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1 Abstract

This bachelor thesis shall treat the construction of a particular Hilbert space,
namely the space of differentiable forms on a smooth compact Hausdorff Rie-
mannian manifold of finite dimension.

This Hilbert space is used in the construction of a spectral triple for said
manifold, which is a triple (A,H,D) consisting of a C∗-algebra A that is
represented on the Hilbert space H and a Dirac operator D that fulfils a
certain set of properties. Such spectral triples are a concept developed in
the field of non-commutative geometry and, put simply, allow for some geo-
metrical objects to be retrieved from them. A prominent, exemplary result
is that any closed Riemannian manifold endowed with a spinc-structure can
be reconstructed from its algebra of C∞-functions on the manifold, using
the reconstruction theorem of the french mathematician A.Connes.

The Hilbert space of differentiable forms on a manifold - the construction
of which is outlined in this thesis - constitutes the second component of the
spectral triple dual to a manifold with above-mentioned properties.

The content of the courses taught in the bachelors program at the Vienna
University of Technology and the first two chapters of [1], which was used in
the course on differential geometry in spring 2016, constitute the theoretical
ground this work is based upon.
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2 A Concise Review of Differential Geometry

In this first section a short review of some important results and some useful
(notational) conventions regarding differential geometry are outlined.

Definition 2.1 (manifold). Let M be a topological space with the topology T.
M is called a n-dimensional topological manifold if it satisfies the following
conditions:

1. M is a Hausdorff space

2. the topology T of M has a countable basis

3. M is locally homeomorphic to Rn, or equivalently, for all p ∈M there
exists some open set U ⊂ M,p ∈ U , an open set V ⊂ Rn and a
homeomorphism x : U −→ V . Such a homeomorphism x will here be
referred to as chart.

Definition 2.2. The manifold M is called compact if it is compact as a
topological space.

Since the term smooth is not uniformly used, given different mathemat-
ical contexts, a definition is given in (2.4).

Definition 2.3 (atlas). A set of charts xα : Uα −→ Vα, α ∈ A, is called an
atlas of M, if every point in the manifold is included in the domain of some
chart, that is ⋃

α∈A
Uα = M. (1)

Definition 2.4 (smoothness). An atlas A is called smooth (or C∞), if all
the coordinate changing functions are C∞-diffeomorphisms. That is, for two
charts xα, xβ the mapping

xβ ◦ x−1
α : xα(Uα ∪ Uβ) −→ xβ(Uα ∪ Uβ)

is a C∞(Rn-function.
Two such atlases are called equivalent, if their union also gives a smooth
atlas.
An atlas Amax is called maximal if it already contains all charts that can be
added safely to A without destroying its smoothness.
A manifold paired with a maximal atlas (M,Amax) is called a smooth man-
ifold.

Definition 2.5 (orientation). Two charts xα, xβ ∈ A are said to be ori-
entation preserving, if the Jacobian of the transition mapping J(xβ ◦ x−1

α )
is everywhere positive on Uα ∩ Uβ. A manifold together with an atlas that
contains only orientation preserving charts is called an orientable manifold.
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Remark 2.6. There are several ways to introduce the tangent space at a
point p ∈ M , denoted with TpM . We will make use of the conventions set
in [1], where the tangent space is defined as the set of equivalence classes on
the set of (at least once) differentiable curves {γ : R −→M |γ(0) = p}, with
the equivalence relation

a ∼ b :⇔ d

dt
(x ◦ a) �t=0=

d

dt
(x ◦ b) �t=0,

where x is a chart. The equivalence class of a curve c will be denoted as
ċ(0).
For a chart x and a point p ∈M we define the differential of that x at p as

dx�p : TpM −→ Rn

ċ(0) 7→ d

dt
(x ◦ c) �t=0 .

For a basis (b1, . . . . , bn) of Rn we can define ci := x−1(x(p) + tbi) and hence

∂

∂xi
(p) := ċi(0)

give the basis elements for TpM .

Definition 2.7 (Riemannian). A pair (M, g) is called a riemannian mani-
fold, if M is a manifold g is a function that to each p ∈M assigns a inner
product gp on the respective tangent space

gp : TpM × TpM −→ R

that is differentiable as a function of p.

Throughout this thesis M will denote the manifold, TpM the tangent
space at the point p ∈M and the symbol ∗ used in the exponent will denote
the dual of the respective vector space.

Remark 2.8. We assume throughout that the manifold M is
· smooth
· n-dimensional
· compact
· orientable
· Riemannian

To construct an inner product space for the smooth sections of the exte-
rior algebra we first need to gain some ground in tensor field theory. We will
start with elaborating basic properties of the Grassmann algebra Λ•(T

∗
pM)

and then justify the integration of n-forms over a manifold M with the prop-
erties stated in (2.8). With that, we can define a inner product by making
use of the Hodge-∗-operator and obtain a Hilbert space by completion.
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3 Construction of the Hodge-∗-Operator

To begin with, we have to establish some properties and definitions of the
tensor algebras that the Hodge-∗-operator acts on.

Definition 3.1. A q-multilinear function

ω : V × V × · · · × V︸ ︷︷ ︸
q times

−→ R

is called a q-form, or equivalently, a covariant tensor of degree q. Let

Tq(V ) := {ω|ω is q-form over V }

denote the set of q-forms over V , with the identifications

T0(V ) = R and T1(V ) = V ∗,

where V ∗ denotes the vector space dual to V .

Definition 3.2. An ω ∈ Tq(V ) is called skew-symmetric (or antisymmetric)
if the equality

ω(x1, . . . , xi, . . . , xj , . . . , xq) = −ω(x1, . . . , xj . . . . , xi, . . . , xq) ∀i, j ∈ {1, . . . , q}

holds. Let
Λq(V ) := {w ∈ Tq(V )|ω is skew-symmetric}

denote the set of skew-symmetric forms of degree q over V .

Proposition 3.3. With the relations

(ω1 + ω2)(x) := ω1(x) + ω2(x)

(λω)(x) := λω(x),

where ω1 and ω2 are q-degree tensors and λ ∈ R, both the spaces Tq(V ) and
Λq(V ) become vector spaces over R.

Definition 3.4 (tensor product). The tensor product is defined as

⊗ : Tq(V )× Tk(V ) −→ Tq+k(V )

(ωq ⊗ ωk)(x1, . . . , xq, xq+1 . . . , xq+k) := ωq(x1, . . . , xq)ωk(xq+1, . . . , xq+k),

Proposition 3.5. The following relations are clear:

(λωq)⊗ ωk = λ(ωq ⊗ ωk),
(ωq + γq)⊗ ωk = ωq ⊗ ωk + γq ⊗ ωk,
ωq ⊗ (ωk + γk) = ωq ⊗ ωk + ω1 ⊗ γk,
(ωq ⊗ ωk)⊗ ωl = ωq ⊗ (ωk ⊗ ωl),

where ωq, γq ∈ Tq(V ), ωk, γk ∈ Tk(V ), ωl ∈ Tl(V ) and λ ∈ R.
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The tensor product of two skew-symmetric forms is not necessarily skew-
symmetric. For example, take the product of
ω1 = (1, 1), ω2 = (1,−1) ∈ T1(R2) = (R2)∗. Therefore we define another
operation for skew-symmetric multilinear forms. For that purpose, let A :
Tq(V ) −→ Λq(V ) denote the alteration operator, given by the relation

Aωq(x1, . . . , xq) =
1

q!

∑
σ∈Sq

ωq(xσ(i), . . . , xσ(q)) · sgn(σ),

where Sq is the permutation group on q elements. Obviously, Aωq is indeed
skew-symmetric.

Definition 3.6. For ωq ∈ Λq(V ), ωk ∈ Λk(V ) we define the exterior product
(or wedge product) as

∧ : Λq(V )× Λk(V ) −→ Λq+k(V )

ωq ∧ ωk :=
(q + k)!

q!k!
A(ωq ⊗ ωk).

Moreover, denote by

Λ•(V ) :=
⊕
i∈N

Λi(V )

the direct sum of all i-degree skew-symmetric tensors, i.e., the set of all
skew-symmetric forms on V.

Example 3.7. Let us compute the exterior product for a basis of the vector
space. Let e∗k, e

∗
l ∈ V be two vectors of the basis dual to the one in V and

x1 = xi1ei1 , x2 = xi2ei2 ∈ V 1. We can compute that

(e∗k ∧ e∗l )(x1, x2) =
2!

1!1!
A(e∗k ⊗ e∗l )(x1, x2)

=

∣∣∣∣e∗k(x1) e∗k(x2)
e∗l (x1) e∗l (x2)

∣∣∣∣ =

∣∣∣∣xk1 xk2
xl1 xl2

∣∣∣∣ .
By induction we can compute for m dual basis vectors

(e∗i1 ∧ · · · ∧ e
∗
im)(x1, . . . , xm) =

∣∣∣∣∣∣∣
e∗i1(x1) · · · e∗i1(xm)

...
...

e∗im(x1) · · · e∗im(xm)

∣∣∣∣∣∣∣ . (2)

1Here the ”Einstein convention” is used to denote the coordinate form of the vectors:
the superscript denotes the coordinate values, the subscript belongs to the basis vectors
and if an index appears both above and below of a term, this index is to be summed over.
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Proposition 3.8. The following computational rules hold for the exterior
product:

(ωq + γq) ∧ ωk = ωq ∧ ωk + γq ∧ ωk (3)

(λωq) ∧ ωk = λ(ωq ∧ ωk) (4)

ωq ∧ ωk = (−1)qkωk ∧ ωq (5)

(ωq ∧ ωk) ∧ ωl = ωq ∧ (ωk ∧ ωl), (6)

where ωq, γq ∈ Λq(V ),ωk ∈ Λk(V ) and ωl ∈ Λl(V ).

Proof. We will make use of the relations we already have for the tensor
product.
(i) A straightforward computation yields

(ωq + γq) ∧ ωk =
(q + k)!

q!k!
A((ωq + γq)⊗ ωk)

=
(q + k)!

q!k!
A(ωq ⊗ ωk + γq ⊗ ωk) = ωq ∧ ωk + γq ∧ ωk

(ii) Follows directly from the definition of the exterior product.
(iii) Let e1, . . . , en ∈ V be a basis of V and let xi1ei1 , . . . , x

imeim ∈ V be a
set of m vectors. We first note that for every m-tensor β on V , since it is
m-multilinear, we can compute

β(xi1ei1 , . . . , x
imeim) = β(ei1 , . . . , eim)xi1 · · ·xim = ai1,...,imx

i1 · · ·xim ,

so that we can identify each m-degree tensor with a set of numbers ai1,...,im
(note that for the readers convenience the Einstein convention is used again).
Thus it is enough to check equation (5) on the basis of V . When we recall
the computation of the exterior product for m basis vectors as in (2) we
obtain (5) by the computational rules for determinants for matrices with
exchanged columns.
(iv) Follows again directly from the properties of the tensor product.

Proposition 3.9. With the definition of the exterior product and the vector
space operations on Λi(V ), ∀i ∈ N the set Λ•(V ) becomes a graded algebra.

Proof. Clearly the sum of two skew-symmetric tensors yields again a skew-
symmetric form, as does multiplication by a scalar. The exterior product is
the bilinear relation that satisfies the axioms for an algebra, as was shown
in Proposition (3.8).
Finally we recall that an algebra A over a ring R is called graded, if it is
graded as a ring. More explicitly, a graded ring allows a decomposition of
its Abelian groups (R,+) into a direct sum of Abelian groups (Rg,+) with
an index set G

R =
⊕
g∈G

Rg, (7)
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such that the second binary operation · of the algebra satisfies

Ri ·Rj ⊂ Ri+j .

This definition of graduation was taken from [6]. The algebra A over R is
called graded, if it satisfies

Ri ·Aj ⊂ Ai+j (8)

Ai ·Rj ⊂ Ai+j . (9)

In our case, the operation + is the usual addition and the multiplication
is the exterior product and hence it is clear that conditions (7),(8) and are
fulfilled, since

Λk(V ) ∧ Λl(V ) ⊂ Λk+l(V ).

To define further properties that shall lead to the definition of an in-
ner product on Λ•(V ), we need to give some definition of a basis and an
orientation.

Remark 3.10. For k > n the space Λk(V ) equals the trivial space. This can
easily be seen, as any such form in Λk(V ) would have to contain at least one
basis element at least twice. But then, recalling the antisymmetry property,
this form must be the zero-form.

Theorem 3.11. Let V be a n-dimensional vector space and 0 ≤ k ≤ n. Let
further e∗i , i ∈ {1, . . . , n} denote the unit basis vectors of V ∗ (∼= V ) dual to
e1, . . . . , en ∈ V . Then the dimension of Λk(V ) is dim(Λk(V )) =

(
n
k

)
and a

basis is given by

Ẽ = {e∗i1 ∧ · · · ∧ e
∗
ik
|{i1, · · · , ik} ⊂ {1, · · · , n}}, (10)

where i1 ≤ i2 ≤ · · · ≤ ik is an increasing index set.

Proof. To prove that the set of all
(
n
k

)
exterior products of k unit vectors

(of the dual basis) give a basis for Λk(V ) we have to show that (i) they are
linearly independent and (ii) they span the whole space.
(i) Suppose the set defined in (10) is linearly dependent. Of course no set
of Indices i1 ≤ i2 ≤ · · · ≤ ik is used twice in that set. Then we have

0 =

 ∑
I increasing index set

|I|=k

e∗i1 ∧ · · · ∧ e
∗
ik

 (x1, . . . , xk) ∀x1, . . . , xk ∈ V. (11)

We remember, that the vectors e∗i belong to the basis dual to the one we
choose in V , meaning that e∗i (ej) = δi,j , where δ is the Kronecker-Delta
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operation. Thus when we specify (xi1 , . . . , xik) = (eĩ1 , . . . , eĩk) for a fixed

set of indices Ĩ = {̃i1, . . . , ĩk}, we get that∧
ĩ∈Ĩ

e∗
ĩ

 ((eĩ)̃i∈Ĩ) =
∏
ĩ∈Ĩ

δĩ,̃i = 1

 ∧
j∈I 6=Ĩ

e∗j

 ((eĩ)̃i∈Ĩ) = 0 ∀I 6= Ĩ

So for these set of vectors equation (11) cannot be fulfilled and our set
of k-degree tensors is linearly independent.
(ii) Let T ∈ Λk(V ) be arbitrary. For each set of indices Ij , |Ij | = k with
Ij 6= Il ⇔ j 6= l we define a number by

TIj = T ((ei)i∈Ij )

Along the proof for the linear independence we got that∧
j̃∈J̃

e∗
j̃

 ((eĩ)̃i∈Ĩ) = δJ̃ ,Ĩ J̃ , Ĩ increasing index sets,

so that ∑
|Ij |=k

Ij increasing index set

TIj
∧
i∈Ij

e∗i

 ((en)n∈In) =
∑
|Ij |=k

TIjδIj ,In = TIn

and we have thus defined a k-form as linear combination of elements of Ẽ
that coincides with T on all basis elements in V. Thus we have that

dim(Λk(V )) =

(
n

k

)
(12)

Remark 3.12. The proof for the space Λn−k(V ) can be done analogously
and hence we obtain that dim(Λn−k(V )) = dim(Λk(V ))) since there are
equally many basis vectors.

We will now define an orientation for a vector space and will see, that
we can equivalently define it via tensors over the vector space.

Definition 3.13. Let B denote the set of all ordered bases on V . For
C,B ∈ B we say that they are consistently oriented(:⇔ B ∼ C), if the
mapping T between them, that satisfies B = TC has positive determinant
det(T ) > 0.
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Proposition 3.14. The relation ∼ is an equivalence relation and there are
exactly two equivalence classes on [B]/ ∼.

Definition 3.15. For a fixed B ∈ B the equivalence class [B]/ ∼ defines an
orientation, as we say that a basis C is positively oriented, if C ∈ [B]/ ∼
and negatively oriented otherwise. The pair (V, [B]/ ∼) is called an oriented
vector space.

We will now see, that we can get an equivalent definition of an orientation
via tensors on V .

Theorem 3.16. For any fixed ω ∈ Λn(V ) the set

Oω := {B ∈ B|ω(B) > 0}

is an orientation, and conversely, for every orientation [B] there exists ω ∈
Λn(V ), such that Oω = [B]

Proof. To prove the first assertion, we will simply make use of the multilin-
earity of the n-degree tensor ω. If we have B ∼ C and the transition T that
satisfies B = TC and det(T ) > 0, we also have that

ω(B) = ω(TC) = ω(Tc1, . . . , T cn) = det(T )ω(C),

which can easily be seen by recalling the computation (2) and making use
of the multiplication rule for determinants. We conclude that ω(C) > 0 and
therefore C ∈ Oω if and only if C ∈ [B]
For the second assertion we fix any positively oriented (b1, . . . , bn) = B ∈ [B]
and choose a tensor ω ∈ Λn(V ), such that

ω(b1, . . . , bn) > 0.

Since we know that V ∼= V ∗ we can always find such a ω. The first step
in our proof shows us that for any other C ∈ [B] we also get ω(C) > 0.
Conversely, if we only know that ω(C) > 0 can compute for the transition
mapping T

det(T ) =
ω(b1, . . . , bn)

ω(c1, . . . , cn)
> 0

and therefore C ∈ [B] if and only if C ∈ Oω.

For the following sections let < ·, · > denote an inner product.

Lemma 3.17. Let (V,< ·, · >, [B]) be an oriented inner product space.
There exists exactly one dV ∈ Λn(V ) that satisfies

dV (b1, . . . , bn) = 1

for any positively oriented ONB (b1, . . . , bn) = B ∈ [B] and it has the form

dV = b∗1 ∧ · · · ∧ b∗n (13)
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Proof. By the Gram-Schmidt theorem there exists an ONB for V and (if
necessary) by switching two basis elements, we get a positively oriented ONB
B ∈ [B]. Now it is also clear that dV as defined in (13) fulfils dV (B) = 1.
For any other C ∈ [B] there exists T such that C = TB and det(T ) = 1.
Then it follows that

dV (c1, . . . , cn) = det(T )dV (b1, . . . , bn) = 1,

which proves the first part of the lemma. To obtain uniqueness note that
dim(Λn(V )) = 1 and therefore for any other multi-linear form dV ′ ∈ Λn(V )
there exists a λ ∈ R, such that dV = λdV ′, but then we get for any positively
oriented basis B ∈ B

1 = dV (B) = λdV ′(B) = λ

and we have uniqueness.

Definition 3.18. The n-degree tensor dV defined above is called a volume
form.

We are now able to define a inner product on Λk(V ).

Theorem 3.19 (inner product for tensors). Let (V,< ·, · >) be an inner
product space and 0 ≤ k ≤ n. There exists a unique inner product

< ·, · >Λk : Λk(V )× Λk(V ) −→ R

such that for any ONB basis C ∈ B the set defined via C as

CΛk := {c∗i1 ∧ · · · ∧ c
∗
ik
|1 ≤ i1 ≤ · · · ≤ ik ≤ n}

is an ONB of Λk(V ) with respect to < ·, · >λk . This inner product on Λk(V )
has the form

< v∗1 ∧ · · · ∧ v∗k, w∗1 ∧ · · · ∧ w∗k >= det(< v∗i , w
∗
j >).

Proof. Note that here the inner product in V ∗ referred to above in the
expression < v∗i , w

∗
j > is well defined via the pullback < ψ−1(·), ψ−1(·) >,

where ψ : V −→ V ∗ is the unique Riesz-isomorphism between V and its
dual space.
We know already, that for a basis B ∈ B the equivalently defined set BΛn

is a basis for Λn(V ). If we now define

< bi1 ∧ · · · ∧ bik , bj1 ∧ · · · ∧ bjk >:= det(< b∗ir , b
∗
js >),

then this mapping is homogeneous and inherits the bilinearity and symmetry
from < ·, · > defined on V. With det(< b∗is , b

∗
is
>) = 1 we have that < ·, · >Λk

is positive definite. So it is a inner product and BΛk is an ONB for Λk(V ).
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Since any other ONB C is related to B via an orthogonal transformation
T with det(T ) = 1, CΛk is also an ONB for Λk(V ). To obtain uniqueness,
we can just suppose the existence of another inner product fulfilling the
required properties and see, that it must take the same values on all basis
elements, so it must be exactly equal to the the above defined one.

We will now define an operator that allows us to extend this inner prod-
uct to the exterior algebra Λ•(V ). In particular we will do that by con-
structing an isomorphism ∗ : Λk(V ) −→ Λn−k(V ) that is known as the
Hodge-∗-Operator. The following is the main theorem of this subsection.

Theorem 3.20 (The Hodge-∗-Operator). Let (V,< ·, · >, [B]) be an ori-
ented inner product space and dV the respective volume element. Also let
0 ≤ k ≤ n. Then there exists a unique isomorphism ∗ : Λk(V ) −→ Λn−k(V )
satisfying

∀ω, τ ∈ Λk(V ) : < ω ∧ ∗τ, dV >Λn=< ω, τ >Λk

Proof. Step 1: At first we would like to define a few mappings, isomor-
phisms to be precise, that will enable us to construct the desired operator.
Naturally we can define the canonical isomorphism

κk : Λk(V ) −→ (Λk(V ))∗

ω 7→< ω, · >Λk .

Further we define the map ψk : Λn−k(V ) :−→ (Λk(V ))∗ by

τ 7→< · ∧ τ, dV >Λn

that is based on the bilinear pairing βk : Λn−k(V )× Λk :−→ R given by

(τ, ω) 7→< ω ∧ τ, dV >Λn .

We want ψk to be an isomorphism. Since Λk(V ) and Λn−k have equal
dimension it suffices to show, that ψk is linear and injective. The linearity
is inherited by the bilinearity of < ·, · >Λn . Injectivity would mean that

(0 = ψk(τ) =< ω ∧ τ, dV >Λn ,∀ω ∈ Λk(V ))⇒ τ = 0.

So if we find βk to be a regular bilinear form, it follows that ker(ψk) = 0.
The bilinearity of βk is obvious, but to see its regularity we can check it on
a basis. Suppose that βk is not regular for τ . Since the inner product in
Λn(V ) is regular, that would imply that

∀ω ∈ Λk(V ) : ω ∧ τ ≡ 0

Without loss of generality, we can assume that τ = (b∗i1 ∧· · ·∧b
∗
in−k

) with an
increasing index set. If we now take the complementary index set {j1, . . . , jk}
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such that {i1, . . . , in−k} ∪ {j1, . . . , jk} = {1, . . . , n} and define
ω := (b∗j1 ∧ · · · ∧ b

∗
jk

), the exterior product gives

ω ∧ τ = b∗j1 ∧ · · · ∧ ω
∗
jk
∧ τ∗i1 ∧ · · · ∧ τ

∗
in−k

= ±b∗1 ∧ · · · ∧ b∗n 6= 0

which is a contradiction. So βk is regular and ψk is an isomorphism.
Step 2: construction of the operator. We define the Hodge-∗-
operator by

∗ : Λk(V ) −→ Λn−k(V )

∗ :=ψ−1
k ◦ κk.

As composition of such, ∗ is also an isomorphism and a computation yields
∀ω, τ ∈ Λk(V ):

< ω∧∗τ, dV >λn= ψk(∗τ)(ω) = ψk(ψ
−1
k (κk(τ)))(ω) = κk(τ)(ω) =< τ, ω >Λk
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4 Extension to the Cotangent Bundle

We are already familiar with partitions of unity for sets in the Euclidean
topology on R and will now construct a partition of unity for a manifold,
subordinate to a given atlas.

4.1 Partitions of Unity for Manifolds

In the following Section 4.2 we employ partitions of unity to define an inte-
gral over differential forms on a manifold. Based on our theoretical grounds,
partitions of unity are known only for subsets of vector spaces.

Definition 4.1. Let (X,T) be a topological space. A family of subsets
(Oi)i∈I ∈ T is called locally finite, if for every point x ∈ X there exists a
neighbourhood of x, that intersects at most finitely many subsets of (Oi)i∈I .

Definition 4.2. A partition of unity subordinate to an open cover⋃
α∈A Uα ⊃ M is a collection of smooth functions (fi)i∈I : fi : M −→ R,

such that

1. ∀i ∈ I ∃α ∈ A : supp(fi) ⊂ Uα

2. 0 ≤ fi ≤ 1 on M

3. for all x ∈M there is an open neighbourhood Vx, such that supp(fi)∩
Vx 6= ∅ for only finitely many i ∈ I

4.
∑

i∈I fi = 1.

Using some basic facts from general topology we show that partitions of
unity exist.

Lemma 4.3. Compact Hausdorff spaces are normal.

Lemma 4.4 (Urysohn). Let X be normal and A,B closed subspaces of X
such that A ∩ B = ∅. Then there exists a continuous function f : X −→ R
that satisfies f �A= 1 and f �B= 0.

For a proof we refer to [2]

Corollary 4.5. Let U ⊂ Rn be open and K compact with K ⊂ U . Then
there exists a smooth function f : Rn −→ [0, 1] such that f �K= 1 and
supp(f) ⊂ U .

Lemma 4.6. Let C0, C1 ⊂ M be closed sets, such that C0 ∩ C1 = ∅. Then
there exists a smooth function f : M −→ R, that satisfies f(C0) = 0 and
f(C1) = 1.
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Proof. We claim that for any open set OM ⊂M there is a smooth function
f : M −→ [0,∞), such that f−1(0) = M −O.
To prove that, note that for any open cube

I = (a1, b1)× · · · × (an, bn) (14)

there is a function f̃ ∈ C∞(Rn,R), f̃ : Rn −→ R that satisfies ∀x ∈ I : f̃ > 0
and ∀x /∈ I : f̃ = 0. For a proof we refer to [4].
Since OM ⊂ M is open in the manifold topology if and only if it is open
in the restricted Euclidean topology E , we can write it as an intersection
OM = M ∩ Oeu with some open Oeu ∈ E . As the cubes of the form (14)
constitute a basis for the euclidean topology on Rn we can write any Oeu
as union of such, that is Oeu =

⋃
j∈J Ij . Next we want {Ij |j ∈ J̃} to be

a set of cubes such that for any p ∈ OM there exists some neighbourhood
U ∈ U(p) (where U(p) denotes the neighbourhood filter in the point p) that
only intersects with finitely many {Ij1,p, . . . , Ijm,p} ⊂ {Ij |j ∈ J̃}. Since M is
compact we can find such a locally finite collection. On each of these cubes
we use a bump function as was stated in the beginning of the proof, that
satisfies

f̃j : Ij −→ (0,∞), f̃j(Rn − Ij) = 0, ∀j ∈ J̃ .

Now we can construct a function that is positive on OM and vanishes on its
complement by

fOM :=
∑
J̃

f̃j �M , fOM (OM ) ⊂ (0,∞), fOM (M −OM ) = 0.

This function is well defined, as only finitely many terms in the sum are
non-zero. Finally we define two functions fM−C0 and fM−C1 in the above
mentioned manner and write the desired Urysohn function as

f(x) :=
fM−C0(x)

fM−C0(x) + fM−C1(x)

and it clearly fulfils our requirements.

We can now go on to construct the partitions of unity for a smooth
manifold.

Theorem 4.7 (partitions of unity). For any locally finite cover of M there
exists a partition of unity subordinate to that cover, i.e., if⋃
α∈A Uα ⊃M is a cover of M then we can construct functions

(φα)α∈A : M −→ R, such that φ−1
α (0) = M − Uα and

∑
α∈A φα = 1.

Proof. The previous lemma ascertains the existence of functions
λα : M −→ [0, 1] with λ−1

α (0) = M − Uα. As the cover is locally finite, the

15



sum
∑

α∈A λα is everywhere well defined on M . We can therefore define the
required

φα :=
λα∑
α∈A λα

4.2 Integration of Differential Forms on a Manifold

We recall again that for the space Λk(TpM) of covariant skew-symmetric
tensors of degree k acting on the tangent space TpM , the basis consists of
exterior products of the basis elements from the cotangent space T ∗pM .

To define an integral over differential forms of degree n on a n-dimensional
manifold, let us first recall an important theorem (which can be found in
([3]). In the following sections Jφ will denote the Jacobian of a function φ.

Theorem 4.8 (Change of Variable). Let U ⊂ Rn be an open set and
φ : U −→ φ(U) a C(k)-diffeomorphism for k ≥ 1. Then for any f ∈
L1(φ(U)) we have (f ◦ φ)| det Jφ| ∈ L1(U) and∫

U
(f ◦ φ)(x)|det Jφ|dλn(x) =

∫
φ(U)

f(y)dλn(y).

Here dλn is the n-dimensional Lebesgue-measure.

Definition 4.9. We define a differential form of degree k to be a smooth
section of the bundle of alternating k-degree tensors acting on M . These
sections are denoted by Γ∞(Λk(TM)). Equivalently, ω ∈ Γ∞(Λk(TM)) as-
signs to each p ∈M a skew-symmetric tensor ωp ∈ Λk(TpM) in such a way
that in any chart of M the coefficients ωi1 , . . . , ωik are C∞-functions.

By performing the exterior product on the vector space of the differential
k-forms on the tangent bundle Γ∞(Λk(TM)) we get another vector space,
that we want do endow with an inner product.

Definition 4.10. The associative, graded algebra defined by

Γ∞(Λ•(TM)) :=

∞⊕
k=1

Γ∞(Λk(TM))

is called the exterior algebra, or Grassmann algebra of the manifold.

We will now introduce a map, called the exterior differential, that will
help us in introducing the integral for differential forms. Although this map
has a lot of interesting properties, here we only prove what will be used in
the later sections.

16



Definition 4.11 (exterior differential). Let

ω =
∑

I increasing index set
|I|=k

αIdxi1 ∧ · · · ∧ ωik

be a differential k-form. Then we define a map

d :

{
Γ∞(Λ•(TM)) −→ Γ∞(Λ•(TM))

ω 7→
∑n

l=1

∑
I
∂αI
∂xl

dxl ∧ dxi1 ∧ · · · ∧ dxik

which is called exterior differential.

Note that for the subspace of alternating k-tensors in the Grassmann
algebra

d : Γ∞(Λk(TM)) −→ Γ∞(Λk+1(TM)).

Definition 4.12 (pull-back). Let f : Rn −→ Rm be a linear map and
ω ∈ Λp(Rm) be a skew-symmetric tensor of degree 0 ≤ p ≤ n. We define the
pull-back φ∗ω ∈ Λp(Rn) of ω by φ as

(φ∗ω)(v1, . . . , vn) := ω(φ(v1), . . . , φ(vn)),

with v1, . . . , vn ∈ Rn.

Definition 4.13 (pull-back for differential forms). Let U ∈ Rn and V ∈ Rm
be two open subsets and φ : U −→ V, φ ∈ C∞(U, V ) be smooth. For ω ∈
Γ∞(Λk(TM)) we define the pull-back by φ to be

φ∗ω := (dφ)∗ωφ(x).

Remark 4.14. By application of Definition 4.12 we can see that this oper-
ation is well defined.

Definition 4.15. Let ω = fdx1∧· · ·∧dxn be a differential form on U ⊂ Rn
and f ∈ L1(U). Then we define the integral of ω on U as∫

U
ω =

∫
U
fdλn.

We write ω ∈ Λn,L1(U).

Lemma 4.16. Let U ⊂ Rn be open and φ : U −→ φ(U) a C(k)-diffeomorphism.
Also assume that the Jacobian is everywhere positive, that is Jφ > 0 ∀x ∈ U .
Then for ω ∈ Λn,L1(U) the following formula holds:∫

φ(U)
ω =

∫
U
φ∗ω. (15)
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Proof. Step 1: First observe that for any v1, . . . , vn ∈ Rn, vi =
∑n

j=1 v
j
i ej

the exterior product of the n-tensor can be written as

e∗1 ∧ · · · ∧ e∗n(v1, . . . , vn) =
∑
σ∈Sn

sgn(σ)v
jσ(1)
1 · · · vjσ(n)

n = det(vj1 · · · v
j
n).

Next we have that for a linear map ψ : Rn −→ Rn the computation of the
pull-back yields

(ψ∗(e∗1 ∧ · · · ∧ e∗n))(e1, . . . , en) = e∗1 ∧ · · · ∧ e∗n(ψ(e1), . . . , ψ(en))

= det(ψj(e1) · · ·ψj(en))

and thus
ψ∗(e∗1 ∧ · · · ∧ e∗n) = det(ψ)e∗1 ∧ · · · ∧ e∗n.

So if we instead of a linear map take a maximal differential form of degree n,
and observe by the definition of pull-backs for differential forms (4.13) that
in every point it is defined to be a linear pull-back, we also know that the
pull-back for n-differential forms (on a n-dimensional manifold) is just the
multiplication by the determinant of the Jacobian. In taking the Jacobian
we implicitly made use of the fact that for functions (or equivalently forms
in Λ0(TpM)) the exterior differential coincides with the usual differentiation.
So we obtain

φ∗ω = f ◦ φ · det(Jφ)dx1 ∧ · · · ∧ dxn

Step 2: By the definition of the integral for differential forms we obtain∫
U
φ∗ω =

∫
U
f ◦ φ · det(Jφ)dλn,

which we can further rewrite using the fact that det(Jφ) > 0 and applying
the change of variable theorem as∫

U
f ◦ φ · det(Jφ)dλn =

∫
φ(U)

fdλn =

∫
φ(U)

ω.

Now we collected the tools that enable us to construct the desired Hilbert
space.

Definition 4.17. Let ω = fdx1 ∧ · · · ∧ dxn be a differential form on the
manifold. Also let (Ui, φi)i∈I be a positively oriented atlas and (Ui, αi)i∈I
be a partition of unity subordinate to it. Assume further that αif ◦ φ−1 ∈
L1(φ(U)), ∀i ∈ I. Then we define the integral of ω over the manifold as∫

M
ω =

∑
I

∫
φi(Ui)

(φ−1
i )∗(αiω).

We write ω ∈ Λn,L1(M).
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Theorem 4.18. The integral defined in Definition 4.17 is well-defined and
finite. It does neither depend on the choice of the partition of unity, nor on
the choice of a positively oriented atlas.

Proof. The condition αif ◦ φ−1 ∈ L1(φ(U)),∀i ∈ I is clearly fulfilled, since
in our case f is a C∞-function on a compact manifold. Note further that by
our assumption in the Definition 4.17 we immediately obtain (φ−1

i )∗(αiω) ∈
Λn,L1(φi(U)), ∀i ∈ I.
Setp 1: The integral ∫

φi(Ui)
(φ−1
i )∗(αiω)

can only be non-zero for a finite number of indices. To see that, recall that,
without loss of generality, we can assume (Ui)i∈I to be a locally finite cover
of M . Moreover, K := supp(ω) ⊂ M is compact by assumption. For every
p ∈M there exists an open neighbourhood Up of p such that (Up ∩ Ui) 6= ∅
for only finitely many i ∈ I. Therefore we can use the compactness of K ⊂⋃
p∈K Up and extract a finite number of sets that cover K ⊂ Up1 ∪ · · ·∪Upm .

Then also the neighbourhoods Upj , j = 1, . . . ,m only intersects finitely many
sets in (Ui)i∈I . Thus the first claim is proved, since the partition of unity is
subordinate to the cover, i.e. satisfies supp(αi) ⊂ Ui, ∀i ∈ I.
Step 2: For the second claim let (Vj , ηj)j ∈ J be another positively oriented
atlas of M and (Vj , βj)j∈J be the partition of unity subordinated to it. We
recall that when both are positively oriented, they must satisfy that the
Jacobian of the transition functions have positive determinant J(φi ◦η−1

j ) >
0,∀i, j ∀x ∈ η(Vj) ∩ φ(Ui). Since

∑
J ηj = 1, ∀x ∈M , we can write∫

φi(U)
(φ−1
i )∗(αiω) =

∑
J

∫
φi(Ui∩Vj)

(φ−1
i )∗(ηjαiω).

Now we apply Lemma 4.16 to the differential n-form (φ−1
i )∗(ηjαiω) on Rn

and the diffeomorphism

φi ◦ η−1
j : ηj(Ui ∩ Vj) −→ φi(Ui ∩ Vj)

to obtain∫
φi(Ui∩Vj)

(φ−1
i )∗(ηjαiω) =

∫
ηj◦φ−1(φ(Ui∩Vj))

(φi ◦ η−1
j )((φ−1

i )∗(αiβjω))

=

∫
ηj(Ui∩Vj)

(η−1
j )∗(αiβjω)).

By taking the sum over all i ∈ I it follows that∑
I

∫
φi(Ui)

(φ−1
i )∗(αiω) =

∑
I

∑
J

∫
φi(Ui∩Vj)

(η−1
j )∗(αiβjω)

=
∑
I

∫
ηj(Vj)

(η−1
j )∗(βjω) =

∫
M
ω.
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4.3 Completion of the Inner Product Space

Remark 4.19. In the previous section we introduced the Hodge-∗-operator
as isomorphism between the skew-symmetric forms on a vector space, in
particular

∗ : Λk(TpM) −→ Λn−k(TpM).

In a natural way, by pointwise definition, we can extend ∗ to a mapping

∗ : Λk(TM) −→ Λn−k(TM)

between the cotangent bundles. Moreover, since we are treating the case of a
compact smooth manifold, remember Remark 2.8, we can even define it on
the smooth sections of the cotangent Grassmann bundle by

∗ω := f ∗ (vi1 ∧ · · · ∧ vik)

for any ω ∈ Γ∞(Λ•(TM)), ω = fvi1 ∧ · · · ∧ vik
Theorem 4.20. Let again Γ∞(Λ•(TM)) denote the smooth sections on the
Grassmann algebra of the cotangent bundle and let

∗k : Λk(TM) −→ Λn−k(TM)

denote the Hodge-∗-operator as introduced in the previous section. Then the
mapping

< ·, · >L2(M): Γ∞(Λ•(TM))× Γ∞(Λ•(TM)) −→ R

(ω, τ) 7→

{∫
M ω ∧ ∗τ if ω ∧ ∗τ has degree n

0 otherwise

is an inner product on Γ∞(Λ•(TM)).

Proof. To see that the written map is symmetric, bilinear and non-degenerate
we simply have to observe that for each k ∈ {1, . . . , , n} and ω, τ ∈ Λk(T

∗M)
the expression

ω ∧ ∗τ =< ω, τ >Λk

is nothing else but the inner product on the k-degree skew-symmetric ten-
sors. To extend the definition to the space Γ∞(Λ•(TM)) we have to take
note of the fact that we can write each n-degree tensor ω ∧ ∗τ as ω ∧ ∗τ =
f · gdx1 ∧ · · · ∧ dxn. We use compactness of the manifold to get the bound∫
M
ω∧∗τ =

∫
M
|f |·|g|dλn ≤

∫
M

sup
x∈M
|f |· sup

y∈M
|g|dλn = sup

x∈M
|f |· sup

y∈M
|g|·µ(M),

where µ(M) < ∞ is the surface measure of the manifold. Thus it is
well defined for all differential forms and we have an inner product on
Γ∞(Λ•(TM)).
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Starting from a vector space endowed with an inner product, we can always
define a norm on it via ‖x‖V :=

√
< x, x >V and thus we obtain a normed

space, in our case (Γ∞(Λ•(TM)), ‖ · ‖Γ∞(Λ•(TM))). To finally perform the
last step in the construction of our Hilbert space, we have to recall that for
every normed space (X, ‖ · ‖) there exists a completion ((X̂, ‖ · ‖), ι) (see
[5]). Therefore we can define a Hilbert space as completion of the space of
differentiable forms on the manifold. This space is commonly denoted by
L2(Γ∞(Λ•(TM))).
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