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Introduction

This work should give an introduction to the so called non-standard Analysis, which is
based upon the notion of adding infinitesimal numbers - numbers which are smaller than
any real number - and infinite numbers - numbers which are greater than any real num-
bers - to the standard set of real numbers.
This mathematical field has first been developed by Abraham Robinson in his 1966 work
[Rob66].

In the first parts, we will show how to construct such a system of hyperreal numbers and
show that they do indeed fulfill the desired properties. To achieve this, we will use the
so called ultrapower construction. This means we create the hyperreal numbers by use of
a/n (non-principal) Ultrafilter, the existence of which has to be proven first. Another key
property of hyperreal numbers ∗R is that as a superset of R they fulfill many of the proven
properties of R and vice-versa. This is formalized by the so called Transfer Principle, a
theorem from the field of logics. Yet due to its non-analytical nature we won’t investigate
it further. It should be merely stated that understanding its proof is not relevant for
understanding its statement.

In the latter parts, we will use the constructed number system to give non-standard proofs
for fundamental real-Analysis Theorems on convergence and continuity. Though this is
nothing new - and non-standard Analysis hasn’t achieved fundamentally new results in
real-Analysis yet. But non-standard proofs have their advantages in terms of comprehen-
sibility and length.
We show that definitions of terms like convergence or continuity often resemble the orig-
inal, illustrative ideas behind them in non-standard Analysis.

Even more, touching a topic which is not directly part of this work, as its requisites
would blow up the length of this work, non-standard concepts can be used in much more
general setups of Analysis and functional Analysis and can give extremely short proofs
for theorems like Tychonoff’s Theorem.
For a deeper insight into non-standard Analysis, [Gold98] and [HuLo85] are to be recom-
mended. This work is mostly based upon the first chapters of those two books.
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1 Filters and Ultrafilters

1.1 Fundamentals

Definition 1.1.1. Let S be a non-empty set and 2S its power set. We call a non-empty
F ⊆ 2S a filter if it satisfies the following conditions:

(F1) if A1 ∈ F and A2 ∈ F , then A1 ∩ A2 ∈ F

(F2) if A1 ∈ F and A1 ⊆ A2 then A2 ∈ F

(F3) ∅ /∈ F
(F3) makes sure that F 6= 2S. Often a filter is defined without this requirement and the
above definition is called a proper filter.

Example 1.1.2. Let S be an infinite set. Then

F co := {A ⊆ S : Ac is finite}

is a filter on S, called the cofinite filter. This is readily shown, as for A,B ∈ F co the set
(A∩B)c = Ac ∪Bc is finite, hence A∩B ∈ F co. Similarly, the superset property follows
by the observation that for A ⊆ B, Bc ⊆ Ac and, therefore, Bc must be finite if A ∈ F co.
Eventually, ∅ is finite and ∅c = S is infinite, hence we really have a (proper) filter.

Definition 1.1.3. An ultrafilter U is a filter that additionally satisfies

(UF) for any A ⊆ S, either A ∈ U or Ac ∈ U .

Lemma 1.1.4. The generated filter by a non-empty collection C ⊆ P(S), which fulfills
the finite intersection property (i.e., the intersection of every non-empty finite subcollec-
tion of C is non-empty), is the smallest filter on S including C and defined by

FC := {A ⊆ S : A ⊇ C1 ∩ · · · ∩ Cn for some n ∈ N and some Ci ∈ C, i = 1 . . . n}

Proof. It is obvious that C ⊆ FC, as for any A ∈ C we can simply define n := 1 and
C1 := A.
To proof that FC is a filter we first note that because of C1 ∩ · · · ∩Cn 6= ∅ for any n ∈ N
FC cannot contain ∅.
Furthermore for A1, A2 ∈ FC there exists C1 . . . Cm, D1 . . . Dn ∈ C for some m,n ∈ N

which fulfill C1 ∩ · · · ∩ Cm ⊆ A1 and D1 ∩ · · · ∩Dn ⊆ A2.
Hence, A1 ∩ A2 ⊇ C1 ∩ · · · ∩ Cm ∩D1 ∩ · · · ∩Dn belongs to FC.
Finally, for any A2 ⊇ A1 with A1 ∈ FC the same intersection C1 ∩ · · · ∩ Cn that is part
of A1 is also part of its superset A2, so A2 belongs to FC, which thereby is proven to be
a filter.
To show that FC is the smallest filter including C we take any filter G on S with C ⊆ G
and note that, because G is a filter, any finite intersection C1 ∩ · · · ∩ Cn for some n ∈ N
of elements C1 . . . Cn ∈ C must be in G as well. But then, again due to G being a filter,
any superset of such an intersection B ∈ S,B ⊇ C1 ∩ · · · ∩ Cn has to be part of G, too.
Hence, any set which is a part of FC is also a part of G.
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Example 1.1.5. Fa = {A ⊆ S : a ∈ A} is an ultrafilter and is called the principle ultrafilter
generated by a on S. If S is finite, every ultrafilter is of the form Fa for some a ∈ S.
It is easy to see that this is just a special case of a generated filter with the collection
C = {a}.
Due to the definition of Fa any set that does not include a is not part of the filter. But
each of those is the complement of a set containing a. Hence, Fa is an ultrafilter.

Corollary 1.1.6. F is an ultrafilter on S, if and only if it is a maximal filter on S, i.e.
a filter that cannot be properly extended to a larger filter on S.

Proof.
” ⇒ ” : If F is an ultrafilter and we extend it to any collection FA including some
A ⊆ S,A /∈ F , then both, A and Ac are part of FA. As A ∩ Ac = ∅, FA cannot be a
filter. Hence, F is already maximal.
” ⇐ ” : Suppose F is a filter but not an ultrafilter. This means that there exists an
A ⊆ S that fulfills A,Ac /∈ F .
Now A ∩B 6= ∅ for all B ∈ F or Ac ∩B 6= ∅ for all B ∈ F . To see this, we suppose that
there are B1, B2 ∈ F that fulfill B1 ∩ A = ∅ and B2 ∩ Ac = ∅. This implies that B2 ⊆ A
and B1 ⊆ Ac and because F is a filter, both A and Ac would be elements of F . Hence,
such sets B1, B2 do not exist.
This implies that the collection A∪F or the collection Ac∪F fulfill/s the finite intersection
property. Therefore, it generates the filter FF∪A or FF∪Ac

that properly includs F . This
means F cannot be maximal.

Definition 1.1.7. An ultrafilter U is free if it does not contain any finite subsets of S,
i.e.

(FREE) |A| ≥ ℵ0, for all A ∈ U .

Lemma 1.1.8. If an ultrafilter U is not free, it contains a one-element set and it is,
therefore, principal.

Proof. Let us assume that U is not free and contains no one-element set. Then U must
contain all sets of the form S\{a} for all a ∈ S, because it is an ultrafilter.
Furthermore, because U is not free, there is an A ∈ U with A = {a1 . . . an} for some
n ∈ N.
Since U contains all sets of the form S\{ak} k = 1 . . . n, U being a filter implies

n⋂
k=1

S\{ak} = Ac ∈ U ,

which contradicts A ∈ U .

As a consequence, we see that any non-principal ultrafilter must contain all cofinite sets
(cf. Example 1.1.5).

Lemma 1.1.9. Let (Fi)i∈I be a collection of filters Fi on S, which is totally ordered by
⊆. Then

⋃
i∈I
Fi is a filter on S.
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Proof. Since (Fi)i∈I is totally ordered by set inclusion, for any A1 ∈ Fi1 , A2 ∈ Fi2 we
have A1, A2 ∈ Fi1 or A1, A2 ∈ Fi2 . Hence, A1 ∩ A2 ∈

⋃
i∈I
Fi as Fi1 and Fi2 are filters.

Furthermore, because any A ∈
⋃
i∈I
Fi is an element of a filter Fj for some j ∈ I, all its

supersets are part of Fj and therefore part of
⋃
i∈I
Fi.

Finally, because ∅ is in no filter of our collection, it is not part of
⋃
i∈I
Fi either.

Lemma 1.1.10. Let F be an ultrafilter and A1, . . . , An, n ∈ N a finite collection of

pairwise disjoint sets such that
n⋃
i=1

Ai ∈ F .

Then Ai ∈ F for exactly one i ∈ {1, . . . n}.
Proof. To prove that at least one Ai ∈ F assume the contrary. Then, due to (UF),

Aci ∈ F for i = 1, . . . , n and, therefore, due to (F1),
n⋂
i=1

Aci ∈ F . As
n⋂
i=1

Aci =

(
n⋃
i=1

Ai

)c
,

this contradicts
n⋃
i=1

Ai ∈ F .

To prove that not more than one Ai ∈ F , assume Ai1 , Ai2 ∈ F for distinct i1, i2 ∈
{1, . . . , n}.
Because those two are disjoint, Ai1 ⊆ Aci2 and due to (F2) Aci2 ∈ F , which contradicts
(UF).

1.2 Existence of Ultrafilters

It is not obvious that a non-principal ultrafilter even exists. However, using Zorn’s Lemma
we will prove that such an object indeed exists on any infinite set.

Lemma 1.2.1 (Zorn’s Lemma). Suppose P is a set partially ordered by the relation �,
in which every totally ordered subset has an upper bound in P. Then P contains at least
one maximal element.

A proof for this assertion can be found for example in [BuDa98].

Theorem 1.2.2 (Ultrafilter Theorem). Any collection of subsets of S that has the finite
intersection property is contained in an ultrafilter on S.

Proof. Suppose C is a collection with the finite intersection property and define

P :=
{
F ⊆ 2S : F is a filter on S, FC ⊆ F

}
.

P is partially ordered by set inclusion ’⊆’ and, therefore,
⋃
F∈O
F is a filter and part of P

for any totally ordered subset O ⊆ P (cf. 1.1.9). This means that all of those chains have
an upper bound in P . Due to Zorn’s Lemma, P has a maximal elementM. TherebyM
is a maximal filter on S, hence, it is an ultrafilter on S (cf. Corollary 1.1.6.).
To see this, supposeM can be properly extended, i.e. for an A ∈ S, A /∈M there exists
the filter FM∪A. As FM∪A ⊇M ⊇ FC, FM∪A is an element of P . Hence, M cannot be
maximal, which is obviously a contradiction to M being maximal.
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For this proof, Zorn’s Lemma was employed. The question arises, whether the Ultrafilter
Theorem is equivalent to the Axiom of Choice. But it can be shown that it is a weaker
statement.

Corollary 1.2.3. Any infinite set has a non-principal ultrafilter on it.

Proof. If S is infinite, Example 1.1.2 shows that F co is a filter. Clearly, it fulfills the finite
intersection property. Hence, it is included in an ultrafilter F (cf. Theorem 1.2.2.). But
for any s ∈ S we have S\{s} ∈ F co ⊆ F . Hence, F cannot be of the form F s.
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2 Hyperreals

2.1 The Construction of the Hyperreals

We will start our construction with a basic result about sequences.
(
R
N,+, ·

)
forms a

ring. In this context, + and · stand for the component-wise multiplication and addition
of members of sequences. However,

(
R
N,+, ·

)
is not a field as can be seen in the next

example.

Example 2.1.1. For the sequences 〈an〉 = 〈1, 0, 1, 0, 1, 0, . . . 〉 and 〈bn〉 = 〈0, 1, 0, 1, 0, 1, . . . 〉
we observe that

〈an〉 · 〈bn〉 = 〈0, 0, 0, 0, 0, 0, ...〉 = 〈0〉.

Hence, those two sequences cannot have a multiplicative inverse.

Definition 2.1.2. Let F be a non-principal ultrafilter on the set N.
Then we can define a relation ≡ on RN by putting

〈an〉 ≡ 〈bn〉 iff {n ∈ N : an = bn} ∈ F

Lemma 2.1.3. ≡ is an equivalence relation on R
N.

Proof. The Reflexivity and Symmetry are obvious. The Transitivity holds because for
{n ∈ N : an = bn} ∈ F and {n ∈ N : bn = cn} ∈ F it follows (F is a Filter) that
{n ∈ N : an = bn = cn} ∈ F . But this is a subset of {n ∈ N : an = cn}, which, therefore,
belongs to F .

If 〈an〉 ≡ 〈bn〉, we say that 〈an〉 and 〈bn〉 are equivalent modulo F .
It is important to note that two convergent sequences may have the same limit for n→
+∞, but, are not equivalent.

Example 2.1.4. an := 〈1, 1
2
, 1
3
, . . . 〉 6≡ 〈0, 0, 0, . . . 〉 := bn as {n ∈ N : bn = an} = ∅ /∈ F .

≡ eliminates the problem that non-zero sequences can have zero-products as we will show
below.

Example 2.1.5. Consider the sequences 〈an〉 := 〈1, 0, 1, 0, 1, 0, ...〉 and
〈bn〉 := 〈0, 1, 0, 1, 0, 1, ...〉. In case that 〈an〉 6≡ 〈0〉, i.e {n ∈ N : an = 0} /∈ F , for the
complement we have {n ∈ N : an = 0}c = {n ∈ N : an 6= 0} = {n ∈ N : bn = 0} ∈ F , i.e.
〈bn〉 ≡ 〈0〉. So we see that exactly one of these sequences is equivalent to zero.

Definition 2.1.6. We denote the equivalence class of a sequence a = 〈an〉 under ≡ by
[a]. Thus

[a] =
{
b ∈ RN : a ≡ b

}
8



Now we define the Hyperreals as the quotient set of RN by ≡ and write

∗
R := R

N/≡ =
{

[a] : a ∈ RN
}
.

Definition 2.1.7. For a = 〈an〉, b = 〈bn〉 we set

[a] + [b] = [〈an + bn〉]
[a] · [b] = [〈an · bn〉]
[a] < [b] iff {n ∈ N : an < an} ∈ F

As this is a definition on equivalence classes, we have to show that they are well-defined.
Pick 〈an〉, 〈a′n〉, 〈bn〉, 〈b′n〉 such that {n ∈ N : an = a′n} ∈ F and {n ∈ N : bn = b′n} ∈ F .
Then {n ∈ N : an + bn = a′n + b′n} ⊇ {n ∈ N : an = a′n} ∩ {n ∈ N : bn = b′n} is also a
member of F .
We achieve the same result for · in the same fashion. Hence, + and · are well-defined on
∗
R.

For ’<’ we observe that

{n ∈ N : an = a′n} ∩ {n ∈ N : bn = b′n} ∩ {n ∈ N : an < bn} ⊆ {n ∈ N : a′n < b′n}

and

{n ∈ N : an = a′n} ∩ {n ∈ N : bn = b′n} ∩ {n ∈ N : a′n < b′n} ⊆ {n ∈ N : an < bn}.

Hence, {n ∈ N : an < bn} ∈ F , if and only if {n ∈ N : a′n < b′n} ∈ F .

Corollary 2.1.8. The structure (∗R,+, ·, <) is an ordered field with zero [0] and unity
[1].

Proof. It is readily shown that ∗R is a commutative ring with zero [0] and unity [1] and
the additive inverse −[〈an : n ∈ N〉] = [〈−an : n ∈ N〉]. Suppose that [a] 6= 0, i.e. a 6≡ 0.
Because F is an ultrafilter, J := {n ∈ N : an 6= 0} ∈ F .
Now define a sequence b by putting

bn =

{
1
an

if n ∈ J
0 otherwise

.

From {n ∈ N : an · bn = 1} = J ∈ F we conclude a · b ≡ 1. Hence, [a] · [b] = [a · b] = [1]
in ∗R; i.e. [b] = [a]−1.
< on ∗R is a total ordering, because N is the disjoint union of

{n ∈ N : an < bn}, {n ∈ N : an = bn}, {n ∈ N : an < bn}.

So exactly one of them belongs to F . Therefore, exactly one of the relations

[a] < [b], [a] = [b], [a] > [b]

holds true.
Furthermore, the sum of two positive elements a, b ∈ ∗R is positive, because of

{n ∈ N : an > 0} ∩ {n ∈ N : an > 0} ⊆ {n ∈ N : an + bn > 0}.

The multiplication of two positive elements a, b ∈ ∗R is positive, because of

{n ∈ N : an > 0} ∩ {n ∈ N : an > 0} ⊆ {n ∈ N : an · bn > 0}.

This shows that (∗R,+, ·, <) is indeed an ordered field.
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Definition 2.1.9. To include the reals in the hyperreals we define the mapping

∗ : R→ ∗
R

a 7→ ∗a := [〈a, a, a, . . . 〉]

Lemma 2.1.10. The mapping ∗ is an injective, order-preserving homomorphism from R

into ∗R.

Proof. It is clear that ∗ is a homomorphism. Moreover ∗a = ∗b is equivalent to
〈a, a, a, . . . 〉 ≡ 〈b, b, b, . . . 〉 and, hence, a = b. So ∗ is injective. The field and order
properties are trivial to prove.

We name members of R standard and members of ∗R\R non-standard.

Example 2.1.11. Define ε = 〈1, 1
2
, 1
3
, . . . 〉 = 〈 1

n
: n ∈ N〉 and compare it to 〈0, 0, 0, . . . 〉 =

〈 0
n

: n ∈ N〉. Then
{
n ∈ N : 0

n
< 1

n

}
= N ∈ F , i.e. [0] < [ε] in ∗R.

Furthermore, for any positive a ∈ R, the set
{
n ∈ N : 1

n
< a
}

is cofinite. As F is a non-
principal ultrafilter and hence free, it contains all cofinite sets. Consequently, [ε] < ∗a in
∗
R.

Example 2.1.12. Define ω = 〈1, 2, 3, . . . 〉 = 〈 1
n

: n ∈ N〉 and pick any positive a ∈ R.
Then the set {n ∈ N : a < n} is cofinite and, therefore, belongs to F . Hence, [ω] < ∗a.

As the above examples show, the choice of constructing ∗R with a non-principal ultrafilter
leads to elements of ∗R that are not equivalent to elements of R. Even more, using the
notation from above, it is easy to see that ε · ω = 1, so [ε] = [ω]−1 and [ω] = [ε]−1. We
call such elements of ∗R infinitesimal and unlimited.

2.2 Enlargement and Extensions

Definition 2.2.1. For A ⊆ R define its enlargement

∗A =
{

[〈an〉] ∈ ∗R : {n ∈ N : an ∈ A} ∈ F
}

This is a proper definition, as for a ≡ a′ and {n ∈ N : an ∈ A} ∈ F it follows that

{n ∈ N : an = a′n} ∩ {n ∈ N : an ∈ A} ∈ F

and, hence,

{n ∈ N : an = a′n} ∩ {n ∈ N : an ∈ A} ⊆ {n ∈ N : a′n ∈ A} .

So {n ∈ N : a′n ∈ A} ∈ F as well. The converse is also true.

For b ∈ A observe that ∗b = [〈b, b, b, . . . 〉] ∈ ∗A, because {n ∈ N : b ∈ A} = N ∈ F .
Identifying b with ∗b we can say that A ⊆ ∗A.

To get a better idea of enlarged sets, consider the following theorem.
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Theorem 2.2.2. For A ∈ R,

(a) if A is infinite, ∗A contains non-standard members, hence ∗A ! A.

(b) if A is finite, ∗A does not contain non-standard members, hence ∗A = A.

Proof.

(a) Because A is infinite, there exists a sequence 〈an〉, an ∈ A with ai 6= aj for all
i 6= j, i, j ∈ N. Therefore, {n ∈ N : an ∈ A} = N ∈ F , i.e. [a] ∈ ∗A. But for any
b ∈ A, {n ∈ N : an = b} is either ∅ or a singleton, neither of which belongs to F ,
because F is non-principal. Hence, [a] ∈ ∗A\A.

(b) If A is finite, then for any sequence 〈an〉, an ∈ A the set {an : n ∈ N} is finite.
Therefore, the set {n ∈ N : an ∈ N} equals {n ∈ N : an = b1}]· · ·]{n ∈ N : an = bm}
for some b1, . . . , bm ∈ A.
As this is a disjoint, finite union, {n ∈ N : an ∈ N} ∈ F if and only if
{n ∈ N : an = bj} ∈ F for some j ∈ {1, · · · ,m}. Hence, for any [a] ∈ ∗A, [a] ≡ ∗b,
for some b ∈ A.

Definition 2.2.3. For f : Rm → R define its hyperreal extension ∗f : ∗Rm → ∗
R as

∗f ([〈a1n〉] , . . . , [〈amn 〉]) = [〈f(a1n, . . . , a
m
n )〉].

This is a proper definition, because{
n ∈ N : a1n = a1n

′, . . . , amn = amn
′} ⊆ {n ∈ N : f(a1n, . . . , a

m
n ) = f(a1n, . . . , a

m
n
′)
}

and, therefore, a1 ≡ a1′, . . . , am ≡ am′ implies f ◦ (a1, . . . , am) ≡ f ◦ (a1, . . . , am′).
However, the given definition does not apply to functions of the form f : A1×· · ·×Am →
R, A1, . . . , Am ⊆ R as for l 6∈ {n ∈ N : ajn ∈ Aj} for some j ∈ {1, . . . ,m}, f(a1l , . . . , a

m
l ) is

undefined.

Definition 2.2.4. For f : A1 × · · · × Am → R, A1, . . . , Am ⊆ R define its hyperreal
extension ∗f : ∗A1 × · · · × ∗Am → ∗

R as follows: for each 〈a1n〉, . . . , 〈amn 〉 ∈ R
N with

[〈a1n〉] ∈ ∗A1, . . . , [〈amn 〉] ∈ ∗Am, so that {n ∈ N : a1n ∈ A1} ∈ F ,. . . ,{n ∈ N : amn ∈ Am} ∈
F define the sequence

bn :=

{
f(a1n, . . . , a

m
n ) if n ∈ {n ∈ N : a1n ∈ A1} ∩ · · · ∩ {n ∈ N : amn ∈ Am}

0 if n 6∈ {n ∈ N : a1n ∈ A1} ∩ · · · ∩ {n ∈ N : amn ∈ Am}

and set

∗f([〈a1n〉], . . . , [〈amn 〉]) = [〈bn〉]

An important example for this concept is the extension of sequences to hypersequences.
For s : N→ R we have ∗s : ∗N→ ∗

R. In particular, ∗s is defined for non-standard n ∈ ∗N.

A k-ary relation P on R is a set of k-tuples, i.e. a subset of Rk.
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Definition 2.2.5. Let P be a k-ary relation on R. Then P can be enlarged to a k-ary
relation ∗P on ∗R by defining for given sequences a1, . . . , ak ∈ RN

∗P ([a1], . . . , [ak]) iff {n ∈ N : P (a1n, . . . , a
k
n)} ∈ F

Again, we have to prove that this notion is well-defined. For sequences 〈a1n〉, . . . , 〈akn〉,
〈b1n〉, . . . , 〈bkn〉 we have that

{n ∈ N : a1n = b1n} ∩ · · · ∩ {n ∈ N : akn = bkn} ∩ {n ∈ N : P (a1n, . . . ,a
k
n)} ⊆
{n ∈ N : P (b1n, . . . , b

k
n)},

which gives us the desired result. Furthermore, for real numbers a1, . . . , ak we have that

P (a1, . . . , a2) iff ∗P (∗a1, . . . , ∗ak).

Hence, ∗P is really an enlargement of P .

It is only natural to denote the same functions and relations with the same symbols, even
if they operate on different fields. Therefore, we will drop the ∗-notation for enlarged
relations and extended functions in the following chapters, unless further clarification is
necessary.

2.3 Uniqueness of the Hyperreals

Up to now, we have constructed the hyperreals as a quotient set of RN depending on the
particular non-principal ultrafilter F . The question arises, whether this system is unique
or whether we achieve many different such hyperreal number systems, when we choose
different ultrafilters.
Due to the theoretical nature of ultrafilters this question cannot be answered using the
ZFC-system of mathematical axioms. It has, however, been proven that, if we assume that
the Continuum Hypothesis holds, all of the constructed hyperreal fields are isomorphic
to each other. The proof for this can be found in [ErGiHe55].

2.4 The Transfer Principle

After extending functions and relations from R to ∗R we still have to prove that those
extensions follow the same rules as the original functions. Therefore we need some ba-
sic knowledge about symbolic logic for relational systems (cf. [Raut08]), in order to
understand that the Transfer Principle does exactly that for us.

Definition 2.4.1. A relational system is a structure S = (S, {Pi : i ∈ I} , {fj : j ∈ J})
consisting of a set S, a collection of finitary relations Pi(i ∈ I) on S and a collection of
finitary functions fj(j ∈ J) on S.
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The particular relational structures that are interesting for us are

R = (R, RelR, FunR) and
∗R = (∗R, {∗P : P ∈ RelR}, {∗f : f ∈ FunR})

with

RelR = {P : P is a finitary relation on R} and

FunR = {f : f is a finitary function on R}.

Remark. A relational structure consisting of a set S and all finitary relations and functions
defined on S is called a full structure. By its definition R is such, but ∗R is not, because
there exist relations on ∗R that are not of the form ∗P .

Definition 2.4.2. For a relational structure S we define its symbolic language LS by a
basic set of symbols and combinations of those basic symbols:

• Logical Connectives: ∧ and ¬, to be interpreted as ”and” and ”not”.

• Quantifier Symbols: ∀, interpreted as ”for all”.

• Parentheses: [, ], ( and ) to be used for bracketing.

• Variable Symbols: a countable collection of symbols such as letters, to be used as
”variables”.

• Equality Symbol: =, to be interpreted as ”equals”

• Constant Symbols: A symbol s for each s ∈ S.

• Relation Symbols: A symbol P for each P ∈ S.

• Function Symbols: A symbol f for each f ∈ S.

Furthermore, we want to combine such symbols, which leads to the next definition.

Definition 2.4.3. We define terms of LS as follows:

(a) Constant and variable symbols are terms.

(b) For f being function of n variables and τ 1, . . . , τn are terms, then f(τ 1, . . . , τn) is a
term.

A term containing no variables is called a constant term.

Example 2.4.4. The expression xy + xz is a term in LR, which can be seen by defining
functions

A(a, b) := a+ b

M(a, b) := ab

for a, b ∈ R. Hence, xy + xz denotes A(M(x, y),M(x, z)).
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Definition 2.4.5. A formula in LS is defined by:

(a) Atomic Formula:

• for terms a, b, a = b is a formula

• for an n-ary relation P, P (τ 1, . . . , τn) is a formula

(b) Formula

• for a formula Φ, ¬Φ is a formula

• for formulae Φ,Ψ, Φ ∧Ψ is a formula

• for a variable x and a formula Φ, ∀xΦ is a formula

Example 2.4.6. Let I name the inequality relation <. Then I(x, 2), usually written as
x < 2 is an atomic formula.

Remark. It is convenient to use more symbols than those which are defined in Definition
2.4.2.
For formulas Φ and Ψ we will denote

• ¬(¬Φ ∧ ¬Ψ) as Φ ∨Ψ

• (¬Φ) ∨Ψ as Φ⇒ Ψ.

• Φ⇒ Ψ as Ψ⇐ Φ.

• (Φ⇒ Ψ) ∧ (Ψ⇐ Φ) as Φ⇔ Ψ.

• ¬(∀xΦ) as ∃x¬Φ.

Furthermore, for any A ⊆ S we define a relation E by putting E(a), iff a is an element
of A. In this case we write a ∈ A.

Definition 2.4.7. An occurence of a variable x in a formula Φ can be free or bound.

• If Φ is an atomic formula, x is free in Φ, if and only if x occurs in Φ. In an atomic
formula, no variable is bound.

• The occurence of x is free in ¬Φ, if and only if it is free in Φ. The occurence of x
is bound in ¬Φ, if and only if is bound in Φ.

• The occurence of x is free in (Φ ∧Ψ), if it is free in Φ or Ψ. The occurence of x is
bound in (Φ ∧Ψ), if it is bound in Φ and Ψ.

• The occurence of x is free in ∀yΦ, if and only if x is free in Φ and x is a different
Symbol from y. The occurence of x is bound, if and only if x is y or x is bound in
Φ.
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Example 2.4.8. Let e=1. In the formula

(x < e) ∧ (∀x)(x > y)

the first occurence of x is free, the others are bound and the only occurence of y is free.
The variable z has no occurence in the formula and, thus, is neither bound nor free.
e is a constant and, therefore, not free or bound either.
To summarize, the only variables in the above formula are x and y and they are both
free, because both occur free for at least once.

Definition 2.4.9. A formula in which all variables are bound is called a sentence.

Example 2.4.10. The fact that the distributive law holds in R is expressed by

(∀x)(∀y)(∀z)[x ∈ R ∧ y ∈ R ∧ z ∈ R⇒ x · (y + z) = x · y + x · z].

It is an example for a sentence in LR.

Example 2.4.11. For variables x and y, the expression

(∀x)[x ∈ R ∧ x < 1⇒ x < y]

is not a sentence, since the variable y is not bound.

Definition 2.4.12. The ∗-transform ∗Φ of a formula Φ in LR is defined by

• replacing each constant term τ occuring in Φ with ∗τ

• replacing each function term f(τ 1, . . . , τn) occuring in Φ with ∗f(τ 1, . . . , τn)

• replacing each relation P occuring in Φ with ∗P

The definitions given in this section allow us to phrase the Transfer Principle for the real
and hyperreal numbers.

Theorem 2.4.13 (Transfer Principle). A sentence Φ in LR is true if and only if ∗Φ is
true in L∗R

A proof for this theorem is given in [HuLo85]. When using it later on, we will often times
simply use phrases like ”transferring” or ”by transfer”.

Example 2.4.14. The distributive law given in Example 2.4.9. holds on R. Hence, by
transfer we obtain

(∀x)(∀y)(∀z)[x ∈ ∗R ∧ y ∈ ∗R ∧ z ∈ ∗R⇒ x · (y + z) = x · y + x · z],

which describes the fact that the distributive law holds on ∗R. In the above expression,
x ∈ ∗R denotes the hyperreal extension of the relation x ∈ R. (cf. Definition 2.2.5)
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2.5 Terms and Arithmetics

Definition 2.5.1. We call a number b ∈ ∗R

• limited, if x < b < y for some x, y ∈ R.

• positive unlimited, if x < b for all x ∈ R.

• negative unlimited, if b < x for all x ∈ R.

• unlimited, if x is positive unlimited or negative unlimited.

• positive infinitesimal, if 0 < b < x for all x ∈ R.

• negative infinitesimal, if x < b < 0 for all x ∈ R.

• infinitesimal, if x is positive infinitesimal, negative infinitesimal or 0.

• appreciable, if x is limited, but not infinitesimal.

Example 2.5.2. If k ∈ ∗N is limited, then k ≤ n for some n ∈ N. But then by transferring
the sentence

∀m ∈ N : m ≤ n⇒ m = 1 ∨m = 2 ∨ · · · ∨m = n

we get k ∈ {1, 2, . . . , n}. Hence, any limited hypernatural number is already a natural
number, i.e ∗N/N contains only unlimited numbers.

Theorem 2.5.3. Let ε, δ be infinitesimal, a, b appreciable, U, V unlimited and n ∈ ∗N.

? Sums ? Opposites
ε+ δ is infinitesimal −ε is infinitesimal

a+ δ is appreciable −a is appreciable

a+ b is limited −U is unlimited

U + ε and U + a are unlimited

? Products ? Reciprocals
ε · δ and ε · b are infinitesimal. 1

ε
is unlimited if ε 6= 0

a · b is appreciable 1
a

is appreciable

a · U and U · V are unlimited 1
U

is infinitesimal

? Roots
if ε > 0, n

√
ε is infinitesimal

if a > 0, n
√
a is appreciable

if H > 0, n
√
H is unlimited

Proof. All of those statements can be proven via straight forward verification of Definition
2.5.1.
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The root-function in Theorem 2.5.3. denotes the hyperreal extension of the root-function
on R.
Using the notation from Theorem 2.5.3., the expressions ε

δ
,U
V

, ε ·U and U + V cannot be
categorized in similar fashion. They are called Indeterminate Forms.

Theorem 2.5.4. The limited and infinitesimal numbers in ∗R both form subrings of ∗R.

Proof. Let ε, δ be infinitesimal. For any standard number a > 0, we have |ε| < a
2

and
|δ| < a

2
, (by extending the absolute value function to ∗R). |ε + δ| < a and |ε − δ| < a.

Moreover, ε, δ <
√
a implies |ε · δ| < a. Consequently the infinitesimals form a subring of

∗
R.

For limited numbers a, b ∈ ∗
R, taken such that α1 < a < α2, β1 < b < β2, for

α1, α2, β1, β2 ∈ R we get α1 + β1 < a+ b < α2 + β2 and α1 − β2 < a− b < α2 − β1.
Furthermore we have that −|α2 · β2| < |a · b| < |α2 · β2|. So the limited numbers form a
subring of ∗R, as well.

Definition 2.5.5. a, b ∈ ∗R are called

• near or infinitesimally close if a− b is infinitesimal. In this case we write a ' b.
The set hal(a) := {c ∈ ∗R : c ' a} is called the halo or monade of a.

• a limited distance apart if a− b is limited and write a ∼ b for this fact.
The set gal(a) := {c ∈ ∗R : c ∼ a} is called the galaxy of a.

It can be readily checked that ' and ∼ are equivalence relations on ∗R.

Theorem 2.5.6. If a ∈ ∗R is limited, there is a unique standard real number a′ ∈ R with
a ' a′.

Proof. Define

A := {b ∈ R : a ≤ b} and B := {b ∈ R : b < a}

Since a is limited, there is a number r ∈ R such that −r < a < r. Thus A and B are
non-empty and A is bounded below and B is bounded above.
As R is a Dedekind-complete, ordered field, there exists a least upper bound a′ for B.
For each real ε > 0, it follows from (a′ + ε) ∈ A and (a′ − ε) ∈ B that |a′ − a| ≤ ε, i.e.
a ' a′.
To prove its uniqueness let b′ ∈ R be near a, as well. Then |a′−b′| ≤ |a′−a|+ |a−b′| < 2ε
for all standard ε > 0. Hence, b′ = a′.

We call this number a′ the shadow or standard part of a, denoted by sh(a).

In the proof given above, we use the Dedekind completeness of R to attain the existence
of shadows. Indeed, as the following remark shows, the existence of those numbers is
an alternative formulation for completeness. As we will use the Cauchy completeness
for this fact, it should be noted that Dedekind and Cauchy completeness happen to be
equivalent on Archimedian, ordered fields, so in particular on R.
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Remark. The assertion ”every limited hyperreal is infinitely close to a real number”
implies the completeness of R.
To see this let 〈sn〉 be a Cauchy sequence. In particular, there exists a k ∈ N such that

∀m,n ∈ N : m,n ≥ k ⇒ |sm − sn| < 1

By transfer, it follows that for an unlimited N ∈ ∗N we have k,N ≥ k and, therefore,

|sk − sN | < 1

and thus sN is limited. By our assertion we get that there is an L ∈ R such that sN ' L.
For a real number ε > 0 we have the Cauchy-property

∀m,n ∈ N : m,n ≥ j ⇒ |sm − sn| < ε

for some j ∈ N. Transferring this and choosing a natural m > j, we have m,N ≥ j.
Therefore, |sm − sN | < ε. It follows that

|sm − L| < |sm − sN |+ |sN − L| < ε+ d,

where d ∈ ∗R denotes the infinitesimal distance between sN and L. Because |sm−L| and
ε are both real numbers, this implies that |sm − L| ≤ ε. Hence 〈sN〉 converges to L and
R is complete.
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3 Convergence of Sequences

3.1 Hyperreal Characterization of Convergence

Theorem 3.1.1. A real-valued sequence 〈sn〉 converges to L ∈ R if and only if sn ' L
for all unlimited n ∈ ∗N.

Proof.
”⇒ ” : The standard definition of convergence for 〈sn〉 is that for an arbitrary, given, real
ε > 0 there exists an mε ∈ N such that

∀n ∈ N : n ≥ mε ⇒ |sn − L| < ε.

By transfer we get

∀n ∈ ∗N : n ≥ mε ⇒ |sn − L| < ε.

As mε is natural, we get for any unlimited N ∈ ∗N that |sN − L| < ε and because ε > 0
was arbitrarily chosen, |sN − L| must be infinitesimal. Hence, sN ' L.
”⇐ ” : Fix an unlimited N ∈ ∗N. Then for any n ∈ ∗N if n > N it follows that n is
unlimited. Hence, sn ' L, i.e. |sn − L| < ε for all ε > 0. Therefore, the sentence

∃m ∈ ∗N : ∀n ∈ ∗N ∧ n > m⇒ |sn − L| < ε

is true. Transferring we have

∃m ∈ N : ∀n ∈ N ∧ n > m⇒ |sn − L| < ε

for all ε > 0. Hence, 〈sn〉 converges to L.

This theorem shows that in non-standard Analysis we can replace the role of the standard
tail of a sequence by the extended tail consisting of the extended terms, i.e. members of
the sequence with an unlimited index. The standard open neighborhoods (L− ε, L+ ε)
are replaced by the infinitesimal neighborhood hal(L).

Theorem 3.1.2. For a real-valued sequence 〈sn〉 there can only be one limit

Proof. For 〈sn〉 converging to M and N , we take an unlimited n ∈ ∗N and get sn ' M
and sn ' N , so M ' N , and because they are both real, M = N .

3.2 Non-standard Proofs on Convergence

Theorem 3.2.1. If a real-valued sequence 〈sn〉 is either

• bounded above in R and non-decreasing, or

• bounded below in R and non-increasing,

then it converges in R.
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Proof. We only prove the first case, as the second one can be shown in a similar fashion.
Let sN be an extended term, i.e. N ∈ ∗N is unlimited. By hypothesis there exists a real
number u that is an upper bound for 〈sn〉. Therefore, s1 ≤ sn ≤ u is true for all n ∈ N.
This can be transferred, meaning it holds for all n ∈ ∗N. Therefore, we have s1 ≤ sN ≤ u.
Hence, sN is limited and has a shadow L.
Transferring the property non-decreasing, we get that n ≤ m implies sn ≤ sm for all
n,m ∈ ∗N. In particular, sn ≤ sN ' L for all n ∈ N. Therefore, sn ≤ L, because they are
both real numbers, meaning L is an upper bound for the sequence. It is the least upper
bound, as for any r ∈ R that is an upper bound for 〈sn〉, by transfer we obtain sn ≤ r for
all n ∈ ∗N. We conclude L ' sN ≤ r, obtaining L ≤ r, as both are real.
Summarizing, we have shown that for any unlimited n ∈ ∗N the real number sh(sn) is a
least upper bound for the real sequence 〈sn〉. Since a real sequence can only have one least
upper bound, all of those shadows must denote the same real number L. By definition
of the shadow it has the property sn ' L for all unlimited n ∈ ∗N. Hence, by Theorem
3.1.1 〈sn〉 converges to L.

Example 3.2.2. For a real c ∈ [0, 1) we use the theorem above to prove that the sequence
sn := cn converges to zero.
〈sn〉 is non-increasing and bounded below, hence, it converges to some real number L.
Thus, if N ∈ ∗N is unlimited, we have cN ' L and cN+1 ' L. By transfer of

∀n ∈ N : cn+1 = c · cn

we have

L ' cN+1 = c · cN ' c · L.

Hence, L = c · L, as both are real numbers. Because of c 6= 1, L must be 0.

Theorem 3.2.3. A real-valued sequence 〈sn〉 is bounded in R if and only if its extended
terms are all limited.

Proof.
”⇒ ” : Transferring boundedness we get

|sn| < b for all n ∈ ∗N

for some real b > 0. In particular, this holds for all unlimited n.
”⇐ ” : If sn is limited for all unlimited n ∈ ∗N, it is limited for all n ∈ ∗N. To see this,
note that ∗N only consists of N and unlimited numbers (c.f Example 2.5.2) and every sm
with a limited index m ∈ N is limited.
Therefore, for a hyperreal, positive, unlimited r ∈ ∗R we get |sn| < r for all n ∈ ∗N, so
that the sentence

∃y ∈ ∗R : ∀n ∈ ∗N : |sn| < y

is true. By transfer it follows that

∃y ∈ R : ∀n ∈ N : |sn| < y,

i.e. 〈sn〉 is bounded.
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Theorem 3.2.4. A real-valued sequence 〈sn〉 is Cauchy if and only if sm ' sn for all
unlimited n,m ∈ ∗N.

Proof.
”⇒”: Choose a real ε > 0, then because 〈sn〉 is Cauchy, there exists a j ∈ N such that

∀m,n ∈ N : m,n ≥ j ⇒ |sm − sn| < ε

holds. Transferring we obtain

∀m,n ∈ ∗N : m,n ≥ j ⇒ |sm − sn| < ε

Because j ∈ N, for unlimited m,n ∈ ∗N, this statement is true regardless of the chosen
ε > 0, hence, |sm − sn| ' 0.
”⇐”: Suppose that 〈sn〉 is not Cauchy. Then there is an ε > 0 such that

∀N ∈ N ∃m,n ∈ N : m,n ≥ N ∧ |sm − sn| ≥ ε

Transferring, we obtain in particular that there are unlimited m,n ∈ ∗N such that
|sm − sn| ≥ ε, hence, sm 6' sn.

Theorem 3.2.5 (Cauchy’s Convergence Criterion). A real-valued sequence 〈sn〉 converges
in R if and only if it is Cauchy.

Proof.
”⇒”: If 〈sn〉 converges to L, then for any two unlimited n,m ∈ ∗N we have (c.f Theorem
3.1.1.) sn ' L and sm ' L, hence, sn ' sm.
”⇐”: Using a standard result we know that every Cauchy sequence is bounded. Thus,
for an unlimited m ∈ ∗N, the extended term sm is limited and so is its shadow L ∈ R.
For any different extended term sn we know that sn ' sm, because 〈sn〉 is Cauchy (c.f
Theorem 3.2.4.). Therefore, we also have sn ' L. But sn ∈ hal(L) for all unlimited
n ∈ ∗N is exactly the non-standard criterion for convergence to L.

As we can see, instead of using the completeness of R explicitly, the existence of shadows
for limited, hyperreal numbers can be employed.
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4 Continuous Functions

4.1 Hyperreal Characterization

Theorem 4.1.1. A function f : A→ R is continuous at a ∈ A ⊆ R, if and only if

f (hal(a) ∩ ∗A) ⊆ hal(f(a)),

or in other words, if and only if for all x ∈ ∗R the property x ' a implies f(x) ' f(a).

Proof.
”⇒”: The standard definition of continuity is:
For all ε > 0 there exists a δ > 0 such that

∀x ∈ R : |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Now for a fixed ε > 0, there is a δ > 0 such that by transfer

∀x ∈ ∗R : |x− a| < δ ⇒ |f(x)− f(a)| < ε

is true. For any x ∈ hal(a), |x− a| < δ and, therefore, |f(x)− f(a)| < ε. As the real
ε > 0 was arbitrary, it follows f(x) ' f(a).
”⇐”: Fix a real ε > 0 and let d denote an arbitrary, positive infinitesimal number. Then
for all x ∈ ∗R with |x− a| < d we have x ' a and by our assumption f(x) ' f(a).
Because ε > 0 is real, we also have |f(x)− f(a)| < ε. Thus,

∃δ ∈ ∗R δ > 0∀x ∈ ∗R : |x− a| < δ ⇒ |f(x)− f(a)| < ε

Transferring this sentence we have proven the continuity of f on R.

Examining the second part of the proof from above in detail we obtain an even stronger
result

Theorem 4.1.2. Let a ∈ A.

1. f is continuous at a ∈ A.

2. for all x ∈ ∗A, x ' a implies f(x) ' f(a)

3. There exists a positive infinitesimal d such that for all x ∈ ∗A, |x− a| < d implies
f(x) ' f(a).

To show that this only works for standard points a ∈ R, we examine the following example.

Example 4.1.3. For f(x) = 1
x

we know that this function is continuous on standard

intervals (0, 1). Now let δ ∈ ∗(0, 1) be infinitesimal. Then δ ' 2δ, but f(δ)−f(2δ) = − 1
2δ

is not infinitesimal.

The stronger requirement a ∈ ∗R turns out to be equivalent to uniform continuity.
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Theorem 4.1.4. A function f : A→ R is uniformly continuous on A ⊆ R, if and only if

f (hal(a) ∩ ∗A) ⊆ hal(f(a)),

for all a ∈ ∗A or, in other words, if and only if for all a, b ∈ ∗A the property a ' b implies
f(a) ' f(b).

Proof.
”⇒”: The standard definition of uniform continuity is:
For all ε > 0 there exists a δ > 0 for all x, a ∈ A : |x− a| < δ ⇒ |f(x)− f(a)| < ε.
Now for a fixed ε > 0 and the corresponding δ > 0, the sentence

∀a, x ∈ A : |x− a| < δ ⇒ |f(x)− f(a)| < ε

is true. By transfer, for all a, x ∈ ∗A, |a− x| < δ implies |f(a)− f(b)| < ε. For a ' x we
have |a − x| < δ for every real δ > 0, and hence, |f(a) − f(x)| < ε for every real ε > 0.
Therefore, a ' x implies f(a) ' f(x).
”⇐”: Fix a real ε > 0 and let d denote an arbitrary, positive infinitesimal number. Then
for all a, x ∈ ∗A that fulfill |x− a| < d we have x ' a and by our assumption f(x) ' f(a).
But because ε > 0 is real, we also have |f(x)− f(a)| < ε and thus,

∃δ ∈ ∗R : δ > 0 ∧ ∀a, x ∈ ∗A : |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Transferring this sentence we have proven the uniform continuity of f on A.

4.2 Non-standard Proofs on Continuity

Theorem 4.2.1 (Intermediate Value Theorem). Let f : [a, b] → R be continuous. Then
for every real d strictly between f(a) and f(b) there exists a real c ∈ (a, b) such that
f(c) = d.

Proof. Without loss of generality we deal with the case f(a) < d < f(b).

For each n ∈ N, we partition [a, b] into n equal subintervals of width (b−a)
n

.
Let sn denote the greatest partition point with f(sn) < d. So we have

∀n ∈ N : a ≤ sn < b and f(sn) < d ≤ f

(
sn +

(b− a)

n

)
,

which we can transfer. Then the same statement now applies to all n ∈ ∗N.

For an unlimited N we get sN and the next point sN + (b−a)
N

are infinitesimally close to

c = sh(sN), as (b−a)
N

is infinitesimal.

Since f is continuous at c and c is real, c ' sN and c ' sN + (b−a)
N

imply f(c) ' sN and

f(c) ' f
(
sN + (b−a)

N

)
, hence, f(c) ' d. Since d and f(c) are both real, they must be

equal.

Theorem 4.2.2 (Extreme Value Theorem). For a continuous f : [a, b] → R there exist
real c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].
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Proof. We only prove that f obtains the absolute maximum, the proof for the absolute
minimum is similar.
For each n ∈ N, we partition [a, b] into n equal subintervals with end points a+ k(b−a)

n
for

integers 0 ≤ k ≤ n. Let sn be the partition point with the largest f -value, meaning

∀n, k ∈ N : 0 ≤ n ≤ k ⇒ a ≤ sn ≤ b and f

(
a+

k(b− a)

n

)
≤ f(sn). (1)

By transfer (1) also holds for all n, k ∈ ∗N such that 0 ≤ k ≤ n. Now we choose any
hypernatural N and put d = sh(sN). By continuity f(sN) ' f(d).
Let x be an arbitrary real element of [a, b], then for each n ∈ N there is an integer k < n
with

a+
k(b− a)

n
≤ x ≤ a+

(k + 1)(b− a)

n
.

Hence, by transfer there exists a hyperinteger K < N such that x lies in the interval[
a+

K(b− a)

N
, a+

(K + 1)(b− a)

N

]
of infinitesimal width (b−a)

N
. Therefore, x '

(
a+ K(b−a)

N

)
and by continuity of f

f(x) ' f

((
a+

K(b− a)

N

))
.

But, due to (1), the values of f are dominated by f(sN) and we obtain

f(x) ' f

((
a+

K(b− a)

N

))
≤ f(sN) ' f(d),

which leads to f(x) ≤ f(d), since both are real.

Theorem 4.2.3. If the real function f is continuous on the closed interval [a, b] ⊆ R,
then f is uniformly continuous on [a, b].

Proof. Take x, y ∈ ∗[a, b] with x ' y and denote c = sh(x). Since a ≤ x ≤ b and x ' c, we
have c ∈ [a, b]. Hence, f is continuous at c. It follows that f(x) ' f(c) and f(y) ' f(c).
Therefore, f(x) ' f(y) and we have proven uniform continuity (c.f Theorem 4.1.4.).

Definition 4.2.4. A function f : R → R is said to be Lipschitz-continuous if it fulfills
the Lipschitz-condition, meaning there is a positive real constant L, such that

∀x, y ∈ R : |f(x)− f(y)| ≤ L|x− y|.

A contraction mapping is a Lipschitz-continuous function with a constant L < 1. We can
now prove a version of Banach’s Fix Point Theorem for (R, | · |) using only non-standard
Analysis.
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Theorem 4.2.5. Any contraction mapping f : R→ R has a unique fixed point.

Proof. Let L < 1 be the the Lipschitz-constant for f and take any x ∈ R. We define a
sequence 〈sn〉 by putting s0 = x and sn+1 = f(sn) for n ≥ 0.
Using the Lipschitz-condition of f we get

|sn − sn+1| ≤ Ln|s0 − s1|, for n ∈ N. (1)

Using this we can estimate |s0 − sn| by

|s0 − sn| ≤ |s0 − s1|+ · · ·+ |sn−1 − sn| ≤
≤ |s0 − s1|+ · · ·+ Ln−1|s0 − s1| =
= |s0 − s1|(1 + · · ·+ Ln−1) =

=
1− Ln

1− L
|s0 − s1|

and, therefore,

|s0 − sn| ≤
1

1− L
|s0 − s1| for all n ∈ N.

Transferring this sentence and picking an unlimited m ∈ ∗N we get

|s0 − sm| ≤
1

1− L
|s0 − s1|.

Because the right side of this inequation is real, sm is limited and has a shadow sh(sm) = S.
As f is continuous, sm ' S implies f(sm) ' f(S). By transfer of the definition of 〈sn〉
we get f(sm) = sm+1 and by transfer of (1) we get sm+1 ' sm. Altogether we have

f(S) ' f(sm) = sm+1 ' sm ' S.

Since f(S) and S are both real they must be equal.
For the uniqueness we note that for f(x) = x and f(y) = y we get

|x− y| = |f(x)− f(y)| ≤ L|x− y|,

Since L < 1, it follows that |x− y| = 0 and, therefore, x = y.

Example 4.2.6. For any contraction mapping f : R→ R we construct the sequence s0 = x,
sn+1 = f(sn) for n ≥ 0. In Theorem 4.2.6 we have shown, that sm has a shadow for all
unlimited m ∈ ∗N and that this shadow sh(sm) is a fixed point. But as the same theorem
shows, there can only be one fixed point. Hence, c := sh(sm) = sh(sn) for all unlimited
m,n ∈ ∗N. By Theorem 3.1.1 this implies the convergence of the sequence to c.
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4.3 Sequences of Functions

Another important case of extensions that we have to investigate is the extension of
sequences of functions. As of yet, for a sequence of real functions fn : A→ R, n ∈ N, we
can extend each one of them to a function ∗fn : ∗A→ ∗

R, n ∈ N. But we would like this
sequence to be extended to a hypersequence, i.e. for all n ∈ ∗N.
To achieve this, note that for such a sequence we define F : N × A → R by putting
F (n, x) = fn(x). For such a function, we know that there is an extension
∗F : ∗N× ∗A→ ∗

R.
For a fixed n ∈ N we transfer

∀x ∈ R : F (n, x) = fn(x)

and obtain that ∗F (n, x) = ∗fn(x) holds for all x ∈ ∗R. So this approach does not produce
different extensions ∗fn(x). Similarly, we can transfer for fixed x ∈ R

∀n ∈ N : F (n, x) = fn(x)

and obtain that the extension of the real-number sequence 〈fn(x)〉 matches with this
approach. Hence, for sequences of functions, we obtain hypersequences of hyperreal-
valued functions by the rules of extension, established in Section 2.2.

Theorem 4.3.1. A sequence of real-valued functions 〈fn〉 defined on A ⊆ R converges
point-wise to the function f : A → R if and only if for each x ∈ A and each unlimited
n ∈ ∗N, fn(x) ' f(x).

Proof. This follows immediately from the hyperreal characterization of convergence, The-
orem 3.1.1.

Theorem 4.3.2. A sequence of real-valued functions 〈fn〉 defined on A ⊆ R converges
uniformly to the function f : A → R if and only if for each x ∈ ∗A and each unlimited
n ∈ ∗N, fn(x) ' f(x).

Proof.
”⇒”: By the definition of uniform convergence

∀ε > 0 ∃m ∈ N : ∀n ∈ N : n ≥ m⇒ ∀x ∈ A : |fn(x)− f(x)| < ε

Fixing an ε > 0, we have a certain m ∈ N, such that by transfer

∀n ∈ ∗N : n ≥ m⇒ ∀x ∈ ∗A : |fn(x)− f(x)| < ε.

For any infinite N ∈ ∗N we have that N ≥ m and obtain that fn(x) ' f(x) for all x ∈ ∗A,
because ε > 0 was arbitrarily picked.
”⇐”: Fix an unlimited N ∈ ∗N. For all n ≥ N , n ∈ ∗N we have fn(x) ' f(x) for all
x ∈ ∗A. Hence, for any real ε > 0

∃m ∈ ∗N : n ≥ m⇒ ∀x ∈ ∗R : |fn(x)− f(x)| < ε.

Transferring we get the desired result.
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Theorem 4.3.3. If the functions 〈fn〉 are all continuous on A ⊆ R, then for any n ∈ ∗N
and any y ∈ ∗A there exists a positive infinitesimal d such that fn(x) ' fn(y) for all
x ∈ ∗A with |x− y| < d.

Proof. fn being continuous on A for all n ∈ N means that

∀n ∈ N , ∀y ∈ A , ∀ε > 0 , ∃δ > 0 : ∀x ∈ A : |x− y| < δ ⇒ |fn(x)− fn(y)| < ε

is true. By transfer for all n ∈ ∗N, y ∈ ∗A and all infinitesimal ε > 0, we get that there
is some hyperreal δ > 0 such that |x− y| < δ implies |fn(x)− fn(y)| < ε for all x ∈ ∗A.
But this implies fn(x) ' fn(y). Hence, there is a positive infinitesimal d such that the
desired conclusion follows.

This result allows us to proof a basic theorem on uniformly converging sequences of
continuous functions.

Theorem 4.3.4. If the functions 〈fn〉 are all continuous on A ⊆ R and the sequence
converges uniformly to the function f : A→ R, then f is continuous on A.

Proof. For c ∈ A we want to prove that f is continuous at c. For an unlimited n ∈ ∗N,
by the last result, there exists an infinitesimal d > 0 such that for any x ∈ ∗A

|x− c| < d implies fn(x) ' fn(c).

As c, x ∈ ∗A and |x−c| < d implies x ' c, for an unlimited n ∈ ∗N, we have fn(x) ' f(x)
and fn(c) ' f(c) (c.f Theorem 4.3.2.). Altogether we attain

f(x) ' fn(x) ' fn(c) ' f(c).

In conclusion, there is a positive d ' 0 such that for all x ∈ ∗A

|x− c| < d implies f(x) ' f(c),

so f is continuous at c.
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