φ satis�es ‖φ‖ = 1. This follows
from (cf. Theorem (83) )

‖φ‖ = sup {ω(x) : x ≥ 0, ‖x‖ ≤ 1, x ∈ A} ≥

≥ sup {ω(x) : x ≥ 0, ‖x‖ ≤ 1, x ∈ B} = ‖ω‖ = 1.

It is easy to see, that {φ ∈ A∗ : φ|B = ω} is weakly closed. Hence, ext(ω) is com-
pact.

Let ω′ be an extrem point of ext(ω) . If ω′ = λω1 + (1−λ)ω2 for ω1, ω2 ∈ S(A),
then ω1|B = ω2|B = ω′ because ω is a pure state, i.e. ω1, ω2 ∈ ext(ω). Since ω′ is
an extrem point of ext(ω), we get ω1 = ω2 = ω′ on A. Thus ω′ is a pure state. �

Remark 94. Since ext(ω) is compact, by the Krein-Milman theorem there always
exist extrem points (cf. [2], Section 5).

Corollary 95. For a C*-algebra A and x ∈ A there exists a pure state ω and a
vector ξ ∈ Hω with ‖ξ‖ = 1, such that ‖πω(x)ξ‖Hω

= ‖x‖. In particular, ‖πω(x)‖ =
‖x‖.

Proof. Step 1: If 0 6= x ∈ Asa, then there is a pure state ω with |ω(x)| = ‖x‖.
One considers the C*-algebra C∗(x) which is isometrically isomorphic to C(σ(x)).

Let x be represented by a real valued f . Then f takes its maximum for some
λ ∈ σ(x). ιλ : g → g(λ) is a pure state on C(σ(x)) satisfying |ιλ(f)| = ‖f‖. So
there is a pure state on C∗(x) satisfying the conditions. By Theorem (93) and its
subsequent remark, it can be extended to a pure state ω on A1. x ∈ A implies, that
ω|A is a state. ω|A is even a pure state on A. Indeed, if ω|A = λω1 +(1−λ)ω2, then
the unique extensions of ω1, ω2 to A1 would give the same convex combination for
ω. Thus ω1 = ω2 = ω|A.

Step 2: By Step 1 there exists a pure state ω with ω(xx∗) = ‖xx∗‖ = ‖x‖2. We
get

‖πω(x)ξω‖2Hω
= (πω(xx∗)ξω, ξω)Hω

= ω(xx∗) = ‖x‖2.

�
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4.5. The Theorem of Gelfand-Naimark. As announced above considering di-
rect sums of GNS-representations, we get a faithful representation.

Theorem 96. For every C*-algebra A there is an isometric representation π.

Proof. By Corollary (95) and the fact that

∥∥∥∥ ⊕
ω∈P (A)

πω(x)

∥∥∥∥ = sup
ω∈P (A)

‖πω(x)‖,

( ⊕
ω∈P (A)

Hω, ⊕
ω∈P (A)

πω)

is an isometric representation (cf. De�nition (2) for the notation). �

This result is quite remarkable since it states, that every C*-algebra is basically
nothing else but an operator algebra. The next few results are concerned with
showing, that this representation is a direct sum of irreducible representations.
Therefore, we will prove, that a GNS representation is irreducible if and only if the
associated state is pure.

At �rst we make a trivial observation.

Corollary 97. If ω is a positive functional on A, then by ω(T ) = (Tξω, ξω)ω it
induces a positive functional with the same norm on B(Hω). In particular, a state
induces a state.

Proof. We have |(Tξω, ξω)| ≤ ‖T‖ · ‖ξω‖2 = ‖T‖ · ‖ω‖. Hence, ‖T 7→ (Tξω, ξω)‖ ≤
‖ω‖. Equality follows, if we set T = I. �

The next result may be seen as an operator theoretic version of the Radon-
Nikodym theorem.

Theorem 98. Given a C*-algebra A let ω1 ≤ ω2 (i.e. ω1(x) ≤ ω2(x) for all x ∈
A+) be two positive functionals on A. Then there is an unique operator T ∈ πω2

(A)
′

with 0 ≤ T ≤ 1, such that ω1(x) = ω2(Tπω2(x)) for all x ∈ A.

Proof. We start by de�ning a pre-inner product that relates ω1 to ω2. In fact,
[πω2(x)ξω2 , πω2(y)ξω2 ] := ω1(y∗x) is a pre-inner product on πω2(A)ξω2 . To see,
that it is well de�ned, take x ∈ A, such that x + Nω2

= πω2
(x)ξω2

= 0. Hence,
x ∈ Nω2

, i.e. ω2(x∗x) = 0. Using ω1 ≤ ω2, we obtain

ω1(x∗x) = 0.

Hence, |ω1(y∗x)|2 ≤ ω1(x∗x)ω(y∗y)1 = 0. Let z ∈ A. Then,
|[πω2

(z)ξω2
, πω2

(z)ξω2
]|2 = |ω1(z∗z)|2 ≤ |ω2(z∗z)|2 ≤ ω2(z∗z)ω2(z∗z) =

= (πω2(z)∗πω2(z)ξω2 , ξω2)Hω2
(πω2(z)∗πω2(z)ξω2 , ξω2)Hω2

=

= ‖πω2
(z)ξω2

‖2 ‖πω2
(z)ξω2

‖2 .
Since [., .] is hermitian, ‖[., .]‖ = sup‖z‖=1 ‖[z, z]‖ ≤ 1. By continuity this pre-

inner product extends to Hω2
.

The Lax-Milgram Theorem (cf. Proposition 3.2.6 in [2]), asserts, that there
exists a unique operator T ∈ B(Hω2) with [η, ξ] = (Tη, ξ)Hω2

for all η, ξ ∈ Hω2 .

By the calculation above we get 0 ≤ T ≤ 1. One has ω1(x) = [πω2
(x)ξω2

, ξω2
] =

(Tπω2
(x)ξω2

, ξω2
)Hω2

= ω2(Tπω2
(x)) for all x ∈ A (cf. Corollary (97)). To show

T ∈ πω2(A)
′
we calculate

(Tπω2(x)[πω2(z)ξω2 ], πω2(y)ξω2)Hω2
= ω1(y∗(xz)) = ω1((x∗y)∗z) =
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(Tπω2(z)ξω2 , πω2(x∗)[πω2(y)ξω2 ])Hω2
= (πω2(x)T [πω2(z)ξω2 ], πω2(y)ξω2)Hω2

.

By density and continuity of the scalar product we get Tπω2
(x) = πω2

(x)T . �

We are now able to characterise the irreducible GNS-representations.

Theorem 99. For a state ω on A, the representation πω is irreducible if and only
if ω is a pure state.

Proof. Let πω be irreducible. By the previous theorem every ω
′ ≤ ω can be written

as ω
′
(x) = ω(Tπω(x)) with T ∈ π′ω(A). Irreducibility gives T = cI according to

Lemma (73). Therefore, ω
′
is a multiple of ω and by Lemma (92) ω is pure.

Conversely, for a pure ω , suppose there is a non trivial projection P ∈ πω(A)
′
.

We obtain Pξω 6= 0, for otherwise

P [πω(x)ξω] = πω(x)Pξω = 0

for all x ∈ A. Since ξω is a cyclic vector, we get P = 0. Analogously, (1−P )ξω 6=
0. Therefore, we can decompose ω into the nonzero functionals (cf. Corollary (97)

ω1(x) := (πω(x)Pξω, P ξω)Hω
= ω(Pπω(x))

ω2(x) := (πω(x)(1− P )ξω, (1− P )ξω)Hω
= ω((1− P )πω(x)), ω = ω1 + ω2

These are positive because πω(x) is a positive operator for x ∈ A+. Since ω is
pure, due to Lemma (92), there exists 0 ≤ λ ≤ 1 with ω1 = λω and ω2 = (1− λ)ω.
As ω1, ω2 6= 0 we have λ 6= 0, 1. Using again, that ξω is a cyclic vector, for every ε >
0, we �nd x ∈ A such that ‖πω(x)ξω − Pξω‖Hω

≤ ε and ‖πω(x)ξω‖2Hω
= ‖Pξω‖2Hω

.
It follows that

‖(1− P )πω(x)ξω‖Hω = ‖(1− P )(πω(x)ξω − Pξω)‖Hω ≤ ε.

Thus we have

(1− λ)‖Pξω‖2Hω
= (1− λ)ω(x∗x) = ω2(x∗x) = ‖(1− P )πω(x)ξω‖2Hω

≤ ε2.

This is a contradiction to λ 6= 1 and by Lemma (72) we conclude πω(A)
′

= C1.
Using Theorem (73) we see that πω is irreducible. �

We now get, that the representation in Corollary (96) is a direct sum of irre-
ducible ones.

Theorem 100. The representation ( ⊕
ω∈P (A)

Hω, ⊕
ω∈P (A)

πω) called the universal rep-

resentation is isometric and a direct sum of irreducible representations.

To end this section we will look once again at commutative C*-algebras. Using
the characterization of irreducible GNS representations we can show that for a
commutative A the Gelfand space Â coincides with P (A).

Lemma 101. Let A be commutative. A functional ω is a pure state if and only if
it is multiplicative.

Proof. As seen in Example (76) any multiplicative functional ω is a state. Since ω
is multiplicative we have Hω = A\Jω = A\kerω ∼= C, as the co-dimension of kerω
is equal to 1. By Theorem (73) πω is irreducible and in turn ω is pure.
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Now suppose on the other hand, that ω is pure. We have πω(A) ⊆ πω(A)
′
,

since A is commutative. By Theorem (73), one gets πω(A)
′

= CI and therefore
πω(A) = CI. Furthermore,

ω(x) = (πω(x)ξω, ξω)Hω = (cξω, ξω)Hω = c

yields πω(x) = ω(x)I. Hence,

ω(xy) = (πω(x)πω(y)ξω, ξω)Hω = ω(x)ω(y)(ξω, ξω)Hω = ω(x)ω(y).

�

Example 102. It is instructive to derive the representation of commutative C*-
algebras by the Gelfand-transform from non commutative representation theory.
We now know, that the set of pure states coincides with the Gelfand space. We
have Hω ' C and πω(x)(z) = ω(x)z. Therefore, the universal representation acts

on H =
∏

C
ω∈Â

as point wise multiplication by ω(x). Thus it is given by f : Â →

C, ω 7→ ω(x).
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