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0.1 Preface

The theory of semigroups of operators introduced by Hille and Yoshida is the basis of
this work. The main thought is to weaken the definition of a semigroup and therefore get
a generalisation of the situation. The loss of information in relation to the ”well-known”
case is reflected in the injective operator P (0). As in semigroup theory, one considers an
Abstract Cauchy Problem for an operator A : dom(A) ⊂ X → X,

u′(t) = Au(t), u(0) = c,

for t ∈ [0,∞) where u is a Banach space valued function.
Finally, the focus is on exponentially tamed pre-semigroups which can be identified with
strongly continuous semigroups on a Banach subspace of the considered Banach space X.
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0.2 Notation, Definitions and Elementary Results

First we make some remarks and introduce some notation.

• Let X always denote a Banach space with norm ‖.‖.

• An operator is always linear.

• B(X) is the set of all linear bounded operators from X in X.

• A function F : [0,∞)→ B(X) is called strongly continuous if

lim
h→0
‖(F (t+ h)− F (t))x‖ = 0

for all t ∈ [0,∞) and each fixed x ∈ X
(for t = 0 we have the limit from the right side h→ 0+).

• C([a, b];X) (a, b ∈ R) is the vector space of continuous functions f : [a, b] : I →
X normed by ‖f‖∞ := supt∈[a,b] ‖f(t)‖. Let (fn)n∈N be a Cauchy sequence in
C([a, b];X). By the definition of the ‖.‖∞-norm (fn(t))n∈N is Cauchy in X and
therefore converges to f(t) for each fixed t ∈ [a, b]. Let h be sufficiently small, then

‖f(t+ h)− f(t)‖ 6 ‖f(t+ h)− fn(t+ h)‖+ ‖fn(t+ h)− fn(t)‖+ ‖fn(t)− f(t)‖
< ε,

and hence f is continuous using continuity of fn. So C([a, b];X) is complete.

• Cb([0,∞);X) denotes the vector space of all bounded uniformly continuous func-
tions f : [0,∞) → X with norm ‖f‖∞ := supt>0 ‖f(t)‖. Let (fn)n∈N be a Cauchy
sequence in Cb([0,∞);X). By definition of the norm, (fn(t))n∈N is Cauchy in X and
therefore converges to f(t) for each fixed t > 0. Since fn is bounded, f is bounded.
Clearly, convergence in ‖.‖∞ is nothing else but uniform convergence, i.e.

∀ε′ > 0 ∃Nε′ ∈ N : ‖fn(t)− f(t)‖ < ε′ ∀t > 0, n > Nε′ .

Using this and uniform continuity of fn (for a fixed n), i.e.

∀ε > 0 ∃δε,n > 0 : ‖fn(t+ h)− fn(t)‖ < ε ∀t > 0, |h| < δε,n,

we get for ε > 0

‖f(t+ h)− f(t)‖ 6 ‖f(t+ h)− fn(t+ h)‖+ ‖fn(t+ h)− fn(t)‖+ ‖fn(t)− f(t)‖
< 2ε′ + ε < ε,

for an arbitrarily fixed n > N ε
3

and for all |h| < δ ε
3
,n . Obviously, h and n are inde-

pendent of t ∈ [0,∞), hence f is uniformly continuous. Therefore, Cb([0,∞);X) is
a Banach space.
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• C0(R) is the space of all bounded, continuous functions f : R→ R with
limx→±∞ f(x) = 0, i.e.

∀ε > 0 ∃Mε > 0 : |f(x)| < ε ∀ |x| > Mε (1)

With the norm ‖f‖∞ = supx∈R |f(x)| it is a Banach space. To see this, we consider
the sequence fn ∈ C0(R), n ∈ N with fn → f for n →∞ in ‖.‖∞. Convergence in
the ‖f‖∞-norm implies pointwise convergence. Because of (1) and continuity of fn
it follows

|f(x)| 6 |f(x)− fn(x)|+ |fn(x)| < 2ε,

for all |x| > Mn,ε and an arbitrary n > Nε ∈ N. By the pointwise convergence,
boundedness and continuity of f are clear (in analogue to Cb([0,∞);X), see Nota-
tion, Definitions and Elementary Results), hence f ∈ C0(R).

• C00(R) is the linear subspace of C0(R) of functions with compact support, where
the support supp(f) of a function f is defined as

supp(f) := {x ∈ R : f(x) 6= 0}.

It is easy to see that C00(R) lies dense in C0(R). For that, consider f ∈ C0(R) and
define:

fn(x) :=


f(x) |x| 6 n

0 |x| > n

It is obvious that the discontinuity of fn at x = ±n can be eliminated by a C∞-
function that ”connects” f(±n) with 0 on an interval [−n − ε,−n] ([n, n + ε] re-
spectively). Then, fn clearly belongs to C00(R). Furthermore,

‖fn − f‖∞ = sup
|x|>n
|f(x)| → 0,

for n→∞, hence C00(R) is dense in C0(R).
Note that with this definition, C00(R) ⊃ C0(R).

• The strong derivative of a function f : [a, b]→ X at t ∈ (a, b) is defined as

d

dt
f(t) = f ′(t) := lim

h→0

1

h
(f(t+ h)− f(t),

if the limit exists. The strong derivative at the boundary points is defined through
the limit from the right hand side for t = a (strong right derivative) and through
the limit from the left hand side for t = b respectively. As for R-valued functions
we have (see [Kal08b]): If f ′ = 0 on [a, b], then f is constant on [a, b].

• For functions f : [a, b] → X a Banach space valued Riemann integral
∫ b
a
f(s) ds

can be defined in the same way as for R-valued functions by Riemann-sums. See
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[Kal08b] for details. Thus, many results and rules concerning the integral (e.g.
linearity,..) are similar. We want to point out that for T ∈ B(X):∫

Tf(s) ds = T

∫
f(s) ds.

This integral concept also includes improper Riemann-integrals. Such an improper
integral is defined as ∫ ∞

a

f(s) ds = lim
β→∞

∫ β

a

f(s) ds,

where the limit is in the norm ‖.‖ of the Banach space. Since∥∥∥∥∫ b

a

f(s) ds

∥∥∥∥ 6 ∫ b

a

‖f(s)‖ ds

(which follows easily by definition of Riemann sums and triangle inequality), a
sufficient condition for the existence of this limit is the convergence of

lim
β→∞

∫ β

a

‖f(s)‖ ds

in R. The case ”−∞” is completely analogue.

• I : X → X : x 7→ x denotes the identity operator.

• The operator norm of a bounded operator T : X → X is

‖T‖B(X) = sup
x∈X,x 6=0

‖Tx‖
‖x‖

.

We will write only ‖.‖, if it is clear that the object is an operator and if it is
obviously on which space the map is defined.

• For an operator A defined on a subset of X, dom(A) denotes the domain. Further-
more A(dom(A)) denotes the image of A.

• For an operator A : dom(A) → X and a subspace Y ⊂ X, the part of A in Y,
AY , is defined as the operator with

dom(AY ) = {x ∈ dom(A) : x ∈ Y ∧ Ax ∈ Y } , AY x = Ax.

• An operator A : dom(A)→ X is called closed, if for all sequences (xn)n∈N,
xn ∈ dom(A) for all n ∈ N, with

xn → x ∈ X and Axn → y ∈ X,

it follows
x ∈ dom(A) and Ax = y.

• Closed Graph Theorem: Let X, Y be Banach spaces and let A : X → Y be an
operator (dom(A) = X!). The following assertions are equivalent
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1. A is closed,

2. A is continuous, i.e. A ∈ B(X).

• C1([a, b];X) denotes the vector space of all functions f : [a, b]→ X which are con-
tinuously (strong) differentiable, with norm ‖f‖C1 := ‖f‖∞ + ‖f ′‖∞, with ‖f‖∞ =
supt∈[a,b] ‖f(t)‖. To show that this space is complete, we consider C1([a, b];X) as

{(f ; g) ∈ C([a, b];X)× C([a, b];X) : g = f ′} . (2)

Since this is a subset of the Banach space C([a, b];X)×C([a, b];X) with the norm
‖.‖∞+‖.‖∞, it suffices to show that the set in (2) is closed. It is equivalent to show
that the differentiation operator

D : dom(D)→ C([a, b];X) : f 7→ f ′,

dom(D) := {f ∈ C([a, b];X) : f ′ exists and is continuous} ⊂ C([a, b];X)

is closed. Let fn ∈ dom(D), n ∈ N, fn → f ∈ C([a, b];X) and Dfn → g ∈
C([a, b];X) (limits in C([a, b];X)). Since convergence in C([a, b];X) implies uniform
convergence, g = limn→∞ f

′
n is continuous. Furthermore, uniform convergence gives

us, (t, t0 ∈ [a, b] and t > t0)∫ t

t0

g(s) ds = lim
n→∞

∫ t

t0

f ′n(s) ds.

By the fundamental theorem of calculus we get∫ t

t0

g(s) ds+ lim
n→∞

fn(t0) = lim
n→∞

( ∫ t

t0

f ′n(s) ds+ fn(t0)
)

= lim
n→∞

fn(t)

= f(t).

The left hand side is differentiable at t since g is continuous, and therefore f ′ = g.
Hence, D is closed and C1([a, b];X) is a Banach space.

• Principle of uniform boundedness theorem: Let X, Y be Banach spaces and
{Ti : i ∈ I} a family of bounded operators. If the family is bounded pointwisely,
i.e. for all x ∈ X there exists a Mx > 0 so that

sup
i∈I
‖Tix‖ 6Mx,

then there exists a M > 0, so that

sup
i∈I
‖Ti‖ < M <∞.

• For a closed operator A, the resolvent set ρ(A) is the set of all λ ∈ C for which
the operator (λI − A) : dom(A) → X is bijective. For λ ∈ ρ(A), the resolvent
Rλ,A denotes (λI−A)−1 which is necessarily also closed and therefore in B(X) since
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A is closed (by the Closed Graph Theorem). We point out that (λI − A) is not
necessarily bounded for λ ∈ ρ(A). Apparently the following relations hold true:

Rλ,A(λI − A)x = x x ∈ dom(A),

(λI − A)Rλ,Ax = x x ∈ X.

The existence of a map Rλ,A : X → dom(A), which satisfies these two equations, is
also obviously sufficient for λ ∈ ρ(A).

Rλ,A(λI − A)x = (λI − A)Rλ,Ax,

for all x ∈ dom(A).

• LEMMA 0.1 For a closed operator A : dom(A) ⊂ X → X which commutes with
B : X → X, i.e. Bx ∈ dom(A) and

BAx = ABx ∀x ∈ dom(A),

it follows that the resolvent Rλ,A commutes with B, i.e.

BRλ,Ax = Rλ,ABx ∀x ∈ X,λ ∈ ρ(A).

PROOF: By definition of Rλ,A and using the assumption we see

BAy = ABy ∀y ∈ dom(A)

⇔ λBy −BAy = λBy − ABy ∀y ∈ dom(A)

⇔ B(λI − A)y = (λI − A)By ∀y ∈ dom(A)

⇔ Rλ,AB(λI − A)y = By ∀y ∈ dom(A)

⇔ Rλ,ABx = BRλ,Ax ∀x ∈ X.

�

• LEMMA 0.2 Let A : X → X, B : X → X be operators. Let B be injective and
AB=BA. Then, A(BX) ⊂ BX and

AB−1x = B−1Ax,

for all x ∈ BX.

PROOF: Commutativity gives A(BX) ⊂ BX. Using this and x ∈ BX, it follows

Ax = Ax

⇒ ABB−1x = BB−1Ax

⇒ AB−1x = B−1Ax.

�
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• LEMMA 0.3 For operators A : dom(A) ⊂ X → X, B : dom(B) ⊂ X → X
with surjective A , injective B the relation A ⊂ B, i.e.

dom(A) ⊂ dom(B) ∧ Ax = Bx ∀x ∈ dom(A),

implies
A = B.

PROOF: It suffices to show that dom(A) = dom(B). dom(A) ⊂ dom(B) is ful-
filled by assumption. Let x be in dom(B). Since A is surjective, there exists a
y ∈ dom(A) so that Ay = Bx. By assumption A ⊂ B. Therefore, y ∈ dom(B) and
Ay = By. Thus Bx = By. The injectivity of B leads to x = y ∈ dom(A), that is
dom(B) ⊂ dom(A) and hence dom(A) = dom(B). �
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Chapter 1

Pre-Semigroups

DEFINITION 1.1 A family {P (t)}t>0 of operators is called pre-semigroup, if

1. P : [0,∞)→ B(X) is strongly continuous,
i.e. limh→0 ‖P (t+ h)x− P (t)x‖ = 0 ∀x ∈ X, ∀t ∈ [0,∞)

2. P (0) : X → X is injective

3. P (t− u)P (u) is independent of u for all 0 6 u 6 t

This definition is a generalisation of strongly continuous semigroups of operators (C0-
semigroups). Point (3.) in the given form is not really convenient for the following
statements and their proofs. That is why we reformulate it in the next lemma.

LEMMA 1.2 For a family {P (t)}t>0 of operators the following points are equivalent:

• P (t− u)P (u) is independent of u for 0 6 u 6 t

• P (t− u)P (u) = P (0)P (t) for 0 6 u 6 t

• P (0)P (u+ s) = P (s)P (u) for all u, s > 0

PROOF: (1.) ⇔ (2.): One direction follows by setting u = t. The other implication is
trivial.
(2.)⇔ (3.): Set t = s+ u. �

The last point of this lemma,

P (0)P (u+ s) = P (s)P (u) u, s > 0 (ADD)

reflects some kind of additivity of the pre-semigroup and immediately implies the com-
mutativity of the operators P (s),

P (s)P (u) = P (u)P (s) u, s > 0 (COM)
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REMARK 1.3 In the property P (0)P (u+s) = P (s)P (u) we can see the connection and
the difference to ”normal” C0-semigroups: It is the injective operator P (0) which controlls
the additivity of P (.). Now we have noticed that it is just P (0) which generalises the
situation of a strongly continuous semigroup. That is the reason why pre-semigroups are
sometimes called ”C-semigroups” where C denotes the injective operator P (0). Probably
this definition is not really suitable since this can be easily confused with C0-semigroups.
That is why for example in [deL94] the term ”C-regularized-semigroup” is introduced.
The notation ”pre-semigroups” has been adopted from [Kan95].

The next lemma shows a basic property of a pre-semigroup.

LEMMA 1.4 For a pre-semigroup {P (t)}t>0 the family of operators {P (s) : s ∈ [a, b]}
is uniformly bounded for each compact interval [a, b] in [0,∞), i.e. there exists a M > 0:

‖P (s)‖ < M ∀s ∈ [a, b].

PROOF: We have to show that {P (s) : s ∈ [a, b]} is bounded pointwisely. Since the norm
‖.‖ : X → [0,∞) is continuous, it follows from strong continuity of the pre-semigroup
that ‖P (.)x‖ : [0,∞) → [0,∞) is continous for all x ∈ X. Such a function clearly has
a maximum on a compact interval. Hence for each x ∈ X there exists a Mx, so that
sups∈[a,b] ‖P (s)x‖ < Mx. With the Principle of uniform boundedness (see Notation, Def-
initions and Elementary Results) the proof is completed. �

Example 1.5 Consider the Banachspace X = C0(R) and the the family of operators
{P (t)}t>0, defined through

P (t)f(x) = e−x
2+txf(x), (1.1)

for x ∈ R. We will see that this is a pre-semigroup. For that, we have to check the
conditions of DEFINITION 1.1.
1. P : [0,∞)→ B(X) is strongly continuous.
Fix t > 0. First, we have to assure that P (t)f is in C0(R). This is clear since
limx→±∞ e

−x2+tx = 0 and f ∈ C0(R). The parabel x 7→ −x2 + tx has its maximum
t2

4
at xm = t

2
. Therefore,

‖P (t)f‖∞ = sup
x∈R

∣∣∣e−x2+txf(x)
∣∣∣

6 sup
x∈R

∣∣∣e−x2+tx
∣∣∣ sup
x∈R
|f(x)|

= e
t2

2 ‖f‖∞ ,

hence P (t) ∈ B(X). Fix f ∈ C0(R). For strong continuity we have to show that for all
ε > 0 there exists a δε > 0 so that

sup
x∈R

∣∣∣e−x2+(t+h)xf(x)− e−x2+txf(x)
∣∣∣ < ε, (1.2)
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for all |h| < δε. First we consider functions f ∈ C00(R). Since f has a compact support
K the left hand side in line (1.2) reads

sup
x∈K

∣∣∣e−x2+(t+h)xf(x)− e−x2+txf(x)
∣∣∣ < sup

x∈K

∣∣∣e−x2+txf(x)
∣∣∣ sup
x∈K

∣∣ehx − 1
∣∣

= SK sup
x∈K

∣∣ehx − 1
∣∣ ,

where SK denotes the maximum of e−x
2+txf(x) on K. From monotony of y 7→ ey we get,

with Kmax = max {|x| : x ∈ K},

sup
x∈K

∣∣ehx − 1
∣∣ 6 ∣∣∣∣sup

x∈K

∣∣e|h||x|∣∣− 1

∣∣∣∣
=
∣∣e|h|Kmax − 1

∣∣→ 0,

for h→ 0. Hence we have strong continuity for f ∈ C00(R). Let f ∈ C0(R). Since C00(R)
lies dense in C0(R), there exists a sequence (fn)n∈N of functions in C00(R) such that,

∀ε > 0 ∃Nε ∈ N : ‖f − fn‖∞ < ε ∀n > Nε.

Therefore we can write

‖P (t+ h)f − P (t)f‖∞ =

= ‖P (t+ h)f − P (t+ h)fn + P (t+ h)fn − P (t)fn + P (t)fn − P (t)f‖∞
6 ‖P (t+ h)(f − fn)‖∞ + ‖P (t)(f − fn)‖∞ + ‖P (t+ h)fn − P (t)fn‖∞
6 (‖P (t+ h)‖+ ‖P (t)‖) ‖f − fn‖∞ + ‖P (t+ h)fn − P (t)fn‖∞ .

Because of strong continuity for functions in C00(R) we have

‖P (t+ h)fn − P (t)fn‖∞ < ε,

for |h| < δε. Using LEMMA 1.4 we know that ‖P (t+ h)‖ and ‖P (t)‖ are bounded
(independent of h) by a constant M > 0. Therefore,

(‖P (t+ h)‖+ ‖P (t)‖) ‖f − fn‖∞ + ‖P (t+ h)fn − P (t)fn‖∞ < ε

for an arbitrary n > Nε/2(2M) and |h| < δε/2. Hence, the family of operators is strongly
continuous.
2. P (0) is injective because for P (0)f = P (0)g with f, g ∈ C0(R) we have for all x ∈ R

P (0)f(x) = P (0)g(x)

e−x
2

f(x) = e−x
2

g(x)

⇔ f(x) = g(x).

3. Clearly, for all f ∈ C0(R) and all x ∈ R the following holds true

P (0)P (s+ t)f(x) = e−x
2

e−x
2+(s+t)xf(x) = e−x

2+sx
[
e−x

2+txf(x)
]

= P (s)P (t)f(x),

hence P (0)P (s+ t) = P (s)P (t).
This example will accompany us throughout this work. Actually it can be weakened.
Instead of the assumption that the functions tend to zero for x → ±∞, we can just
require limx→±∞ f(x) = bf for a bf ∈ R. Note, that then P (t)f is still in C0(R).
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For the definition of the ”generator” of a pre-semigroup we need the right derivative of a
Banach space valued function (in analogue to R, see Notation, Definitions and Elementary
Results).

DEFINITION 1.6 Let {P (t)}t>0 be a pre-semigroup and x ∈ X. The strong right
derivative P ′+(t)x ∈ X of P (.)x at t is defined as

lim
h→0+

1

h
[P (t+ h)x− P (t)x], (1.3)

if the limit exists.

Now we can define an operator for the pre-semigroup connected with the derivative at
zero.

DEFINITION 1.7 Let {P (t)}t>0 be a pre-semigroup.
Define the operator A : dom(A)→ X by:

• dom(A) = {x ∈ X : P ′+(0)x exists in X and belongs to P (0)X}

• Ax = P (0)−1P ′+(0)x

A is called the generator of the pre-semigroup {P (t)}t>0. We also say ”A generates the
pre-semigroup {P (t)}t>0”.

Because of the injectivity of P (0), the generator is well-defined. The linearity follows,
clearly, from the linearity of P (t) for all t ∈ [0,∞). For P (0) = I this definition obviously
equals the definition of the generator for semigroups.

Example 1.8 Consider again the pre-semigroup from Example 1.1. For f ∈ C0(R) we
regard the strong right derivative of P (.)f at zero.

P ′+(0)f = lim
h→0+

1

h

(
P (h)f − P (0)f

)
Assume that f ∈ dom(A). Since point evaluations are continuous on C0(R), we obtain
for x ∈ R with de L’Hospital(

P ′+(0)f)(x) = lim
h→0+

1

h

(
P (h)f(x)− P (0)f(x)

)
= lim

h→0+

1

h

(
e−x

2+hxf(x)− e−x2

f(x)
)

= e−x
2

f(x) lim
h→0+

ehx − 1

h

= e−x
2

f(x)x.

In the definition of dom(A) we demand P ′+(0)f to be in the image of P (0) : g 7→ (x 7→
e−x

2
g(x)), therefore our function f in dom(A) satisfies (x 7→ xf(x)) ∈ C0(R).

Conversely, let f ∈ C0(R) with (x 7→ xf(x)) ∈ C0(R). We show that for such f , P ′+(0)f
is (x 7→ e−x

2
xf(x)). That is, for all ε > 0 there exists a δε > 0 so that

sup
x∈R

∣∣∣∣e−x2

f(x)
ehx − 1

h
− e−x2

xf(x)

∣∣∣∣ < ε, (1.4)
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for h < δε. We see that
∣∣∣e−x2

xf(x)
∣∣∣ is sufficiently small, say < ε/2, for x → ±∞.

Moreover for h < 1 we have∣∣∣∣e−x2

f(x)
ehx − 1

h

∣∣∣∣ =

∣∣∣∣∣e−x2

f(x)x
∞∑
i=1

(xh)i

i!

∣∣∣∣∣
6
∣∣∣e−x2

xf(x)
∣∣∣ ∞∑
i=1

(|x|)i

i!

6 e−x
2

e|x| |xf(x)| .

This expression is also < ε/2 for |x| sufficiently large. Hence we can define Sε > 0 so that
(1.4) < ε for |x| > Sε and h < 1. For the remaining x we calculate

sup
|x|6Sε

∣∣∣∣e−x2

f(x)
(ehx − 1

h
− x
)∣∣∣∣ 6 ‖f‖∞ sup

|x|6Sε

∣∣∣∣∫ x

0

(ehv − 1) dv

∣∣∣∣
6 ‖f‖∞ Sε sup

|v|6Sε

∣∣ehv − 1
∣∣

6 ‖f‖∞ Sε sup
|τ |6hSε

|eτ − 1| → 0,

for h→ 0+. Hence, P ′+(0)f = (x 7→ e−x
2
xf(x)). Since (x 7→ xf(x)) ∈ C0(R), P ′+(0)f is

in the image of P (0), and therefore, f ∈ dom(A). Altogether we have (since P (0)−1(x 7→
e−x

2
xf(x)) = (x 7→ xf(x))),

Af(x) = xf(x), dom(A) = {f ∈ C0(R) : (x 7→ xf(x)) ∈ C0(R)} .

After we have noticed that the operator A is well defined, we want to know ”if this map is
reasonable in a certain sense”. One question is about the domain of A: The pre-semigroup
is per definitionem ”only” (strongly) continuous. This does not really imply that there
exists a (strong right) derivative. For example, we want to analyse how big the domain is.

The following theorem shows some basic results of the generator.

THEOREM 1.9 For the generator A of a given pre-semigroup {P (t)}t>0. The following
assertions hold true.

1. x ∈ dom(A)⇒ P (t)x ∈ dom(A) for all t > 0

2. AP (t)x = P (t)Ax for all x ∈ dom(A)

3. P (.)x ∈ C1([0,∞) ;X) for x ∈ dom(A),

AP (t)x = lim
h→0

1

h
(P (t+ h)x− P (t)x) =

d

dt
P (t)x

for all x ∈ dom(A), t ∈ [0,∞)

4. For x ∈ X: ∫ t

0

P (s)x ds ∈ dom(A)

13



5. A is closed and P (0)X ⊆ dom(A);

PROOF: Let be t > 0, h > 0 and x ∈ dom(A).
1. We use that the P (s), s > 0 commute to obtain

1

h

(
P (h) [P (t)x]− P (0) [P (t)x]

)
=

1

h

(
P (t)[P (h)x− P (0)x]

)
. (1.5)

By the continuity of P (t) and because of x ∈ dom(A) the right hand side tends to the
strong right derivative of P (t)P (.)x at 0 for h→ 0+, hence

lim
h→0

1

h

(
P (h) [P (t)x]− P (0) [P (t)(x)]

)
= P (t)[P ′+(0)x].

In particular, the limit for h → 0+ on the left hand side, i.e. the strong right derivative
P ′+(0) [P (t)x], exists. With the definition of A and again with the commutativity of the
operators P (s), s > 0 we get

P ′+(0)[P (t)x] = P (t) lim
h→0+

1

h
(P (h)x− P (0)x) (1.6)

= P (t)P (0)Ax (1.7)

= P (0)P (t)Ax (1.8)

Therefore, P ′+(0)P (t)x ∈ P (0)X and hence P (t)x ∈ dom(A).
2. Furthermore with the definiton of the operator A and using (1.8) it follows

A [P (t)x] = P (0)−1
[
P ′+(0)P (t)x

]
= P (0)−1P (0)P (t)Ax = P (t)Ax.

3. We use P (0)P (t+ h) = P (t)P (h) (ADD) to obtain

1

h

(
P (t)[P (h)x− P (0)x]

)
=

1

h

(
P (0)[P (t+ h)x− P (t)x]

)
. (1.9)

Letting h → 0+, we observe that, with the same argument as in 1. (x ∈ dom(A) and
P (t) continuous), the strong right derivative of P (0)P (.)x at t > 0,

lim
h→0+

1

h
P (0)(P (t+ h)x− P (t)x) = [P (0)P (.)]′+ (t)x,

exists and equals P (t)P (0)Ax = P (0)P (t)Ax. We show that this is also the strong left
derivative of P (0)P (.)x for t > 0. With the triangle inequality we see∥∥∥∥1

h
[P (0)P (t)− P (0)P (t− h)]x− P (0)P (t)Ax

∥∥∥∥ 6
6

∥∥∥∥1

h
[P (t)− P (t− h)]P (h)x− P (0)P (t)Ax

∥∥∥∥+

+

∥∥∥∥(P (t− h)− P (t)
)1

h
[P (h)x− P (0)x]

∥∥∥∥ .
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Using triangle inequality again, we get that this expression is less or equal to∥∥∥∥1

h
[P (t)− P (t− h)]P (h)x− P (0)P (t)Ax

∥∥∥∥+

+

∥∥∥∥(P (t− h)− P (t)
){1

h
[P (h)x− P (0)x]− P (0)Ax

}∥∥∥∥+

+ ‖P (t− h)P (0)Ax− P (t)P (0)Ax‖ .

Now we show that all three terms on the right hand side converge to zero for h→ 0+.
Because of (ADD) the first term can be written as∥∥∥∥1

h

(
P (0)P (t+ h)x− P (0)P (t)x

)
− P (0)P (t)Ax

∥∥∥∥ .
For h → 0+ this converges to 0, since P (0)P (t)Ax is the strong right derivative of
P (0)P (.)x at t as shown before. LEMMA 1.4 can be applied on the interval [t−h, t] and
gives us a constant M > 0, so that for the second term we get∥∥∥∥(P (t− h)− P (t)

){1

h
[P (h)x− P (0)x]− P (0)Ax

}∥∥∥∥ 6
6 ‖P (t− h)− P (t)‖

∥∥∥∥1

h
[P (h)x− P (0)x]− P (0)Ax

∥∥∥∥ 6
6 2M

∥∥∥∥1

h
[P (h)x− P (0)x]− P (0)Ax

∥∥∥∥→ 0,

for h→ 0+ by definition of the strong right derivative and A. The third term converges
to 0 since P (.)P (0)Ax is continuous.
Therefore, P (0)P (.)x is differentiable for all t ∈ (0,∞),x ∈ dom(A) and its derivative
equals P (0)P (t)Ax. That is,

P (0)P (t)Ax = lim
h→0

1

h
(P (0)P (t+ h)x− P (0)P (t)x) = [P (0)P (.)x]′(t).

Obviously, the left hand side is continuous (as a function in t and fixed x), since P (0) is
continuous and because of strong continuity of P (.). Therefore, P (0)P (.)x is continuously
differentiable and hence we can use the fundamental theorem of calculus,∫ t+h

t

[P (0)P (.)x]′(s) ds =

∫ t+h

t

P (0)P (s)Ax ds = P (0)P (t+ h)x− P (0)P (t)x.

The fact that P (0) bounded yields (see: Notation, Definitions and Elementary Results)

P (0)

∫ t+h

t

P (s)Ax ds = P (0)[P (t+ h)x− P (t)x],

and by injectivity of P (0) we have∫ t+h

t

P (s)Ax ds = P (t+ h)x− P (t)x. (1.10)
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The integrand is obviously continuous, so dividing by h and letting h→ 0 directly gives
us (by the fundamental theorem of calculus)

P (t)Ax = lim
h→0

1

h
(P (t+ h)x− P (t)x) = [P (.)x]′(t).

Clearly, also for t = 0 the strong right derivative of P (.)x exists and equals P (0)Ax.
Since P (.)Ax is continuous on [0,∞) (because P (.) is strongly continuous), P (.)x ∈
C1([0,∞) ;X). With point 2. of this theorem we obtain

AP (t)x = lim
h→0

1

h
(P (t+ h)x− P (t)x).

4. For a fixed t > 0, we consider the strong right derivative of P (.)
[∫ t

0
P (s)xds

]
at 0:

lim
h→0+

1

h
[P (h)− P (0)]

∫ t

0

P (s)x ds = lim
h→0+

1

h

∫ t

0

[P (0)P (h+ s)− P (0)P (s)]x ds

= lim
h→0+

1

h
P (0)[

∫ t+h

h

P (u)x du−
∫ t

0

P (s)x] ds

= P (0) lim
h→0+

1

h

[∫ t+h

t

P (u)x du−
∫ h

0

P (s)x ds

]
= P (0) [P (t)− P (0)]x,

where we used the fundamental theorem of calculus again. So the strong right derivative
exists and belongs to P (0)X.
5. With (1.10) from point 3. we have

P (t)x− P (0)x =

∫ t

0

P (s)Ax ds (1.11)

First we show that A is closed. Let xn → x with xn ∈ dom(A) and Axn → y. (1.11) and
boundedness of P (t) for all t ∈ [0,∞) yield to

(P (h)− P (0))x = lim
n→∞

((P (h)− P (0))xn) = lim
n→∞

∫ h

0

P (s)Axn ds.

Because ‖P (s)‖ is bounded uniformly on the compact interval [0, h] (LEMMA 1.4), the
limit is uniformly, hence can be permuted with the integral (see [Kal08b]).

(P (h)− P (0))x =

∫ h

0

lim
n→∞

P (s)Axn ds =

∫ h

0

P (s)y ds. (1.12)

Dividing by h and letting h → 0+ we get (with P (.)y being continuous and the funda-
mental theorem of calculus)

P ′+(0)x = lim
h→0

1

h

(
P (h)x− P (0)x

)
= lim

h→0

1

h

∫ h

0

P (s)y ds = P (0)y.
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Hence P ′+(0)x ∈ P (0)X and further x ∈ dom(A) by definition of A and Ax = y.
Finally we show that P (0)X ⊆ dom(A). Let x ∈ X. From 4., we see that t−1

∫ t
0
P (s)xds ∈

dom(A). Letting t→ 0+ and using again the fundamental theorem of calculus we get

P (0)x = lim
t→0

t−1

∫ t

0

P (s)x ds.

Thus P (0)x ∈ dom(A). �

We see that there is a connection between the domain of A and the image of P (0). The
bigger P(0)X is, the bigger will be dom(A). In the case that P (0) is bijective, it follows
that dom(A) is dense in X. Furthermore, the property P (0)P (u + s) = P (u)P (s) is
responsible for the fact that dom(A) is invariant for P (t) and the commutativity of A
and P (t). A main result is the differentiability of P (t)x for x ∈ dom(A). This will be
used in chapter 2.

REMARK 1.10 An obvious question is ”What happens if we have a pre-semigroup
{P (t)}t>0 and an injective, bounded operator G and we consider the family of operators
{W (t) := GP (t)}t>0”? Can we expect this family to be a pre-semigroup? If we look at the
assumptions in DEFINITION 1.1, clearly, strong continuity is preserved by boundedness
ofG and injectivity ofGP (0) is trivial. Concerning the additivity property, P (0)P (t+s) =
P (t)P (s), we get

W (0)W (s+ t) = GP (0)GP (s+ t),

where we see that GP (t) = P (t)G for all t > 0 is a sufficient condition so that

GP (0)GP (s+ t) = GGP (0)P (s+ t) = GGP (t)P (s) = GP (s)GP (t) = W (s)W (t)

Therefore, additionally we have to require that the operator G commutes with P (t) for
all t > 0. In this case, the domain of the generator of {W (t) := GP (t)}t>0 includes the
domain of AP , the generator of {P (t)}t>0, since the boundedness of G gives us∥∥∥∥1

h

(
GP (h)x−GP (0)

)
−GP ′+(0)x

∥∥∥∥ < ‖G‖∥∥∥∥1

h

(
P (h)x− P (0)

)
− P ′+(0)x

∥∥∥∥ .
Finally, this thoughts inspire the idea to choose G = P (0)−1. Unfortunately, in general
we can not expect continuity of the inverse of P (0). Although we will see in Chapter 3
that in some situations this is possible.

The situation is that we have a pre-semigroup which gives us the generator A. Especially
in connection with the ACP (see next chapter) and the uniqueness of its solution we are
interested in a uniqueness of the generator. The following technical lemma will be useful
for conclusions on the uniqueness of the pre-semigroup for a given generator. For that,
we state the a product rule for Banach space-valued functions.

LEMMA 1.11 Let W (.) : [a, b]→ B(X) be a strongly continuous function with W (.)x ∈
C1([a, b];X) for all x in a linear subspace U ⊂ X. Furthermore, let v : [a, b] → U be in
C1([a, b];X). Then, (

W (.)v(.)
)′

(t) = W (t)v′(t) +W ′(t)v(t), (1.13)

where W ′(t)x := [W (.)x)]′(t).
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PROOF: Regard the function g defined as follows:

g : [a, b]→ X : s 7→ W (s)v(s)

We consider g′(s), s ∈ [a, b], with elementary rearrangements we get

g′(s) = lim
h→0

1

h
[W (s+ h)v(s+ h)−W (s)v(s)] (1.14)

= lim
h→0

1

h
[W (s+ h)v(s+ h)−W (s+ h)v(s) +W (s+ h)v(s)−W (s)v(s)] (1.15)

= lim
h→0

W (s+ h)
1

h
[v(s+ h)− v(s)] + lim

h→0

1

h
[W (s+ h)−W (s)]v(s) (1.16)

= lim
h→0

W (s+ h)
(1

h
[v(s+ h)− v(s)]− v′(s)

)
+ lim

h→0
W (s+ h)v′(s)+ (1.17)

+ lim
h→0

1

h
[W (s+ h)−W (s)]v(s). (1.18)

Due to the strong continuity of W (.) and the principle of uniform boundedness theorem
(compare: LEMMA 1.4), ‖W (s+ h)‖ is bounded (by a constant S) for h in a compact
interval. Therefore, we can write∥∥∥∥W (s+ h)

(1

h
[v(s+ h)− v(s)]− v′(s)

)∥∥∥∥ 6 S

∥∥∥∥1

h
[v(s+ h)− v(s)]− v′(s)

∥∥∥∥ ,
where the right hand side clearly tends to 0 for h→ 0, since v(.) ∈ C1([a, b];X). Hence,
the first term in (1.17) is 0 ∈ X. The second term,

lim
h→0

W (s+ h)v′(s) = W (s)v′(s),

since W (.) is strongly continuous. Finally,

lim
h→0

1

h
[W (s+ h)−W (s)]v(s) = W ′(s)v(s),

because v(s) ∈ U and W (.)x ∈ C1([a, b];X) for x ∈ U . Altogether,

g′(s) = W (s)v′(s) +W ′(s)v(s),

which proves the lemma. (For s = a or s = b the limits above are to be considered for
h→ 0+ or h→ 0− ) �

We point out that W ′(t)v(t) is not the composition of the operators ”W ′(t)” and v(t).

LEMMA 1.12 Let {P (t)}t>0 be a pre-semigroup generated by A. Let v : [0,∞) →
dom(A) be in C1([0,∞);X) with v′ = Av and v(0) = P (0)c for c ∈ dom(A). Then,

P (.)c = v(.)
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PROOF: We fix t > 0. Clearly the function ht,x : [0, t] → X : s 7→ P (t − s)x is in
C1([0, t];X) for x ∈ dom(A), since P (.)x ∈ C1([0, t];X) for x ∈ dom(A) (see THEOREM
1.9). Therefore, the assumptions for LEMMA 1.11, where W (.) = P (t − .) and U =
dom(A), are satisfied. Hence for ft := P (t− .)v(.) : [0, t]→ X and s ∈ [0, t]

f ′t(s) =
(
P (t− .)v(.)

)′
(s) = P (t− s)v′(s) + P (t− s)′v(s).

We know P (s)′x = AP (s)x for x ∈ dom(A) by THEOREM 1.9, which yields P (t−s)′x =
−AP (t− s)x for x ∈ dom(A). Together with our assumption v′ = Av we get

f ′t(s) = P (t− s)Av(s)− AP (t− s)v(s) = 0 ∈ X,

since A and P (r) commute for all r > 0 (see THEOREM 1.9). From f ′t = 0 and the
theory of Riemann integrals of Banach space-valued functions (see: Notation, Definitions
and Elementary Results) it follows that ft is constant. Especially, ft(0) = ft(t) and with
the definition of ft we get

P (t)v(0) = P (0)v(t).

Due to the assumption v(0) = P (0)c and the commutativity of the operators P (s), s > 0
(COM) this leads to

P (0)P (t)c = P (0)v(t).

Because P(0) is injective, the claim is proven.
�

Now we can easily show a result on pre-semigroups with the same generator :

THEOREM 1.13 Let {P (t)}t>0 , {W (t)}t>0 be pre-semigroups generated by A.
If in addition P (0) = W (0), then P (t)x = W (t)x for all t > 0 and all x ∈ dom(A).

PROOF: Let v(.) := W (.)c for c ∈ dom(A). By LEMMA 1.12, P (.)c = W (.)c. Clearly,
this is true for all c in dom(A). �

We see that a generator characterizes the pre-semigroup at least on its domain. Again
the image of P (0) plays an important role in the quality of the uniqueness. For a bijective
P (0) (as in the semigroup situation) a generator has a unique pre-semigroup because then
dom(A) is dense and due to the continuity of the P (t),W (t), we get P (t) = W (t).
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Chapter 2

The Abstract Cauchy Problem

In this chapter we concentrate on a main application of semigroups and pre-semigroups.
From THEOREM 1.9 we know that P ′(t) = AP (t) for a pre-semigroup {P (t)}t>0 gener-
ated by A. This can be seen as a motivation for analysing the following type of differential
equations.

DEFINITION 2.1 Let A : dom(A) → X be an operator and c ∈ dom(A). Then
u ∈ C1([0,∞) ;X) with u(t) ∈ dom(A) for all t > 0 is a solution for the Abstract
Cauchy Problem ACP, if:

d

dt
u = Au and u(0) = c, (2.1)

where d
dt
u denotes the strong derivative of u. We denote c as the initial value.

The following examples are very special cases for X and the operator A. Although, their
solutions, which we get from ordinary theory of differential equations, have abilities of
(pre-)semigroups.

Example 2.2 Let be X = Rn.
n = 1: In this case we have the simple one dimensional differential equation (A ∼= a ∈ R)

u′ = au, u(0) = C.

With the solution u(t) = Ceat.
n > 2: Here we get a linear system of differential equations with the matrix A

d

dt
u =

(
d

dt
ui

)
i=1,...,n

= (Aijuj)i=1,...,n

The solution is given by the matrix exponential u(t) = etA, where etA =
∑∞

k=0
(tA)k

k!
.

From Theorem (1.9) we get solutions for an ACP through a pre-semigroup:

COROLLARY 2.3 Let {P (t)}t>0 be a pre-semigroup and let A be its generator. For
c ∈ dom(A), u(.) = P (.)c is the unique solution of the ACP,

d

dt
u = Au, u(0) = P (0)c. (2.2)
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PROOF: From THEOREM 1.9 point 2. we know that P (t)c ∈ dom(A) for all t > 0.
Point three of this theorem gives us P (.)c ∈ C1([0,∞) , X) and

d

dt
u = Au.

Apparently, u(0) = P (0)c. The uniqueness of the solution follows directly from LEMMA
1.12. Let v : [0,∞)→ dom(A) be any further solution of (2.2). Then,

P (.)c = v(.),

by LEMMA 1.12. �

Example 2.4 For X = C0(R) and the operator A : dom(A) → C0(R), dom(A) =
{f ∈ C0(R) : (x 7→ xf(x)) ∈ C0(R)}, Af(x) = xf(x), we have the following partial dif-
ferential equation

d

dt
u(t, x) = x · u(t, x), u(0, x) = e−x

2

g(x), (2.3)

for all t > 0 and x ∈ R and where g ∈ dom(A). Actually, in the sense of DEFINITION
2.1, d

dt
u(t, x) has to be understood as

(
d
dt
u(t, .)

)
(x) where we have the strong derivative in

X = C0(R). Here, clearly, if the strong derivative exists, it equals the partial (pointwise)
derivative d

dt
u(t, x). Therefore a strong solution (in the sense of DEFINITION 2.1) is also

a solution of (2.3). We know already from EXAMPLE 1.1 that A is the generator for the
pre-semigroup {P (t)}t>0,

P (t)f(x) = e−x
2+txf(x).

Therefore, by COROLLARY 2.3 a solution for (2.3) is given by

u(t, x) = e−x
2+txg(x),

where u(t, .) ∈ C0(R) for all t > 0. The uniqueness is at least given for the situation of
the strong solution.

From COROLLARY 2.3 we get a solution for the ACP implicated by a given pre-
semigroup. The initial value is in P (0)dom(A). This solution is unique. In other words,
we have a unique solution, if we know the pre-semigroup. Furthermore we are interested
in the ”other direction”: If a function u = P (.)c is a solution of the ACP for an operator
A and c ∈ dom(A), is P (.) a pre-semigroup? The following theorem answers this question
for a stiuation with comparatively strong assumptions.

THEOREM 2.5 For a a closed operator A consider following situation:

• {P (t)}t>0 is a family of bounded operators, which is strongly continuous;

• P (0) is injective;

• A commutes with P (s) for s > 0;
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• P (.)c solves ACP (2.2) for all c ∈ dom(A);

If either dom(A) is dense in X or the resolvent set of A is non-emtpy, then P (.) is a
pre-semigroup generated by an extension of A.

PROOF: It remains to show that P (t − u)P (u) is independent of u for all 0 6 u 6 t.
Regard the derivative of P (t − u)P (u)c with respect to u for c ∈ dom(A). We use
LEMMA 1.11 (with the functions W (.) := P (t− .),v(.) := P (.)c and U := dom(A)). As(
P (t− .)x

)′
(u) = −AP (u)x for x ∈ dom(A) we have

d

du
P (t− u)P (u)c = P (t− u)AP (u)c− AP (t− u)P (u)c = 0, (2.4)

for all 0 6 u 6 t since A and P (t− u) commute by assumption. Hence P (t− u)P (u)c =
P (t)P (0)c for all c ∈ dom(A) and for all u > t. Let dom(A) be dense in X. Because
P (t − u)P (u) and P (t)P (0) are continuous and coincide on the dense set dom(A), they
coincide on X. Now consider the situation where the resolvent set of A is not empty.
Let λ be an element in ρ(A). Regard the resolvent Rλ,A = (λI − A)−1 : X → dom(A).
Because of the injectivity of Rλ,A, it suffices to show that

Rλ,AP (t− u)P (u)x = Rλ,AP (0)P (t)x ∀x ∈ X

Because of the assumption P (.)Ax = AP (.)x for all x ∈ dom(A), Rλ,A commutes with
the operators P (s), s ∈ [0,∞), i.e.

Rλ,AP (s)x = P (s)Rλ,Ax ∀x ∈ X.

(see LEMMA 0.1 in Notation, Definitions and Elementary Results). By (2.4) and Rλ,Ax ∈
dom(A), P (t− u)P (u)Rλ,Ax is constant with respect to u. This yields

Rλ,AP (t− u)P (u)x = P (t− u)P (u)Rλ,Ax

= P (0)P (t)Rλ,Ax

= Rλ,AxP (0)P (t),

which proves the present case. Denote the generator of the pre-semigroup P (t)t>0 by AP .
Since P (.)x is solution of the ACP for x ∈ dom(A), P ′+(0)x exists and

P ′+(0) =
d

dt
(P (.)x)(0) = AP (0)x = P (0)Ax ∈ P (0)X,

where the last equality follows from the assumption that A commutes with P (.). We
obtain dom(Ap) ⊃ dom(A). From definition of AP for x ∈ dom(A) we get

P (0)APx = P ′+(0)x = [P (.)x]′(0) = AP (0)x = P (0)Ax,

which verifies that AP is an extension of A, because P (0) is injective. �
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Example 2.6 Let us again consider the family of operators from EXAMPLE 1.1. We
know already that {P (t)}t>0 is a pre-semigroup, but, as an example, we want to use
THEOREM 2.5 to proof that it is a pre-semigroup. Therefore, we show that the image
of P (0) lies dense in C0(R).
Regard a function g ∈ C00(R) with compact support K ⊂ R. Since (x 7→ ex

2
) is bounded

on K, (x 7→ ex
2
g(x)) is also in C00(R), in particular in C0(R). Therefore, g has the form

g(x) = e−x
2

(ex
2

g(x))

Thus g ∈ P (0)C0(R). Hence, C00(R) lies in the image of P (0). Since C00(R) is dense in
C0(R), P (0)C0(R) is dense in C0(R).

REMARK 2.7 In the last theorem, the condition ”resolvent set ρ(A) non-empty” can
be weakened. Like in [deL94] one can define a special resolvent set for A by taking P (0)
into consideration. ρP (0)(A) is defined as the set of all λ ∈ C with (λI − A) is injective
and P (0)X ⊆ (λI −A)[dom(A)]. Clearly, ρ(A) is a subset of ρP (0)(A). This resolvent set
is not only in this context the more natural one, since there is an explicit connection to
the operator P (0). Note that for bijective P (0), ρP (0)(A) is the usual resolvent set.

The last theorems do not answer the question ”When do we get a pre-semigroup solu-
tion?”. Basicly we can not even expect to get such a solution since A can not be expected
to be a generator of a pre-semigroup without further information. For that we introduce
an operator B which is defined on a subset of dom(A). This B has some abilities that
guarantee the existence of a pre-semigroup that is generated by an extension of A.

THEOREM 2.8 Let A,B be closed operators, which are related as follows.

• dom(B) ⊂ dom(A);

• 0 ∈ ρ(B)

• ∃λ ∈ ρ(A), λ > 0 : Rλ,ABx = BRλ,Ax ∀x ∈ dom(B)

Then following assertions are equivalent:

1. The ACP for A has a unique solution for each initial value c ∈ dom(B).

2. There exists a pre-semigroup {P (t)}t>0 generated by an extension AP of A, such
that P (0) = (λI − A)B−1 and A commutes with P (s) for all s > 0.

PROOF: Notice that B−1 = R0,B exists since 0 ∈ ρ(B) by assumption.
1.⇒ 2.
Let uc ∈ C1([0,∞) ;X) be the unique solution of the ACP for the initial value c ∈
dom(B). We have to construct a pre-semigroup P (.). For x ∈ X, B−1x ∈ dom(B) and
hence the expression

P (.)x := (λI − A)uB−1x(.) = λuB−1x(.)− u′B−1x(.), (2.5)

is well defined. We are going to show that P (.) is a pre-semigroup which is generated by
an extension of A. This includes following tasks:
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• P (.) is strongly continuous;
This follows from the term on the right side in (2.5), since uB−1x(.) ∈ C1([0,∞)).

• P (0) is injective,
because P (0)x = (λI − A)B−1x and λ ∈ ρ(A).

• P (t) ∈ B(X) for all t ∈ [0,∞);
P (t) : X → X is linear, due to B−1 ∈ B(X) and the uniqueness of the solution of
the ACP for a given initial value: Let x, y ∈ X and k ∈ C
(it is clear that uB−1x + uB−1ky solves the ACP for u(0) = B−1x+ kB−1y)

P (t)(x+ ky) = (λI − A)uB−1x+B−1ky(t)

= (λI − A)
(
uB−1x(t) + kuB−1y(t))

= P (t)x+ kP (t)y.

For the boundedness of P (t) we regard the operator

W (.) : X → C1([0, a] ;X) : x 7→ W (.)x = uB−1x(.),

and a > 0 fixed. Here, C1([0, a] ;X) is equipped with the norm ‖u‖C1 = ‖u(t)‖∞+
‖u′(t)‖∞ (see: Notation, Definitions & Elementary Results).
We show that W(.) is closed. Let xn → x in X, and W (.)xn → y in C1([0, a] ;X).
From the definition of W (.) and the convergence of W (.)xn in the ‖.‖C1-Norm (this
implies pointwise convergence) it follows for fixed t 6 a that

AW (t)xn = AuB−1xn(t) = u′B−1xn
(t) = [W (.)xn]′(t)→ y′(t).

We now regard the sequences W (t)xn → y(t) and AW (t)xn → y′(t). Using the fact
that A is closed, we get y(t) ∈ dom(A) and y′(t) = Ay(t). Furthermore,

y(0) = lim
n→∞

W (0)xn = lim
n→∞

uB−1xn(0) = lim
n→∞

B−1xn = B−1x.

The uniqueness of the solution of the ACP with the initial value B−1x ∈ dom(B)
yields y = uB−1x = W (.)x on [0, a] (the second equality holds per definitionem). So
W(.) is closed. As C1([0, a] ;X) is a Banach space, by the Closed Graph Theorem
W(.) is even bounded, i.e. ∃M > 0: ‖W (.)x‖C1 6 M ‖x‖ ∀x ∈ X. Since λ > 0 it
follows from (2.5) for a fixed t 6 a that

‖P (t)x‖ = ‖(λI − A)W (t)x‖ 6 ‖λW (t)x‖+ ‖[W (.)x]′(t)‖
6 (λ+ 1)

(
‖W (t)x‖+ ‖[W (.)x]′(t)‖

)
6 (λ+ 1) ‖W (.)x‖C1

6 (λ+ 1)M ‖x‖ .

Since a can be chosen big enough for each t, so that t 6 a, P (t) is in B(X) for all
t ∈ [0,∞).
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• AP (t)x = P (t)Ax for all x ∈ dom(A) and t ∈ [0,∞);

P (t)Ax = AP (t)x ∀x ∈ dom(A) (2.6)

⇔ P (t)(λI − A)x = (λI − A)P (t)x ∀x ∈ dom(A) (2.7)

⇔ Rλ,AP (t)c = P (t)Rλ,Ac, ∀c ∈ X (2.8)

it suffices to show (2.8). For that we consider y(.) := Rλ,AuB−1c(.) for c ∈ X. Then
(using that an operator commutes with its resolvent, see LEMMA 0.1)

d

dt
y = Rλ,A

d

dt
uB−1c = Rλ,AAuB−1c = Ay.

Because BRλ,Ad = Rλ,ABd for all d ∈ dom(B) by assumption, it follows

BRλ,Ad =Rλ,ABd ∀d ∈ dom(B) (2.9)

⇔ Rλ,Ad =B−1Rλ,ABd ∀d ∈ dom(B) (2.10)

⇔ Rλ,AB
−1c =B−1Rλ,Ac ∀c ∈ X. (2.11)

Hence,
y(0) = Rλ,AB

−1c = B−1Rλ,Ac ∈ dom(B).

So y solves ACP with initial value Rλ,AB
−1c. By uniqueness of the solution, it

follows
Rλ,AuB−1c(.) = uRλ,AB−1c(.). (2.12)

Now we prove (2.8). Using the definition of P (t)x in (2.5), (2.12) and the commu-
tativity of the resolvents (2.11), we get

Rλ,AP (t)x = uB−1x(t) = (λI − A)Rλ,AuB−1x(t)

= (λI − A)uRλ,AB−1x(t)

= (λI − A)uB−1Rλ,Ax(t)

= P (t)Rλ,Ax.

• P (t− u)P (u) is indepent of u for 0 6 u 6 t and P (.) is generated by an extension
of A; Let c ∈ dom(A). Clearly, we can write c = Rλ,Ad for a certain d ∈ X. With
(2.11) and (2.12) it follows that

P (.)c = (λI − A)uB−1c(.)

= (λI − A)uB−1Rλ,Ad(.)

= (λI − A)uRλ,AB−1d(.)

= uB−1d(.).

Hence, P (.)c solves the ACP since the initial value P (0)c = B−1d ∈ dom(B) for
each c ∈ dom(A). So together with the points above, the conditions of theorem (2.5)
are fulfilled (ρ(A) is non-empty by assumption). This theorem completes the proof
of this direction.
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2.⇒ 1.
Let P (.) be a pre-semigroup generated by an extension AP of A, with P (0) = (λI−A)B−1

and Furthermore, let A commute with P (s) for all s > 0. We want to show that the ACP

u′ = Au; u(0) = c, (2.13)

has a unique solution for each c ∈ dom(B). From COROLLARY 2.3 it is clear that for
d ∈ dom(A) ⊆ dom(AP ) the function P (.)d is the unique solution of the ACP

u′ = APu; u(0) = P (0)d.

As d ∈ dom(A) we have Ad = APd. AP commutes with P (s) for all s > 0 by THEOREM
1.9. Because A commutes with P (s) for all s > 0 by assumption, it follows that AP (.)d =
APP (.)d. Hence, P (.)d solves ACP (2.13) with initial value c := P (0)d uniquely. Since
dom(A) = Rλ,AX and Rλ,A commutes with the operators P (s), s > 0 (see LEMMA 0.1
in Notation, Definitions and Elementary Results), it follows from P (0) = (λI − A)B−1

that

P (0)dom(A) = P (0)Rλ,AX = Rλ,AP (0)X = Rλ,A(λI − A)B−1X = dom(B),

which shows c ∈ dom(B). Hence, for a given c ∈ dom(B), P (0)−1c ∈ dom(A) and
u = P (.)P (0)−1c is the unique solution of (2.13).
�
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Chapter 3

Exponentially tamed pre-semigroups

In the following we will analyse pre-semigroups with an additional property. This reduc-
tion will give us more power in creating a similar situation as there is in the theory of
strongly continuous semigroups.

DEFINITION 3.1 A pre-semigroup {P (t)}t>0 is exponentially tamed, if there exists
ω > 0 so that

fx : [0,∞)→ X : t 7→ e−ωtP (t)x,

is bounded and uniformly continuous for all x ∈ X.

In the theory of common semigroups such a relation emerges as a property of strongly
continuous semigroups. There we have constants M,a > 0 so that ‖P (t)‖ 6Meat for all
t ∈ [0,∞). Using this (and properties of a semigroup) we see∥∥e−a(t+h)P (t+ h)x− e−atP (t)x

∥∥ 6 e−at ‖P (t)‖
∥∥e−ahP (h)x− x

∥∥
6M

∥∥e−ahP (h)x− x
∥∥ ∀t ∈ [0,∞), x ∈ X,

which implies the uniform continuity of t 7→ e−ωtP (t)x, where ω = a. Concerning the
boundedness we have∥∥e−atP (t)x

∥∥ 6 e−at ‖P (t)‖ ‖x‖ 6 e−atMeat ‖x‖ = M ‖x‖ ,

for all t ∈ [0,∞) and each fixed x ∈ X. Therefore DEFINITION 3.1 is also a generalisa-
tion of the situation of a strongly continuous semigroup.

REMARK 3.2 We want to point out that for a pre-semigroup which is exponentially
tamed, M := supt>0 e

−ωt ‖P (t)‖ exists. This follows directly from the principle of uniform
boundedness theorem, since supt>0 ‖e−ωtP (t)x‖ 6Mx for all x ∈ X by definition.

DEFINITION 3.3 For an exponentially-tamed pre-semigroup {P (t)}t>0, let Y be the
vector space

Y :=
{
x ∈ X : fx(t) ∈ P (0)X ∀t > 0, P (0)−1fx ∈ Cb([0,∞);X)

}
,

normed by ‖x‖Y := ‖P (0)−1fx‖b = supt>0 ‖e−ωtP (0)−1P (t)x‖.
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REMARK 3.4 Y is clearly a vector space because of linearity (in x) of P (0)−1fx and
since Cb([0,∞);X) is a vector space.
An element of Y has to fulfill two strong conditions concerning the operator P (0)−1. First
of all e−ωtP (t)x has to be in P (0)X for all t > 0 so that the term is well-defined. Further
P (0)−1 has to support uniform continuity and boundedness of fx : [0,∞) → X : t 7→
e−ωtP (t)x. At this point it is not clear how strong these requests are, and how big this
restriction for x in X is. We will analyse this later on.
As ‖x‖ = ‖P (0)−1e0P (0)x‖ 6 supt>0 ‖P (0)−1e−ωtP (t)x‖ clearly ‖.‖ 6 ‖.‖Y on Y .

The fact that Cb([0,∞);X) is a Banach space, gives us even more.

LEMMA 3.5 Let {P (t)}t>0 be a exponentially-tamed pre-semigroup. Then the normed
space (Y, ‖.‖Y ) is a Banach space.

PROOF: Let {xn} be a Cauchy sequence in (Y, ‖.‖Y . From ‖.‖ 6 ‖.‖Y it follows that
{xn} is also Cauchy in X and hence has a limit x ∈ X.
From definition of (Y, ‖.‖Y ) we know that the sequence of functions P (0)−1fxn is Cauchy

in Cb([0,∞);X), hence converges to g ∈ Cb([0,∞);X), i.e. P (0)−1fxn
Cb→ g. This conver-

gence (in ‖.‖Cb) especially implies pointwise convergence in X, i.e. P (0)−1fxn(t)
X→ g(t)

for all fixed t > 0. By continuity of P (0) we get

P (0)P (0)−1fxn(t) = fxn(t) = e−ωtP (t)xn
X→ P (0)g(t).

Since P (t) (for fixed t > 0) is continuous, e−ωtP (t) is continuous and therefore (with

xn
X→ x, as mentioned above)

fxn(t)
X→ e−ωtP (t)x = fx(t) = P (0)g(t).

So P (0)−1e−ωtP (t)x = P (0)−1fx(t) = g(t) for all t > 0, hence P (0)−1fx ∈ Cb([0,∞);X)

and P (0)−1fxn
Cb→ P (0)−1fx. Therefore xn converges to x in ‖.‖Y and x ∈ Y . �

Our target is to construct a strongly continuous semigroup on this dedicated space Y ,
where we want the generator of the semigroup to correspond to the generator A of the
given pre-semigroup. In this context the phrase part of A in Y will be used (see: Notation,
Definitions and Elementary Results). Before, we state a lemma concerning the Laplace
transform of a pre-semigroup.

LEMMA 3.6 For a given exponentially-tamed pre-semigroup {P (t)}t>0 with generator
A, the integral

LP (λ)x :=

∫ ∞
0

e−λtP (t)x dt, (3.1)

exists for λ > ω and x ∈ X. The Laplace transform LP : (ω,∞)→ B(X) : λ 7→ L(λ)
satisfies

LP (λ)
[
(λI − A)x

]
= P (0)x, (3.2)

for λ > ω and x ∈ dom(A). In particular, if {P (t)}t>0 is semigroup, then (ω,∞) ⊂ ρ(A).
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PROOF: Because of REMARK 3.2 the following holds true∥∥e−λtP (t)x
∥∥ 6 e−λt ‖P (t)‖ ‖x‖ 6 e−λtMeωt ‖x‖ = M ‖x‖ e(ω−λ)t,

for x ∈ X, t > 0. Therefore the integral
∫∞

0

∥∥e−λtP (t)x
∥∥ dt exists for λ > ω since∫∞

0
M ‖x‖ e(ω−λ)tdt = M

λ−ω ‖x‖ clearly exists. Hence and since (t 7→ e−λtP (t)x) is contin-
uous, (3.1) exists for λ > ω (see: Notation, Definitions and Elementary Results).
Further we show that LP (λ) is in B(X) for λ > ω. Linearity is trivial from the definition
of the integral. As seen above, we have

‖LP (λ)‖ =

∥∥∥∥∫ ∞
0

e−λtP (t)x dt

∥∥∥∥
6
∫ ∞

0

∥∥e−λtP (t)x
∥∥ dt

6
∫ ∞

0

M ‖x‖ e(ω−λ)t dt

=
M

λ− ω
‖x‖ ,

which gives us the boundedness.
Let λ > ω and x ∈ dom(A). Consider

LP (λ)(λI − A)x =

∫ ∞
0

e−λtP (t)(λI − A)x dt

=

∫ ∞
0

[λe−λtP (t)x− e−λtAP (t)x] dt,

where we use that A and P (t) commute. With the product rule, LEMMA 1.11, we see
that the integrand equals −[e−λtP (t)x]′. This yields

LP (λ)(λI − A)x = −
∫ ∞

0

[e−λtP (t)x]′ dt

= − [e−λtP (t)x]
∣∣∞
0

= P (0)x.

Let x ∈ X. For the term (λI − A)LP (λ)x we consider the strong right derivative of
P (.)[LP (λ)x] at zero. With P (s) ∈ B(X), s > 0, (COM) and (ADD) it follows,

1

h

(
P (h)− P (0)

)
[LP (λ)x] =

1

h

(
P (h)− P (0)

) ∫ ∞
0

e−λtP (t)x dt

=
1

h
(

∫ ∞
0

e−λt[P (0)P (h+ t)− P (0)P (t)]x dt

=
1

h

∫ ∞
h

e−λ(s−h)P (0)P (s)x ds− 1

h

∫ ∞
0

e−λtP (0)P (t)x dt

=
ehλ − 1

h

∫ ∞
0

e−λsP (0)P (s)x ds− ehλ

h

∫ h

0

e−λsP (0)P (s)x ds

=
ehλ − 1

h
P (0)

∫ ∞
0

e−λsP (s)x ds− ehλ 1

h
P (0)

∫ h

0

e−λsP (s)x ds,
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where the last equality holds since P (0) is continuous and since∫ ∞
0

e−λsP (s)x ds = lim
β→∞

∫ β

0

e−λsP (s)x ds

exists (as showed in beginning of this proof). Consider the limit of the first term in the
last equality,

lim
h→0+

ehλ − 1

h
P (0)

∫ ∞
0

e−λsP (s)x ds = lim
h→0+

ehλ − 1

h
P (0)LP (λ)x

= λP (0)LP (λ)x.

Since (s 7→ e−λsP (s)x) is continuous, it follows from the fundamental theorem of calculus,
that

lim
h→0+

1

h

∫ h

0

e−λsP (s)x ds = P (0)x.

Therefore, the limit of the second term is

lim
h→0+

ehλ

h
P (0)

∫ h

0

e−λsP (s)x ds = P (0)P (0)x.

Hence,
P ′+(0)[LP (λ)x] = λP (0)LP (λ)x− P (0)P (0)x.

Therefore the strong right derivative exists and belongs to P (0)X. Thus

ALP (λ)x = λLP (λ)x− P (0)x.

This gives us
(λI − A)LP (λ)x = P (0)x,

for x ∈ X. If {P (t)}t>0 is even a semigroup, hence especially P (0) = I. Therefore, we
have, with the calculation from above,

(λI − A)LP (λ)x = LP (λ)(λI − A)x = x,

for x ∈ dom(A). Hence (ω,∞) ⊂ ρ(A). �

THEOREM 3.7 Let {P (t)}>0 be a exponentially-tamed pre-semigoup with generator A.
Then, {T (t)}t>0 with

T (.) := P (0)−1P (.),

is a strongly continuous semigroup on the Banach space (Y, ‖.‖Y ) which satisfies

‖T (t)‖B(Y ) 6 eωt,

for all t > 0. The generator of {T (t)}t>0 equals the part of A in Y , AY .
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PROOF: Let x be in Y and fix s > 0. Clearly, P (0)−1e−ωtP (s)x exists by definition of
Y , hence T (s)x = P (0)−1P (s)x exists by linearity. Further, we have to show that T (s)x
is in Y , which is P (0)−1fT (s)x ∈ Cb([0∞);X). By definition, for t > 0 we have

P (0)−1fT (s)x(t) = P (0)−1e−ωtP (t)T (s)x

= P (0)−1e−ωtP (t)P (0)−1P (s)x.

P (t)P (0)−1P (s)x exists by the argument from above. P (0)−1P (t)P (s)x is equal to
P (0)−1P (0)P (t+s)x = P (t+s)x by the properties of pre-semigroups (ADD) and therefore
exists, too. Hence and because of commutativity (COM) of the operators P (s), s ∈ [0,∞),
P (t) and P (0)−1 commute (see: Notation, Definitions and Elementary Results: LEMMA
0.2) and so

P (t)P (0)−1P (s)x = P (t+ s)x. (3.3)

This gives

P (0)−1fT (s)x(t) = P (0)−1e−ωtP (t+ s)x = e−ωsP (0)−1e−ω(t+s)P (t+ s)x.

Hence P (0)−1fT (s)x belongs to Cb([0,∞);X) since t 7→ P (0)−1e−ωtP (t)x ∈ Cb([0∞);X)
(s is fixed). So we have shown that T (s)x is in Y . As a composition of linear operators,
T (s) : Y → Y is also linear. The boundedness of T (s) : Y → Y is proved as follows. By
definition, properties of pre-semigroups and (3.3) we get

‖T (s)x‖Y = sup
t>0

∥∥P (0)−1e−ωtP (t)P (0)−1P (s)x
∥∥

6 sup
t>0

∥∥P (0)−1e−ωtP (t+ s)x
∥∥

= eωs sup
t>0

∥∥P (0)−1e−ω(t+s)P (t+ s)x
∥∥

6 eωs ‖x‖Y .

This also shows ‖T (t)‖B(Y ) 6 eωt for t > 0.

The semigroup properties are obviously satisfied by definition: T (0) = P (0)−1P (0) = I
and for x ∈ Y, s, t > 0

T (s+ t)x = P (0)−1P (s+ t)x

= P (0)−1P (0)−1P (s)P (t)x

= P (0)−1P (s)P (0)−1P (t)x

= T (s)T (t)x,

where we use that P (s) and P (0)−1 commute (as above, see: Notation, Definitions and
Elementary Results: LEMMA 0.2).
Next, we verify the C0-property. It suffices to show the strong continuity of T (.) at zero,
clearly in the ‖.‖Y -norm. For that we consider the uniform continuity of P (0)−1fx for
x ∈ Y . For ε > 0 there exists a δε > 0 so that for all |h| < δε

sup
t>0

∥∥P (0)−1e−ω(t+h)P (t+ h)x− P (0)−1e−ωtP (t)x
∥∥ < ε (3.4)

31



With the definition and (3.3), it follows elemtarily

‖T (h)x− x‖Y = sup
t>0

∥∥P (0)−1e−ωtP (t)[P (0)−1P (h)x− x]
∥∥

= sup
t>0

∥∥P (0)−1e−ωtP (t+ h)x− P (0)−1e−ωtP (t)x
∥∥

6 sup
t>0

eωh
∥∥P (0)−1e−ω(t+h)P (t+ h)x− P (0)−1e−ωtP (t)x

∥∥+

+ sup
t>0

∥∥(eωh − 1)P (0)−1e−ωtP (t)x
∥∥ .

From (3.4) we get
‖T (h)x− x‖Y 6 eωhε+ (eωh − 1) ‖x‖Y .

This gives us strong continuity: For fixed x ∈ Y and a given ε′ choose ε < ε′ in (3.4).
Clearly, eωh converges to 1 for h → 0, hence eωhε → ε and (eωh − 1) ‖x‖Y → 0 and
therefore ‖T (h)x− x‖Y < ε′ holds true for sufficiently small h.
It remains to show that the generator AT of the semigroup T (.) equals, the part AY of A
in Y . Let x ∈ dom(AT ) ⊆ Y , then limt→0

1
h
[T (h)x−x] exists in ‖.‖Y , hence in ‖.‖ due to

the fact that ‖.‖Y > ‖.‖. By definition of T we have P (.) = P (0)T (.). P (0) is in B(X)
and, therefore, (following limits are in ‖.‖)

lim
h→0

1

h
[P (h)x− P (0)x] = lim

h→0
P (0)

1

h
[T (h)x− x]

= P (0) lim
t→0

1

h
[T (h)x− x]

= P (0)ATx.

Hence P ′+(0) exists and lies in P(0)X. So x ∈ dom(A) and Ax = P (0)−1P (0)ATx = ATx.
Thus AT ⊂ A, and even AT ⊂ AY since AT is defined on a subset of Y .

We regard the operator (λI − A) for an apropriate λ ∈ R: From LEMMA 3.6 we
know that for λ > ω the Laplace transform LP (λ) ∈ B(X) exists. The relation (3.2),
LP (λ)(λI − A)x = P (0)x, implies that if (λI − A)x = 0, then P (0)x = 0 and therefore
x = 0 since P (0) is injective. Consequently (λI −A) is injective, hence (λI −AY ) is also
injective.
LEMMA 3.6 can also be applied with the semigroup T (.) (on Y ). Thus λ > ω is in ρ(AT )
which means that (λI − AT )−1 : X → dom(AT ) is bijective. In particular (λI − AT ) is
surjective. We know already AT ⊂ AY , hence

λI − AT ⊂ λI − AY ,

where the map on the left hand side is surjective and injective on the right hand side.
Such a relation implies already that

λI − AT = λI − AY ,

(see: Notation, Definitions and Elementary Results LEMMA 0.3). Obviously this is
equivalent to

AT = AY ,
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which completes the proof. �

REMARK 3.8 This result is surprising in a way. But how big is the space Y ?! We have
already mentioned in REMARK 3.4 that the elements of Y have to fulfill some strong
requirements and therefore depending especially on the operator P (0). Let us consider
the special case where P (0) is bijective. By the Closed Graph theorem, P (0)−1 ∈ B(X)
and therefore P (0)−1fx is clearly bounded and uniformly continuous for all x ∈ X since
fx ∈ Cb([0,∞);X) by definition. That is, Y = X.
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[Kal08c] Michael Kaltenbäck. Funktionalanalysis 2. Lecture notes for the winterterm
2008, 2008.

[Kan95] Shmuel Kantorovitz. Semigroups of Operators and Spectral Theory. Pitman
Research Notes in Mathematics Series. Longman, 1995.

[Kön97] Konrad Königsberger. Analysis 2. Springer-Verlag, second edition, 1997.

[Kön03] Konrad Königsberger. Analysis 1. Springer-Verlag, sixth edition, 2003.
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