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0.1 Preface

The theory of semigroups of operators introduced by Hille and Yoshida is the basis of
this work. The main thought is to weaken the definition of a semigroup and therefore get
a generalisation of the situation. The loss of information in relation to the ”well-known”
case is reflected in the injective operator P(0). As in semigroup theory, one considers an
Abstract Cauchy Problem for an operator A : dom(A) C X — X,

u'(t) = Au(t), u(0) = ¢,

for t € [0, 00) where u is a Banach space valued function.
Finally, the focus is on exponentially tamed pre-semigroups which can be identified with
strongly continuous semigroups on a Banach subspace of the considered Banach space X.



0.2 Notation, Definitions and Elementary Results

First we make some remarks and introduce some notation.

Let X always denote a Banach space with norm ||.|.

An operator is always linear.

B(X) is the set of all linear bounded operators from X in X.

A function F': [0,00) — B(X) is called strongly continuous if
lim [(F (¢ -+ ) — P(t))a] =0

for all ¢t € [0, 00) and each fixed z € X

(for t = 0 we have the limit from the right side h — 07).

C(la,b]; X) (a,b € R) is the vector space of continuous functions f : [a,b] : [ —
X normed by [|fll, = subwey If(#)]]. Let (fu)nen be a Cauchy sequence in
C([a,b]; X). By the definition of the .||, -norm (f,(t))nen is Cauchy in X and
therefore converges to f(t) for each fixed t € [a,b]. Let h be sufficiently small, then

LFCE+R) = FON < [1FE+R) = fult + D)+ 1 fa( 4+ h) = LoD + ([ fult) = FO

<,
and hence f is continuous using continuity of f,,. So C(|a,b]; X) is complete.

Cy([0,00); X) denotes the vector space of all bounded uniformly continuous func-
tions f : [0,00) — X with norm || f|| := sup;so [|f(£)]|. Let (fn)nen be a Cauchy
sequence in Cy([0, 00); X'). By definition of the norm, (f,,(¢))nen is Cauchy in X and
therefore converges to f(t) for each fixed t > 0. Since f,, is bounded, f is bounded.
Clearly, convergence in ||.|| _ is nothing else but uniform convergence, i.e.

Ve >0 AN, e N:||f,(t) — f(O)]| <€ Vt=0,n> Ng.
Using this and uniform continuity of f,, (for a fixed n), i.e.
VE>0 ey, > 0: || fu(t+h)— fu(t)]| <€ VE=0,|h] < ben,
we get for € > 0

LFE+h) = FOI < [1FE+R) = fult + R+ a4+ h) = Fu (O + ([ fut) = FO

<2 +E<e,

for an arbitrarily fixed n > Ne¢ and for all [h| < d¢ , . Obviously, h and n are inde-
pendent of ¢ € [0,00), hence f is uniformly continuous. Therefore, Cy(]0, 00); X) is
a Banach space.



e ((R) is the space of all bounded, continuous functions f: R — R with
lim, .+ f(x) =0, ie.

VYe>0 dM.>0: |[f(z)]<e Vx| > M, (1)

With the norm || ||, = sup,cg |f(2)| it is a Banach space. To see this, we consider
the sequence f,, € Cy(R), n € N with f, — f for n — oo in ||.|| .. Convergence in
the || f|| ,-norm implies pointwise convergence. Because of (1) and continuity of f,
it follows

[f(@)] < [f(2) = fal)] + | ful@)] < 26,

for all |x| > M, . and an arbitrary n > N. € N. By the pointwise convergence,
boundedness and continuity of f are clear (in analogue to Cy([0,00); X), see Nota-
tion, Definitions and Elementary Results), hence f € Cy(R).

e Cpo(R) is the linear subspace of Cy(R) of functions with compact support, where
the support supp(f) of a function f is defined as

supp(f) :=A{z € R: f(z) # 0}.

It is easy to see that Cpo(R) lies dense in Cy(R). For that, consider f € Cy(R) and
define:

flx) fzl<n

fn<x) = 0

|z| >n

It is obvious that the discontinuity of f,, at © = 4+n can be eliminated by a C'*°-
function that ”connects” f(4n) with 0 on an interval [—n — €, —n] ([n,n + €] re-
spectively). Then, f, clearly belongs to Cyo(R). Furthermore,

[fn = fllo = sup | f(z)] =0,

|z|>n

for n — oo, hence Cyo(R) is dense in Cp(R).
Note that with this definition, Cyo(R) D Cy(R).

e The strong derivative of a function f : [a,b] — X at t € (a,b) is defined as

d YR |
() = F/(t) = lim = (F(t+ h) = (1),

if the limit exists. The strong derivative at the boundary points is defined through
the limit from the right hand side for ¢ = a (strong right derivative) and through
the limit from the left hand side for t = b respectively. As for R-valued functions
we have (see [KalO8b]): If f/ =0 on [a,b], then f is constant on [a, b].

e For functions f : [a,b] — X a Banach space valued Riemann integral fab f(s) ds
can be defined in the same way as for R-valued functions by Riemann-sums. See



[Kal08b] for details. Thus, many results and rules concerning the integral (e.g.
linearity,..) are similar. We want to point out that for 7" € B(X):

/Tf(s) ds = T/f(s) ds.

This integral concept also includes improper Riemann-integrals. Such an improper

integral is defined as
oo B
/ f(s) ds = lim / f(s) ds,

B—o0

where the limit is in the norm ||.|| of the Banach space. Since

/a f(s) ds

(which follows easily by definition of Riemann sums and triangle inequality), a
sufficient condition for the existence of this limit is the convergence of

B
tim [l ds

in R. The case " —00” is completely analogue.

< [l as

I: X — X :x+— x denotes the identity operator.

The operator norm of a bounded operator T": X — X is

[T|
T = sup .
H HB(X) 2 X 020 HxH
We will write only ||.||, if it is clear that the object is an operator and if it is

obviously on which space the map is defined.

For an operator A defined on a subset of X, dom(A) denotes the domain. Further-
more A(dom(A)) denotes the image of A.

For an operator A : dom(A) — X and a subspace Y C X, the part of A in Y,
Ay, is defined as the operator with

dom(Ay) ={x € dom(A):x €e Y NAz € Y}, Ayz = Ax.

An operator A : dom(A) — X is called closed, if for all sequences (x,,)nen,
x, € dom(A) for all n € N, with

T, —x€X and Az, —y € X,

it follows
x € dom(A) and Az =y.

Closed Graph Theorem: Let X, Y be Banach spaces and let A: X — Y be an
operator (dom(A) = X!). The following assertions are equivalent
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1. A is closed,
2. A is continuous, i.e. A € B(X).
e C'([a,b]; X) denotes the vector space of all functions f : [a,b] — X which are con-

tinuously (strong) differentiable, with norm || f||. := || |l + | /||, With || f|l =
SUDyc(a I1f ()] To show that this space is complete, we consider C*([a, ]; X) as

{(f;9) € C(la,0); X) x C([a,b]; X) : g = f'}. (2)

Since this is a subset of the Banach space C([a, b]; X') x C([a, b]; X) with the norm
I|.1lo + |-l it suffices to show that the set in (2) is closed. It is equivalent to show
that the differentiation operator

D : dom(D) — C([a,b]; X) : f+— [,

dom(D) :={f € C([a,b]; X) : f" exists and is continuous} C C([a, b]; X)
is closed. Let f, € dom(D),n € N, f, — f € C([a,b];X) and Df, — g €
C(la, b]; X) (limits in C([a, b]; X)). Since convergence in C([a, b]; X') implies uniform

convergence, g = lim,, ., f} is continuous. Furthermore, uniform convergence gives
us, (t,to € [a,b] and t > ty)

/tg(s) ds = lim tf;(s) ds.

n—oo tO

By the fundamental theorem of calculus we get

/ g(s) ds —l—nlinrolo fu(to) = lim (/t fi(s) ds + fu(to))

0 ~ Tim £, (0
- 1)

The left hand side is differentiable at t since ¢ is continuous, and therefore f' = g.
Hence, D is closed and C*([a,b]; X) is a Banach space.

e Principle of uniform boundedness theorem: Let X, Y be Banach spaces and
{T; :i € I} a family of bounded operators. If the family is bounded pointwisely,
i.e. for all x € X there exists a M, > 0 so that

sup | Tia|| < M.,
el

then there exists a M > 0, so that

sup ||T;|| < M < 0.
i€l

e For a closed operator A, the resolvent set p(A) is the set of all A € C for which
the operator (M — A) : dom(A) — X is bijective. For A € p(A), the resolvent
Ry 4 denotes (A\] — A)~! which is necessarily also closed and therefore in B(X) since
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A is closed (by the Closed Graph Theorem). We point out that (Al — A) is not
necessarily bounded for A € p(A). Apparently the following relations hold true:

Rya(M — A)z =z x € dom(A),
(M —A)Ryax =2 ze€lX.
The existence of a map Ry 4 : X — dom(A), which satisfies these two equations, is

also obviously sufficient for A € p(A).

R)\7A()\I - A)$ = ()\] - A)R)\7AZL‘7
for all z € dom(A).

e LEMMA 0.1 For a closed operator A : dom(A) C X — X which commutes with
B:X — X, i.e. Bx € dom(A) and

BAx = ABx Vo € dom(A),
it follows that the resolvent Ry 4 commutes with B, i.e.

BR) ax = Ry saBx Ve e X, € p(A).

PROOF: By definition of R) 4 and using the assumption we see

BAy = ABy Yy € dom(A)

< ABy — BAy = ABy — ABy Yy € dom(A)

& B(AM —A)y= (A —A)By Vy € dom(A)

< Ry aB(M — A)y = By Yy € dom(A)
& Ry aBx = BR) 52 Ve e X.

e LEMMA 0.2 Let A: X — X, B: X — X be operators. Let B be injective and
AB=BA. Then, A(BX) C BX and

AB 'z = B~ 1Az,
forallz € BX.
PROOF': Commutativity gives A(BX) C BX. Using this and = € BX, it follows
Ax = Ax

= ABB 'z = BB 'Ax
= AB 'z = B 'Azx.



e LEMMA 0.3 For operators A : dom(A) C X — X, B:dom(B) C X — X
with surjective A , injective B the relation A C B, 1i.e.

dom(A) C dom(B) N Ax = Bx Vo € dom(A),

implies
A= B.

PROOF: 1t suffices to show that dom(A) = dom(B). dom(A) C dom(B) is ful-
filled by assumption. Let x be in dom(B). Since A is surjective, there exists a
y € dom(A) so that Ay = Bx. By assumption A C B. Therefore, y € dom(B) and
Ay = By. Thus Bz = By. The injectivity of B leads to x = y € dom(A), that is
dom(B) C dom(A) and hence dom(A) = dom(B). [ |



Chapter 1

Pre-Semigroups

DEFINITION 1.1 A family {P(t)},s, of operators is called pre-semigroup, if

1. P:]0,00) — B(X) is strongly continuous,
i.e. limy o [|P(t + h)x — P(t)z|| =0 Vo e X,Vt € [0,00)

2. P(0): X — X is injective
3. P(t —u)P(u) is independent of u for all 0 < u <t
This definition is a generalisation of strongly continuous semigroups of operators (Cp-

semigroups). Point (3.) in the given form is not really convenient for the following
statements and their proofs. That is why we reformulate it in the next lemma.

LEMMA 1.2 For a family {P(t)}t>0 of operators the following points are equivalent:
o P(t —u)P(u) is independent of u for 0 < u <t
o P(t—u)P(u) = P(0)P(t) for0<u<t
o P(0)P(u+s)= P(s)P(u) for all u,s >0

PROOF: (1.) < (2.): One direction follows by setting v = t. The other implication is
trivial.
(2.) < (3.): Set t = s+ u. [ |

The last point of this lemma,
P(0)P(u+s) = P(s)P(u) u,s 20 (ADD)

reflects some kind of additivity of the pre-semigroup and immediately implies the com-
mutativity of the operators P(s),

P(s)P(u) = P(u)P(s) u,s =0 (COM)



REMARK 1.3 In the property P(0)P(u+s) = P(s)P(u) we can see the connection and
the difference to "normal” Cy-semigroups: It is the injective operator P(0) which controlls
the additivity of P(.). Now we have noticed that it is just P(0) which generalises the
situation of a strongly continuous semigroup. That is the reason why pre-semigroups are
sometimes called ” C-semigroups” where C' denotes the injective operator P(0). Probably
this definition is not really suitable since this can be easily confused with Cj)-semigroups.
That is why for example in [deL.94] the term ”C-regularized-semigroup” is introduced.
The notation ”pre-semigroups” has been adopted from [Kan95].

The next lemma shows a basic property of a pre-semigroup.

LEMMA 1.4 For a pre-semigroup {P(t)},5, the family of operators {P(s) : s € [a,b]}
is uniformly bounded for each compact interval |a,b] in [0,00), i.e. there exists a M > 0:

|P(s)|| < M Vs € [a,b].

PROOF': We have to show that {P(s) : s € [a, b]} is bounded pointwisely. Since the norm
|.]] + X — [0,00) is continuous, it follows from strong continuity of the pre-semigroup
that ||P(.)z| : [0,00) — [0,00) is continous for all z € X. Such a function clearly has
a maximum on a compact interval. Hence for each x € X there exists a M,, so that
supsciay || P(s)x|| < M,. With the Principle of uniform boundedness (see Notation, Def-
initions and Elementary Results) the proof is completed. |

Example 1.5 Consider the Banachspace X = Cy(R) and the the family of operators
{P(t)},50 defined through

P(t)f(z) = e " f(x), (1.1)
for x € R. We will see that this is a pre-semigroup. For that, we have to check the
conditions of DEFINITION 1.1.
1. P:[0,00) — B(X) is strongly continuous.
Fix t > 0. First, we have to assure that P(t)f is in Cp(R). This is clear since
limy s e ® % = 0 and f € Co(R). The parabel z +— —x? + tz has its maximum
% at x,, = % Therefore,

e—mg—l-txf(x)’

< sup e sup | f ()]
FASIN

z€R

1P(#)fllo = sup

zeR

2
=e? [l

hence P(t) € B(X). Fix f € Cy(R). For strong continuity we have to show that for all
€ > 0 there exists a §. > 0 so that

sup |e @ HEHNT £ () o= HT p()] < ¢ (1.2)
zeR
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for all |h| < .. First we consider functions f € Cyo(R). Since f has a compact support
K the left hand side in line (1.2) reads

sup }ehx — 1‘

sup |e=s"HE £y e—x2+txf(x)’ < sup |e " f ()
zeK

zeK zeK

= Sk sup ‘ehz — 1| ,
zeK

where Sk denotes the maximum of e+ f(z) on K. From monotony of y — e¥ we get,

with K4 = max {|z| : z € K},

sup |ehx - 1‘ <
zeK

sup ‘elh”x'| —1
zeK

— |eltlHma: 1] — 0,

for h — 0. Hence we have strong continuity for f € Cyy(R). Let f € Cy(R). Since Cpo(R)
lies dense in Cy(R), there exists a sequence (f,)nen of functions in Cyo(R) such that,

Ve>03N. eN: ||f—full, <€ Vn=N.

Therefore we can write
|P(t+h)f—Pt)fll. =
=|[[Pt+h)f—Pl+h)fot P(t+h)fo—P)fat P)fn— P
<P+ R)(f = fllo + PO = f)lloo + I1PE+h) fo — P(t) full &
<([PE+R+NPOD NS = fallo + 1PE+R) fo = P#) full -

Because of strong continuity for functions in Cpo(R) we have
1P+ h)fo = PO fallo <€

for |h| < d.. Using LEMMA 1.4 we know that ||P(t+ h)|| and || P(¢)| are bounded
(independent of h) by a constant M > 0. Therefore,

WPE+mI+HNPODINS = fallo +1PE+ ) fo = P) full <€

for an arbitrary n > N¢janm) and |h| < 6.2. Hence, the family of operators is strongly
continuous.
2. P(0) is injective because for P(0)f = P(0)g with f, g € Cy(R) we have for all z € R

P(0)f(x) = P(0)g(x)
e_IQf(m) = e_ﬁg(x)
& flz) = g(2).
3. Clearly, for all f € Cy(R) and all x € R the following holds true
P(0)P(s+t) f(x) = e e 7 f(g) = 705 [ f ()] = P(s) P(t) f(x),

hence P(0)P(s +t) = P(s)P(t).

This example will accompany us throughout this work. Actually it can be weakened.
Instead of the assumption that the functions tend to zero for x — 400, we can just
require lim, 1 f(z) = by for a by € R. Note, that then P(t)f is still in Cy(R).

11



For the definition of the ”generator” of a pre-semigroup we need the right derivative of a
Banach space valued function (in analogue to R, see Notation, Definitions and Elementary
Results).

DEFINITION 1.6 Let {P(t)},5, be a pre-semigroup and x € X. The strong right
derivative P (t)x € X of P(.)x at t is defined as

lim % (P(t+ h)e — P(t)a], (1.3)

h—0+
iof the limit exists.

Now we can define an operator for the pre-semigroup connected with the derivative at
zZero.

DEFINITION 1.7 Let {P(t)},5, be a pre-semigroup.
Define the operator A : dom(A) — X by:

o dom(A) ={x € X : P7(0)x exists in X and belongs to P(0)X}
o Ar = P(0)"1P*(0)x

A is called the generator of the pre-semigroup { P(t)},5,. We also say "A generates the
pre-semigroup {P(t)},5,".
Because of the injectivity of P(0), the generator is well-defined. The linearity follows,

clearly, from the linearity of P(t) for all ¢ € [0, 00). For P(0) = I this definition obviously
equals the definition of the generator for semigroups.

Example 1.8 Consider again the pre-semigroup from Example 1.1. For f € Cy(R) we
regard the strong right derivative of P(.)f at zero.

P'*(0)f = lim l(P(h)f — P(0)f)

h—0+ h

Assume that f € dom(A). Since point evaluations are continuous on Cy(R), we obtain
for x € R with de L’Hospital

(P (0)1)(@) = Tim +(P(W)(x) = PO)F(@)) = T & (4 f(a) — e f())
AR hlir{)l+ : wh 1
= e’IQf(:C)x

In the definition of dom(A) we demand P'*(0)f to be in the image of P(0) : g — (z —
e~ g(z)), therefore our function f in dom(A) satisfies (z — xf(x)) € Co(R).
Conversely, let f € Cy(R) with (z — xf(z)) € Co(R). We show that for such f, P"*(0)f
is (z — ez f(z)). That is, for all € > 0 there exists a d. > 0 so that

sup |e* f(x) —e Taf(x)]| <e, (1.4)

zeR h



for h < 0.. We see that ’e‘m2xf(x)
Moreover for h < 1 we have

is sufficiently small, say < €/2, for x — Zo0.

(zh)’
il

e f(x) e f(x)x

WE

ehs — 1
=

1=1

<e ez f(x)).

8

<

This expression is also < €/2 for |z| sufficiently large. Hence we can define S, > 0 so that
(1.4) < e for |z| > S, and h < 1. For the remaining = we calculate

hx x
—z2 e -1 v
sup e 1) ()| < e s | [ 1)
T|XxPe T|XxPe 0
< HfHooSels|1£ ’ehv_l‘
U\ €
< HfHooSe| ?355 le" — 1] — 0,

for h — 0F. Hence, P'*(0)f = (z — e “xf(x)). Since (z — xf(z)) € Co(R), P (0)f is
in the image of P(0), and therefore, f € dom(A). Altogether we have (since P(0)~!(z —
e f(r)) = (x—xf(x))),

Af(x) =xf(x), dom(A) ={f € Co(R) : (z — zf(x)) € Co(R)}.

After we have noticed that the operator A is well defined, we want to know ”if this map is
reasonable in a certain sense”. One question is about the domain of A: The pre-semigroup
is per definitionem "only” (strongly) continuous. This does not really imply that there
exists a (strong right) derivative. For example, we want to analyse how big the domain is.

The following theorem shows some basic results of the generator.

THEOREM 1.9 For the generator A of a given pre-semigroup { P(t)},5,- The following
assertions hold true.

1. x € dom(A) = P(t)x € dom(A) for allt >0
2. AP(t)x = P(t)Ax for all x € dom(A)
3. P()x € CY([0,00); X) for z € dom(A),

AP(t)z = lim %(P(t +h)z — Pt)) = %P(t):c

for all x € dom(A),t € [0, 00)

4. Forx e X:
t
/ P(s)x ds € dom(A)
0

13



5. A is closed and P(0)X C dom(A);
PROOF: Let be t > 0, h > 0 and = € dom(A).
1. We use that the P(s),s > 0 commute to obtain

+(P(h) [P(t)z] = P(0) [P(t)a]) = & (P(t)[P(h)z — P(0)z]). (1.5)

By the continuity of P(¢) and because of x € dom(A) the right hand side tends to the
strong right derivative of P(t)P(.)x at 0 for h — 0T, hence

lim 1 (P(8) [P(t)a] ~ P(0) [P(2)(x)]) = P[P (0)s].

In particular, the limit for A — 0% on the left hand side, i.e. the strong right derivative
P(0) [P(t)z], exists. With the definition of A and again with the commutativity of the
operators P(s),s > 0 we get

PHO)[P(t)] = P(1) Tim +(P(h)z — P(0)a) (L6)
= P(t)P(0)Ax (1.7)
= P(0)P(t) Az (1.8)

Therefore, P'7(0)P(t)x € P(0)X and hence P(t)z € dom(A).
2. Furthermore with the definiton of the operator A and using (1.8) it follows

A[P(t)z] = P(0)~" [P (0)P(t)z] = P(0)"P(0)P(t)Az = P(t)Ax.

3. We use P(0)P(t+ h) = P(t)P(h) (ADD) to obtain

(P()[P(h)a — P(0)z]) = — (P(0)[P(t + h)a — P(t)z]). (1.9)

1
h

SRS

Letting h — 0T, we observe that, with the same argument as in 1. (x € dom(A) and
P(t) continuous), the strong right derivative of P(0)P(.)z at t > 0,

lim %P(O)(P(t + h)x — P(t)x) = [P(0)P()]" (),

h—0t+

exists and equals P(t)P(0)Ax = P(0)P(t)Axz. We show that this is also the strong left
derivative of P(0)P(.)x for t > 0. With the triangle inequality we see

H% [P(0)P(t) — P(0)P(t — h)| z — P(0)P(t)Az|| <
< H% [P(t) = P(t — h)] P(h)e — P(0)P() Az | +

+ H (P(t —h) — P(t))% [P(h)z — P(0)2]

14



Using triangle inequality again, we get that this expression is less or equal to

Hl [P(t) — P(t — h)] P(h)a — P(0)P(t) Az +

H (t—h)— P(t)) {% (P(h)z — P(0)2] — P(O)Ax}
FIP( = B)YP(0) Az — P(£)P(0) Az .

+

Now we show that all three terms on the right hand side converge to zero for h — 0F.
Because of (ADD) the first term can be written as

1
HE(P(O)P(t + h)z — P(0)P(t)z) — P(0)P(t)Az|| .

For h — 07 this converges to 0, since P(0)P(t)Az is the strong right derivative of
P(0)P(.)z at t as shown before. LEMMA 1.4 can be applied on the interval [t — h, t] and
gives us a constant M > 0, so that for the second term we get

H (P(t 1)~ P(1)) {1 [P(h)x — P(0)a] - P<o>Ax} H <

<

< 1P =) = POI | § 1Pt — PO)] - P0)42

— 0,

< 2M H% [P(h)x — P(0)z] — P(0)Ax

for h — 0" by definition of the strong right derivative and A. The third term converges
to 0 since P(.)P(0)Az is continuous.
Therefore, P(0)P(.)x is differentiable for all ¢ € (0,00),z € dom(A) and its derivative
equals P(0)P(t)Ax. That is,
1
P(0)P(t)Az = lim E(P(O)P(t +h)x — P(0)P(t)z) = [P(0)P(.)z] ().

h—0

Obviously, the left hand side is continuous (as a function in ¢ and fixed ), since P(0) is
continuous and because of strong continuity of P(.). Therefore, P(0)P(.)z is continuously
differentiable and hence we can use the fundamental theorem of calculus,

t+h t+h
/ [P(0)P(.)x])'(s) ds = / P(0)P(s)Az ds = P(0)P(t + h)x — P(0)P(t)x.
¢ ¢
The fact that P(0) bounded yields (see: Notation, Definitions and Elementary Results)
t4+h
P(0) / P(s) Az ds = PO)[P(t + h)z — P(t)a],
¢
and by injectivity of P(0) we have
t+h
/ P(s)Ax ds = P(t+ h)x — P(t)x. (1.10)
¢
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The integrand is obviously continuous, so dividing by A and letting h — 0 directly gives
us (by the fundamental theorem of calculus)

P(1)Az = lim %(P(t + )z — P(t)x) = [P()a]'(8).

Clearly, also for ¢ = 0 the strong right derivative of P(.)z exists and equals P(0)Ax.
Since P(.)Az is continuous on [0,00) (because P(.) is strongly continuous), P(.)z €
C1([0,00) ; X). With point 2. of this theorem we obtain

h—0

AP(t)z = lim %(P(t +h)e — P(t)a).

4. For a fixed t > 0, we consider the strong right derivative of P(.) [fot P(s)a:ds} at 0:

lim = [P(h) — P(0)] /0 P(s)e ds = Tim ~ /0 (P(0)P(h+ s) — P(0)P(s)]z ds

h—0t

t+h ¢
= lim lP(O)[/h P(u)x du _/o P(s)zx] ds

h—0+ h

= P(0) lim % [/tHhP(U)as du — /Oh P(s)x dé}

h—0t

= P0)[P(t) = P(0)] ,

where we used the fundamental theorem of calculus again. So the strong right derivative
exists and belongs to P(0)X.
5. With (1.10) from point 3. we have

P(t)zr — P(0)z = /OtP(s)Aa: ds (1.11)

First we show that A is closed. Let x,, — = with z,, € dom(A) and Az,, — y. (1.11) and
boundedness of P(t) for all ¢ € [0, 00) yield to

(P(h) — P(0))x = lim ((P(h) — P(0))x,) = lim P(s)Ax,, ds.

n—oo n—oo 0

Because || P(s)]| is bounded uniformly on the compact interval [0,h] (LEMMA 1.4), the
limit is uniformly, hence can be permuted with the integral (see [Kal08b]).

(P(h) — P(0))x = /0 lim P(s)Axz, ds = /0 P(s)y ds. (1.12)

n—oo

Dividing by h and letting h — 07 we get (with P(.)y being continuous and the funda-
mental theorem of calculus)

P*(0)z = lim 1(P(h)x — P(0)z) = lim = P(s)y ds = P(0)y.

h—0 h—0 h J,
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Hence P*(0)z € P(0)X and further x € dom(A) by definition of A and Az = y.
Finally we show that P(0)X C dom(A). Let x € X. From 4., we see that t~! [] P(s)ads €
dom(A). Letting t — 07 and using again the fundamental theorem of calculus we get

t
P(0)x = lim tl/ P(s)x ds.
0

t—0
Thus P(0)x € dom(A). [ |

We see that there is a connection between the domain of A and the image of P(0). The
bigger P(0)X is, the bigger will be dom(A). In the case that P(0) is bijective, it follows
that dom(A) is dense in X. Furthermore, the property P(0)P(u + s) = P(u)P(s) is
responsible for the fact that dom(A) is invariant for P(t) and the commutativity of A
and P(t). A main result is the differentiability of P(t)x for z € dom(A). This will be
used in chapter 2.

REMARK 1.10 An obvious question is ”What happens if we have a pre-semigroup
{P(1)},5 and an injective, bounded operator GG and we consider the family of operators
{W(t) :=GP(t)},5," 7 Can we expect this family to be a pre-semigroup? If we look at the
assumptions in DEFINITION 1.1, clearly, strong continuity is preserved by boundedness
of G and injectivity of GP(0) is trivial. Concerning the additivity property, P(0)P(t+s) =
P(t)P(s), we get

W(O)W(s+t) =GP(0)GP(s +1t),

where we see that GP(t) = P(t)G for all t > 0 is a sufficient condition so that

GP(0)GP(s+t) = GGP(0)P(s+1t) = GGP(t)P(s) = GP(s)GP(t) = W(s)W (t)
Therefore, additionally we have to require that the operator G commutes with P(t) for
all £ > 0. In this case, the domain of the generator of {W(t) := GP(t)},, includes the
domain of Ap, the generator of {P(t)},, since the boundedness of G gives us

H%«n%mx—(nxm)—GP%wﬂ

<H®W%@WM—P®D—PW®x.

Finally, this thoughts inspire the idea to choose G = P(0)~!. Unfortunately, in general
we can not expect continuity of the inverse of P(0). Although we will see in Chapter 3
that in some situations this is possible.

The situation is that we have a pre-semigroup which gives us the generator A. Especially
in connection with the ACP (see next chapter) and the uniqueness of its solution we are
interested in a uniqueness of the generator. The following technical lemma will be useful
for conclusions on the uniqueness of the pre-semigroup for a given generator. For that,
we state the a product rule for Banach space-valued functions.

LEMMA 1.11 Let W(.) : [a,b] — B(X) be a strongly continuous function with W (.)x €
CY([a,b]; X) for all x in a linear subspace U C X. Furthermore, let v : [a,b] — U be in
Cl([a,b]; X). Then,

(W) (©) = WEW ) + W (), (113

where W'(t)x := [W(.)z)]'(t).
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PROOF: Regard the function g defined as follows:
g:la,b] = X :s— W(s)v(s)

We consider ¢'(s), s € [a,b], with elementary rearrangements we get

() = lim L[V (s + R)u(s + B) — W (5)u(s)] (1.14)
= lim %[W(s 4+ h)o(s + h) — W(s + h)o(s) + W(s + hyo(s) — W(s)o(s)] (1.15)

= T (s + B) ol 4+ h) —u(s)] + Tim W (s + h) — W (s)]u(s) (1.16)

= lim V(s + h)(%[v(s 1) = ()] = (5)) + lim W (s + h)o!(s)+ (1.17)
Flim 2 [V (s + h) — W(s)o(s). (1.15)

Due to the strong continuity of W (.) and the principle of uniform boundedness theorem
(compare: LEMMA 1.4), |[W (s + h)|| is bounded (by a constant S) for h in a compact
interval. Therefore, we can write

W+

Y

oo+ =006 = 06) | < 8 1t + 1) =t - 5

where the right hand side clearly tends to 0 for h — 0, since v(.) € C''([a, b]; X). Hence,
the first term in (1.17) is 0 € X. The second term,

llzir% W(s+ h)v'(s) = W(s)v'(s),
since W (.) is strongly continuous. Finally,

1 ,
lio = (W (s + h) = W(s)]o(s) = W'(s)o(s),

because v(s) € U and W(.)z € C*([a,b]; X) for x € U. Altogether,
g'(s) = W(s)v'(s) + W(s)u(s),

which proves the lemma. (For s = a or s = b the limits above are to be considered for
h—0torh—0") [ |

We point out that W’ (t)v(t) is not the composition of the operators "W’(¢)” and v(t).

LEMMA 1.12 Let {P(t)},5, be a pre-semigroup generated by A. Let v : [0,00) —
dom(A) be in C*(]0,00); X) with v' = Av and v(0) = P(0)c for ¢ € dom(A). Then,
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PROOF: We fix t > 0. Clearly the function h;, : [0,t] — X : s — P(t — s)z is in
C([0,t]; X) for z € dom(A), since P(.)x € C*([0,t]; X) for z € dom(A) (see THEOREM
1.9). Therefore, the assumptions for LEMMA 1.11, where W(.) = P(t —.) and U =
dom(A), are satisfied. Hence for f; := P(t — .)v(.) : [0,t] — X and s € [0, ]

fi(s) = (P(t - )v())’(s) = P(t — s)V'(s) + P(t — s)'v(s).

We know P(s)'z = AP(s)x for x € dom(A) by THEOREM 1.9, which yields P(t—s)'z =
—AP(t — s)x for x € dom(A). Together with our assumption v’ = Av we get

fi(s) = P(t — s)Av(s) — AP(t — s)v(s) =0 € X,

since A and P(r) commute for all » > 0 (see THEOREM 1.9). From f/ = 0 and the
theory of Riemann integrals of Banach space-valued functions (see: Notation, Definitions
and Elementary Results) it follows that f; is constant. Especially, f;(0) = f:(t) and with
the definition of f; we get

P(t)u(0) = P(0)u(t).

Due to the assumption v(0) = P(0)c and the commutativity of the operators P(s),s > 0
(COM) this leads to
P(0)P(t)c = P(0)v(t).

Because P(0) is injective, the claim is proven.

Now we can easily show a result on pre-semigroups with the same generator :

THEOREM 1.13 Let {P(1)},50, {W(t)},5 be pre-semigroups generated by A.
If in addition P(0) = W(0), then P(t)x = W (t)zx for allt > 0 and all x € dom(A).

PROOF: Let v(.) := W (.)c for ¢ € dom(A). By LEMMA 1.12, P(.)c = W(.)c. Clearly,
this is true for all ¢ in dom(A). |

We see that a generator characterizes the pre-semigroup at least on its domain. Again
the image of P(0) plays an important role in the quality of the uniqueness. For a bijective
P(0) (as in the semigroup situation) a generator has a unique pre-semigroup because then
dom(A) is dense and due to the continuity of the P(t), W (t), we get P(t) = W (t).
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Chapter 2

The Abstract Cauchy Problem

In this chapter we concentrate on a main application of semigroups and pre-semigroups.
From THEOREM 1.9 we know that P'(t) = AP(t) for a pre-semigroup {P(t)},, gener-
ated by A. This can be seen as a motivation for analysing the following type of differential
equations.

DEFINITION 2.1 Let A : dom(A) — X be an operator and ¢ € dom(A). Then
u € CY[0,00); X) with u(t) € dom(A) for all t > 0 is a solution for the Abstract
Cauchy Problem ACP, if:

d

—u=Au and  u(0) =c, (2.1)
dt

where %u denotes the strong derivative of u. We denote ¢ as the initial value.

The following examples are very special cases for X and the operator A. Although, their

solutions, which we get from ordinary theory of differential equations, have abilities of
(pre-)semigroups.

Example 2.2 Let be X = R"™.
n = 1: In this case we have the simple one dimensional differential equation (A = a € R)

v = au, u(0) =C.

With the solution u(t) = Ce™.
n > 2: Here we get a linear system of differential equations with the matrix A

d d
EU = (EUZ> L - (Aijuj)izl ..... n

.....

The solution is given by the matrix exponential u(t) = e'4, where et = >~ | %.
From Theorem (1.9) we get solutions for an ACP through a pre-semigroup:

COROLLARY 2.3 Let {P(t)},5, be a pre-semigroup and let A be its generator. For
c € dom(A), u(.) = P(.)c is the unique solution of the ACP,

d
prih Au, u(0) = P(0)c. (2.2)
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PROOF: From THEOREM 1.9 point 2. we know that P(t)c € dom(A) for all ¢ > 0.
Point three of this theorem gives us P(.)c € C*([0,00), X) and

d
Apparently, u(0) = P(0)c. The uniqueness of the solution follows directly from LEMMA

1.12. Let v : [0,00) — dom(A) be any further solution of (2.2). Then,
by LEMMA 1.12. m

Ezxzample 2.4 For X = Cy(R) and the operator A : dom(A) — Cy(R), dom(A) =
{f € Co(R) : (x— zf(x)) € Co(R)}, Af(x) = xf(x), we have the following partial dif-
ferential equation

d

%u(t, x)=x-u(t,x), w(0,z) = e g(x), (2.3)
for all ¢ > 0 and = € R and where g € dom(A). Actually, in the sense of DEFINITION
2.1, (¢, z) has to be understood as (Zu(t,.))(z) where we have the strong derivative in
X = Cy(R). Here, clearly, if the strong derivative exists, it equals the partial (pointwise)
derivative Su(t, z). Therefore a strong solution (in the sense of DEFINITION 2.1) is also

a solution of (2.3). We know already from EXAMPLE 1.1 that A is the generator for the
pre-semigroup {P(t)}t>0,

P(t)f(x) = e f ().
Therefore, by COROLLARY 2.3 a solution for (2.3) is given by

—z2+tx

u(t,z) = e " g(x),

where u(t,.) € Cy(R) for all £ > 0. The uniqueness is at least given for the situation of
the strong solution.

From COROLLARY 2.3 we get a solution for the ACP implicated by a given pre-
semigroup. The initial value is in P(0)dom(A). This solution is unique. In other words,
we have a unique solution, if we know the pre-semigroup. Furthermore we are interested
in the ”other direction”: If a function u = P(.)c is a solution of the ACP for an operator
A and ¢ € dom(A), is P(.) a pre-semigroup? The following theorem answers this question
for a stiuation with comparatively strong assumptions.

THEOREM 2.5 For a a closed operator A consider following situation:
o {P(t)},5 is a family of bounded operators, which is strongly continuous;
e P(0) is injective;

o A commutes with P(s) for s > 0;
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o P(.)c solves ACP (2.2) for all ¢ € dom(A);

If either dom(A) is dense in X or the resolvent set of A is non-emtpy, then P(.) is a
pre-semigroup generated by an extension of A.

PROOF: Tt remains to show that P(t — u)P(u) is independent of u for all 0 < u < t.
Regard the derivative of P(t — u)P(u)c with respect to u for ¢ € dom(A). We use
LEMMA 1.11 (with the functions W(.) := P(t — .),v(.) := P(.)c and U := dom(A)). As
(P(t— )x)/(u) = —AP(u)x for x € dom(A) we have

d

@P(t —u)P(u)c = P(t — u)AP(u)c — AP(t — u)P(u)c = 0, (2.4)

for all 0 < u < t since A and P(t — u) commute by assumption. Hence P(t — u)P(u)c =
P(t)P(0)c for all ¢ € dom(A) and for all w > ¢t. Let dom(A) be dense in X. Because
P(t —u)P(u) and P(t)P(0) are continuous and coincide on the dense set dom(A), they
coincide on X. Now consider the situation where the resolvent set of A is not empty.
Let A be an element in p(A). Regard the resolvent Ry 4 = (M — A)™' : X — dom(A).
Because of the injectivity of R) 4, it suffices to show that

Ry aP(t —u)P(u)xr = Ry aP(0)P(t)r Ve X

Because of the assumption P(.)Ax = AP(.)z for all x € dom(A), Ry 4 commutes with
the operators P(s), s € [0,00), i.e.

Ry aP(s)xr = P(s)Ryax  Vx € X.

(see LEMMA 0.1 in Notation, Definitions and Elementary Results). By (2.4) and R 4z €
dom(A), P(t —u)P(u)Ry ax is constant with respect to w. This yields

Ry AP(t —u)P(u)x = P(t —u)P(u)Ry ax
= P(O)P(t)R)\7Al’
= RA,AZL'P(O)P(t),

which proves the present case. Denote the generator of the pre-semigroup P (t)t>0 by Ap.
Since P(.)z is solution of the ACP for x € dom(A), P'*(0)zx exists and

P'(0) = %(P(.)x)(()) — AP(0)z = P(0)Az € P(0)X,

where the last equality follows from the assumption that A commutes with P(.). We
obtain dom(A,) D dom(A). From definition of Ap for x € dom(A) we get

P(0)Apz = P+ (0)x = [P(.)a]'(0) = AP(0)z = P(0)Ax,

which verifies that Ap is an extension of A, because P(0) is injective. |
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Example 2.6 Let us again consider the family of operators from EXAMPLE 1.1. We
know already that {P(t)},,, is a pre-semigroup, but, as an example, we want to use
THEOREM 2.5 to proof that it is a pre-semigroup. Therefore, we show that the image
of P(0) lies dense in Cy(R).

Regard a function g € Coo(R) with compact support K C R. Since (z — ) is bounded
on K, (z — e g(z)) is also in Coo(R), in particular in Cy(R). Therefore, g has the form

g(w) = e (e g(x))

Thus g € P(0)Cy(R). Hence, Cyo(R) lies in the image of P(0). Since Cyo(R) is dense in
Co(R), P(0)Ch(R) is dense in Cy(R).

REMARK 2.7 In the last theorem, the condition ”resolvent set p(A) non-empty” can
be weakened. Like in [del.94] one can define a special resolvent set for A by taking P(0)
into consideration. pp()(A) is defined as the set of all A € C with (A — A) is injective
and P(0)X C (M — A)[dom(A)]. Clearly, p(A) is a subset of pp(g)(A). This resolvent set

is not only in this context the more natural one, since there is an explicit connection to
the operator P(0). Note that for bijective P(0), pp()(A) is the usual resolvent set.

The last theorems do not answer the question ”When do we get a pre-semigroup solu-
tion?”. Basicly we can not even expect to get such a solution since A can not be expected
to be a generator of a pre-semigroup without further information. For that we introduce
an operator B which is defined on a subset of dom(A). This B has some abilities that
guarantee the existence of a pre-semigroup that is generated by an extension of A.

THEOREM 2.8 Let A,B be closed operators, which are related as follows.
e dom(B) C dom(A);
e 0 € p(B)
e I\ € p(A),A>0: RyaBx = BR) sz Yx € dom(B)
Then following assertions are equivalent:
1. The ACP for A has a unique solution for each initial value ¢ € dom(B).

2. There exists a pre-semigroup {P(t)},5, generated by an extension Ap of A, such
that P(0) = (A — A)B™! and A commutes with P(s) for all s > 0.

PROOF: Notice that B~! = Ry p exists since 0 € p(B) by assumption.

1.=2

Let u. € C'([0,00); X) be the unique solution of the ACP for the initial value ¢ €
dom(B). We have to construct a pre-semigroup P(.). For z € X, B~'z € dom(B) and
hence the expression

P()z = (M — A)ug-1,(.) = Mup-1,(.) — up-1,(.), (2.5)

is well defined. We are going to show that P(.) is a pre-semigroup which is generated by
an extension of A. This includes following tasks:
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e P(.) is strongly continuous;
This follows from the term on the right side in (2.5), since ug-1,(.) € C*([0, 0)).

e P(0) is injective,
because P(0)x = (M — A)B~ 'z and \ € p(A).

e P(t) € B(X) for all t € [0, 00);
P(t) : X — X is linear, due to B~! € B(X) and the uniqueness of the solution of
the ACP for a given initial value: Let x,y € X and k € C
(it is clear that up-1, + up-1x, solves the ACP for u(0) = B~z + kB~ 'y)

Pt)(w + ky) = (A — A)up-1sp-10(1)
= (M — A) (up-12(t) + kup-1,(t))
— P(t)z + kP(t)y.

For the boundedness of P(t) we regard the operator
W(): X —CY[0,a]; X) : 2 — W)z =up1,(.),

and a > 0 fixed. Here, C'([0,a]; X) is equipped with the norm ||u o = |Ju(t)] . +
lw' ()|, (see: Notation, Definitions & Elementary Results).
We show that W(.) is closed. Let x, — x in X, and W(.)z,, — y in C'([0,q]; X).
From the definition of W(.) and the convergence of W(.)x,, in the |.||,1-Norm (this
implies pointwise convergence) it follows for fixed ¢ < a that

AW (t)zn = Aupg-1,, (1) = g, (t) = [W()x,) (t) — ¥/ (1)

We now regard the sequences W (t)z, — y(t) and AW(t) x, — y'(t). Using the fact
that A is closed, we get y(t) € dom(A) and y'(t) = Ay(t). Furthermore

y(0) = nhrr.lo W(0)z, = nhngo up-1z,(0) = nhrgo B~ 'z, = B'm.
The uniqueness of the solution of the ACP with the initial value B~'a € dom(B)
yields y = ug-1, = W(.)x on [0, a] (the second equality holds per definitionem). So
W(.) is closed. As C'([0,a];X) is a Banach space, by the Closed Graph Theorem
W(.) is even bounded, i.e. IM > 0: [|[W(.)z| o < M ||z]] Vo € X. Since A > 0 it
follows from (2.5) for a fixed t < a that

HP@ﬂﬂzﬂﬁf—AﬂV@MH<|MWT)H+H[()Y@W
<A+ DWW @l + WOl @)
<A+ DWWzl
<A+ DM lz]].

Since a can be chosen big enough for each ¢, so that ¢ < a, P(t) is in B(X) for all
t €0, 00).
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o AP(t)x = P(t)Ax for all z € dom(A) and ¢t € [0, c0);

P(t)Ax = AP(t)x Vo € dom(A) (2.6)
& P(t) (M — A)z = (M — A)P(t)r  Vx € dom(A) (2.7)
< Ry aP(t)c = P(t)R) ac, Vee X (2.8)

it suffices to show (2.8). For that we consider y(.) := Ry aup-1.(.) for ¢ € X. Then
(using that an operator commutes with its resolvent, see LEMMA 0.1)

d d
%y = R)\,A%UB—lc = R,\,AAUB—lc = Ay.

Because BR) ad = Ry 4Bd for all d € dom(B) by assumption, it follows

BR>\7Ad :R)\VABd Vd € dom(B) (29)
& Ryad =B 'Ry 4Bd Vd € dom(B) (2.10)
= R)HAB_lC :B_lR,\,AC Ve € X. (2.11)

Hence,
y(0) = R\aB~'c = B~'Ry ac € dom(B).

So y solves ACP with initial value Ry 4B~'c. By uniqueness of the solution, it
follows

R/\’AUB—lc(.> = URA,AB_IC(')' (212)
Now we prove (2.8). Using the definition of P(¢)z in (2.5), (2.12) and the commu-
tativity of the resolvents (2.11), we get

R)\7AP(75)£L' = uB—lx(t)

—~

M — A)Ry aup-1,(t)
M — A)ug, ,5-14(1)
M — A)up-1g, 4a(t)
(t)Ry ax.

—~

—~
'\4

I
e
>

o P(t —u)P(u) is indepent of u for 0 < u < t and P(.) is generated by an extension
of A; Let ¢ € dom(A). Clearly, we can write ¢ = Ry ad for a certain d € X. With
(2.11) and (2.12) it follows that

P()c = ()\I — A)UB—IC('>
= ()\I - A)UB_IR/\,Ad(')
= (M — A)ug, ,p-1a(.)

Hence, P(.)c solves the ACP since the initial value P(0)c = B~'d € dom(B) for
each ¢ € dom(A). So together with the points above, the conditions of theorem (2.5)
are fulfilled (p(A) is non-empty by assumption). This theorem completes the proof
of this direction.
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2.= 1.
Let P(.) be a pre-semigroup generated by an extension Ap of A, with P(0) = (A\[—A)B™!
and Furthermore, let A commute with P(s) for all s > 0. We want to show that the ACP

u' = Au;  u(0) =, (2.13)

has a unique solution for each ¢ € dom(B). From COROLLARY 2.3 it is clear that for
d € dom(A) C dom(Ap) the function P(.)d is the unique solution of the ACP

u' = Apu; u(0) = P(0)d.

As d € dom(A) we have Ad = Apd. Ap commutes with P(s) for all s > 0 by THEOREM
1.9. Because A commutes with P(s) for all s > 0 by assumption, it follows that AP(.)d =
ApP(.)d. Hence, P(.)d solves ACP (2.13) with initial value ¢ := P(0)d uniquely. Since
dom(A) = Ry 24X and R) 4 commutes with the operators P(s),s > 0 (see LEMMA 0.1
in Notation, Definitions and Elementary Results), it follows from P(0) = (Al — A)B~!
that

P(0)dom(A) = P(0)Ry 4 X = Ry 4P(0)X = Ry o(A\ — A)B™1X = dom(B),
which shows ¢ € dom(B). Hence, for a given ¢ € dom(B), P(0)"'c € dom(A) and

u = P(.)P(0)"'c is the unique solution of (2.13).
|
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Chapter 3

Exponentially tamed pre-semigroups

In the following we will analyse pre-semigroups with an additional property. This reduc-
tion will give us more power in creating a similar situation as there is in the theory of
strongly continuous semigroups.

DEFINITION 3.1 A pre-semigroup {P(t)},5, is exponentially tamed, if there exists
w >0 so that
fe:[0,00) = X it e ' P(t)z,

s bounded and uniformly continuous for all v € X.

In the theory of common semigroups such a relation emerges as a property of strongly
continuous semigroups. There we have constants M, a > 0 so that ||P(t)]| < Me™ for all
t € [0,00). Using this (and properties of a semigroup) we see

e ™M Pt + h)x — e " P(t)z|| < e [|P(#)]||[e** P(h)x — x|

<
< M||e " P(h)z — || Vte0,00),z€ X,

which implies the uniform continuity of ¢t — e “*P(t)x, where w = a. Concerning the
boundedness we have

e~ P(t)a] < e~ [P@)] o]l < e Met [la]) = M |jz]],

for all ¢t € [0, 00) and each fixed x € X. Therefore DEFINITION 3.1 is also a generalisa-
tion of the situation of a strongly continuous semigroup.

REMARK 3.2 We want to point out that for a pre-semigroup which is exponentially
tamed, M := sup,oe " || P(t)|| exists. This follows directly from the principle of uniform
boundedness theorem, since sup,;s, [|e”“*P(t)z|| < M, for all z € X by definition.

DEFINITION 3.3 For an ezponentially-tamed pre-semigroup {P(t)},5q, let Y be the
vector space

Yi={zeX: f,(t) € P(0)X Vt=0, P(0)"'f, € Cy([0,00); X)},

normed by ||zl == ||P(0)™" full, = supizo [le™"P(0) =" P(t)x].
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REMARK 3.4 Y is clearly a vector space because of linearity (in z) of P(0)~!f, and
since Cy([0, 00); X)) is a vector space.

An element of Y has to fulfill two strong conditions concerning the operator P(0)~!. First
of all e™"P(t)x has to be in P(0)X for all ¢ > 0 so that the term is well-defined. Further
P(0)~! has to support uniform continuity and boundedness of f, : [0,00) — X : ¢
e “'P(t)x. At this point it is not clear how strong these requests are, and how big this

restriction for z in X is. We will analyse this later on.
As [lz]l = [P(0)~'e"P(0)z|| < sup,s [ P(0) " e™ P(t)z|| clearly ||| < [|.[ly on Y.

The fact that Cy([0,00); X) is a Banach space, gives us even more.

LEMMA 3.5 Let {P(t)},5, be a exponentially-tamed pre-semigroup. Then the normed
space (Y, ||.|ly) s a Banach space.

PROOF: Let {x,} be a Cauchy sequence in (Y, |.||y. From |.|| < ||.|ly it follows that
{z,} is also Cauchy in X and hence has a limit = € X.

From definition of (Y, |.|ly) we know that the sequence of functions P(0)~! f,, is Cauchy
in Cy([0,00); X),
gence (in ||.[|,) especially implies pointwise convergence in X, i.e. P(0)~'f,,(t) X g(t)
for all fixed ¢ > 0. By continuity of P(0) we get

hence converges to g € Cy([0,00); X), i.e. P(0)~'f,, & g. This conver-

P(O)P(0) ™" fu (t) = fo, (£) = e ' P(t), = P(0)g(t).
Since P(t) (for fixed ¢ > 0) is continuous, e **P(¢) is continuous and therefore (with

X .
x, — x, as mentioned above)

fon(t) 5 e P(t)r = [o(1) = P(0)g 1)
So P(0)te ' P(t)x = P(0)~' f.(t) = g(t) for all ¢ > 0, hence P(0)~'f, € Cy(]0,0); X)
and P(0)7'f,, & p(0)~1f,. Therefore x, converges to x in |.lly and z € Y. [ ]

Our target is to construct a strongly continuous semigroup on this dedicated space Y,
where we want the generator of the semigroup to correspond to the generator A of the
given pre-semigroup. In this context the phrase part of A in'Y will be used (see: Notation,
Definitions and Elementary Results). Before, we state a lemma concerning the Laplace
transform of a pre-semigroup.

LEMMA 3.6 For a given exponentially-tamed pre-semigroup {P(t)},5, with generator
A, the integral

Lp(N)zx = /000 e MP(t)z dt, (3.1)

exists for A > w and x € X. The Laplace transform Lp : (w,00) — B(X) : XA — L(\)
satisfies
Lp(N)[(M — A)z] = P(0)z, (3.2)

for A > w and x € dom(A). In particular, if {P(t)},5, is semigroup, then (w,00) C p(A).
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PROOF: Because of REMARK 3.2 the following holds true
leXP@)z]] < e |[P@)] 2] < e Me* ||]| = M |1z e,

for € X,t > 0. Therefore the integral fo He_’\tP xH dt exists for A > w since
I M ||| e~ ’\ it = AL ||z|| clearly exists. Hence and since (t — e *P(t)z) is contin-
uous, (3.1) exists for A > w (see: Notation, Definitions and Elementary Results).
Further we show that Lp(A) is in B(X) for A > w. Linearity is trivial from the definition
of the integral. As seen above, we have

el = | [P o
< /OOO e P(t)x|| dt

< [ el e
0

M e
= X
A—w ’

which gives us the boundedness.
Let A > w and x € dom(A). Consider

Lp(AN(M — Az = / h e MP(t) (N — A)z dt

= /00 N MP(t)x — e MAP(t)2] dt,

where we use that A and P(t) commute. With the product rule, LEMMA 1.11, we see
that the integrand equals —[e ' P(¢)x]". This yields
Lp(N)(M — A)z = —/ [e M P(t)x] dt
0
—_ [ f)\tP
= P(0)z.

)2l

Let z € X. For the term (A — A)Lp(A\)x we consider the strong right derivative of
P()[Lp(N)z] at zero. With P(s) € B(X),s > 0, (COM) and (ADD) it follows,

3 (P = PO)Lr(N] = 1 (P() = P0)) [Pty a
([ MPOP®R 1)~ POP()e
_ 1! h e AR P0)P(s)z ds — L[ e MP(0)P(t)x dt
h Jn h Jo
eh)‘/ 1 > —)s {M " —As
-— /0 e “P(0)P(s)x ds — 7, e ¥P(0)P(s)x ds
_ ¢ h_ 1P(O)/O e M P(s)r ds — eh’\%P(O)/O e MP(s)x ds,
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where the last equality holds since P(0) is continuous and since

00 §;
/ e P(s)r ds = lim e M P(s)x ds
0

B—00 0

exists (as showed in beginning of this proof). Consider the limit of the first term in the
last equality,

I eM_lp(()) / TN p(s)a ds = i 6M_1P(0)L (\)
oot R , ¢ TwEesE I PAA/E
= AP(0)Lp(N)z.

Since (s +— e **P(s)z) is continuous, it follows from the fundamental theorem of calculus,
that

1t
lim —/ e ™ P(s)x ds = P(0)x.
0

Therefore, the limit of the second term is

6h>\

hlir& TP(O)/O e ™ P(s)z ds = P(0)P(0)z.

Hence,
P*(0)[Lp(N)x] = AP(0)Lp(N)x — P(0)P(0)x.

Therefore the strong right derivative exists and belongs to P(0)X. Thus
ALp(N)x = ALp(A\)x — P(0)z.

This gives us
(M — A)Lp(N)x = P(0)x,

for z € X. If {P(t)},5, is even a semigroup, hence especially P(0) = I. Therefore, we
have, with the calculation from above,

(M — A)Lp(N)x = Lp(AN) (M — A)x = z,

for x € dom(A). Hence (w,00) C p(A). [ |

THEOREM 3.7 Let {P(t)}, be a exponentially-tamed pre-semigoup with generator A.
Then, {T'(t)},5, with
T()=P0)"P(),

is a strongly continuous semigroup on the Banach space (Y, ||.|ly) which satisfies
IT(#)l 5y < €,

for allt > 0. The generator of {T'(t)},5, equals the part of A inY, Ay.
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PROOF: Let z be in Y and fix s > 0. Clearly, P(0)"'e “!P(s)z exists by definition of
Y, hence T'(s)r = P(0)~' P(s)x exists by linearity. Further, we have to show that T'(s)x
is in Y, which is P(0)™! fr(s). € Cp([000); X). By definition, for ¢ > 0 we have

P(0)™ fro(t) = P(0) e ' P(t)T(s)x
= P(0) te ' P(t)P(0) "' P(s)x.

P(t)P(0)"'P(s)x exists by the argument from above. P(0)"'P(t)P(s)z is equal to
P(0)"'P(0)P(t+s)x = P(t+s)x by the properties of pre-semigroups (ADD) and therefore
exists, too. Hence and because of commutativity (COM) of the operators P(s), s € [0, 00),
P(t) and P(0)~! commute (see: Notation, Definitions and Elementary Results: LEMMA
0.2) and so

P(t)P(0)"*P(s)x = P(t + s)x. (3.3)

This gives
P(0)  fria(t) = P(0) e P(t + s)z = e “*P(0) e T P(t + s)z.

Hence P(0)™! fr(s), belongs to Cy([0,00); X) since t — P(0) te ' P(t)xz € Cy([0c0); X)
(s is fixed). So we have shown that T'(s)x is in Y. As a composition of linear operators,
T(s) : Y — Y is also linear. The boundedness of T'(s) : Y — Y is proved as follows. By
definition, properties of pre-semigroups and (3.3) we get

T (s)ally = sup [PO)eP()P(0)P(s)a]

< sup ||P(0) e " P(t + s)z||

>0

— WS sup HP(O)flefw(tJrs)P(t + S)Z‘H
t=0

< e fly -

This also shows ||T(t)]| 5y < e for ¢ > 0.
The semigroup properties are obviously satisfied by definition: T'(0) = P(0)"'P(0) = I
and forz € Y,s,t >0

T(s+t)x = P(0)"'P(s + t)z
= P(0)"'P(0)"'P(s)P(t)x
= P(0)"'P(s)P(0) ' P(t)z
=T(s)T(t)x,

where we use that P(s) and P(0)~' commute (as above, see: Notation, Definitions and
Elementary Results: LEMMA 0.2).

Next, we verify the Cy-property. It suffices to show the strong continuity of T'(.) at zero,
clearly in the ||.||y-norm. For that we consider the uniform continuity of P(0)~'f, for
x €Y. For € > 0 there exists a d > 0 so that for all |h| < 6,

sup HP(O)_le_“’(Hh)P(t + h)z — P(0) e " P(t)z|| <€ (3.4)

>0
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With the definition and (3.3), it follows elemtarily

IT(h)z =z, =sup [P(0)~ e P()[P(0) "' P(h)x — ] |

=

=sup ||P(0)"'e " P(t + h)x — P(0) 'e " P(t)z||

0
<sup e ||P(O)’le’“(t+h)P(t + h)x — P(0)"'e " P(t)z|| +
0
+ sup H(e“’h —1)P(0) e P(t)z]| .
£20

From (3.4) we get
IT(h)x = zlly < e"e+ (¢ = 1) |||y -

This gives us strong continuity: For fixed x € Y and a given € choose ¢ < € in (3.4).
Clearly, " converges to 1 for h — 0, hence e“"¢ — ¢ and (e*" — 1) ||z|l, — 0 and
therefore || T'(h)x — ||, < € holds true for sufficiently small h.

It remains to show that the generator Ar of the semigroup 7'(.) equals, the part Ay of A
inY. Let x € dom(Ar) C Y, then limy_q 5 [T'(h)x — 2] exists in [|.||;-, hence in ||.|| due to
the fact that |||y, = ||.||. By definition of T" we have P(.) = P(0)T'(.). P(0) is in B(X)
and, therefore, (following limits are in ||.||)

.1 . 1
;llli% E[P(h)a: — P(0)z] = }lllir(l) P(O)E[T(h)x — 1

— P(0) lim %[T(h)x _ 4]

t—0

Hence P'*(0) exists and lies in P(0)X. So x € dom(A) and Az = P(0)"'P(0)Arz = Arz.
Thus Ar C A, and even Ay C Ay since Ar is defined on a subset of Y.

We regard the operator (Al — A) for an apropriate A € R: From LEMMA 3.6 we
know that for A > w the Laplace transform Lp(\) € B(X) exists. The relation (3.2),
Lp(A) (M — A)x = P(0)x, implies that if (Al — A)x = 0, then P(0)z = 0 and therefore
x = 0 since P(0) is injective. Consequently (A — A) is injective, hence (A — Ay) is also
injective.

LEMMA 3.6 can also be applied with the semigroup 7°(.) (on Y). Thus A > w is in p(Ar)
which means that (A — Ar)™' : X — dom(Ar) is bijective. In particular (A — A7) is
surjective. We know already Ar C Ay, hence

/\]—ATCAI—Ay,

where the map on the left hand side is surjective and injective on the right hand side.
Such a relation implies already that

M —Ap =M — Ay,

(see: Notation, Definitions and Elementary Results LEMMA 0.3). Obviously this is
equivalent to
AT = AY7
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which completes the proof. |

REMARK 3.8 This result is surprising in a way. But how big is the space Y?! We have
already mentioned in REMARK 3.4 that the elements of Y have to fulfill some strong
requirements and therefore depending especially on the operator P(0). Let us consider
the special case where P(0) is bijective. By the Closed Graph theorem, P(0)~! € B(X)
and therefore P(0)~!f, is clearly bounded and uniformly continuous for all x € X since
fz € Cy([0,00); X) by definition. That is, Y = X.
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