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Preface

In this thesis we provide an introduction to fixed point theory for set-valued maps. It is not
our goal in the present work to give an outline of the status quo of fixed point theory with
all its newest achievements, but rather to give a thorough overview of the basic results in this
discipline. It then should be possible for the reader to better and easier understand the newest
developments as generalizations and continuations of the results we present here.

After a short recollection about classical fixed point theorems for single-valued maps, we will
first give an introduction to the theory of set-valued maps. We will generalize the notion of
continuity for such maps and also give an example on how one can reduce problems involving
set-valued maps to classical maps.
We then show how to achieve fixed point theorems by using two principles:
First we will generalize the well known concept of contractivity of a map. Thus we will achieve
results similar to the famous Banach Fixed Point Theorem. We will also adress the question of
convergence of fixed points for sequences of set-valued contraction.
Then we will derive fixed point theorems for maps from geometrical properties. There, we will
see generalizations of the important fixed point theorems by Schauder and Tychonoff. We will
also give a small excursus to the concept of the KKM-principle and give a few examples of
results, that can be achieved that way.
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Chapter 1

Classical Fixed Point Theorems

Definition 1.1 A point x of a space X is called a fixed point of a function f : X → X, if

f(x) = x.

Many mathematical problems, originating from various branches of mathematics, can be equiv-
alently formulated as fixed point problem, meaning that one has to find a fixed point of some
function F . Fixed point theorems provide sufficient conditions under which there exists a fixed
point for a given function, and thus allow us to guarantee the existence of a solution of the
original problem. Because of the wide variety of uses, fixed point theorems are of great interest
in many mathematical disciplines.
There are four general principles by which results are achieved:

1. Contractivity: the function under consideration is Lipschitz-continuous with a Lipschitz-
Constant < 1.

2. Geometry: the domain and/or the range of the function has certain geometrical properties
(e.g. compactness or convexity).

3. Homotopy: there exists a function homotopic to a given function and a homotopy with
certain properties

4. Set-Theory: the viewed space is ordered (and may have more set-theoretical properties)
and the function satisfies relations between a point and its image regarding this order.

Of course these are not all means by which fixed point theorems can be achieved. In some cases
one can generalize these concepts, e.g. the conctractivity principle can be extended to non-
expansive cases, meaning the Lipschitz-Constant is allowed to be ≤ 1. Fixed point theorems
may also arise as byproducts of, at first sight, unrelated concepts. An important example for
this would be the fixed point index which arises in topological degree theory.

In the following, we will give (without proofs) basic examples for a fixed point theorem
belonging to 1-4.

1.1 The Banach Fixed Point Theorem

This is probably the most well-known fixed-point theorem. This theorem is oustanding among
fixed point thoerems, because it not only guarantees existence of a fixed point, but also its
uniqueness, an approximative method to actually find the fixed point, and a priori and a pos-
teriori estimates for the rate of convergence.
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Definition 1.2 Let (X, dX) and (Y, dY ) be two metric spaces. A function f : X → Y is called
Lipschitz, if there exists a l > 0 such that for all x1, x2 ∈ X the inequality

dY (f(x1), f(x2)) ≤ ldX(x1, x2)

holds. The number k = inf{l ∈ R|∀x1, x2 ∈ X, dY (f(x1), f(x2)) ≤ ldX(x1, x2)} is called the
Lipschitz constant of f .
If k < 1, then f is called a contraction.

Theorem 1.3 (Banach Fixed Point Theorem) Let (X, d) be a complete metric space and
let f be a contraction with Lipschitz constant k. Then f has an unique fixed point.
In more deatil: If x0 ∈ X, then the sequence {xn}∞n=0 with

xn+1 = f(xn), n ≥ 0,

converges to a uniquely defined fixed point ζ of f , and we have

d(xn, ζ) ≤ kn(1− k)−1d(x1, x0) and d(xn+1, ζ) ≤ k(1− k)−1d(xn, xn+1).

1.2 The Schauder Fixed Point Theorem

The fixed point theorem by Schauder is one of the most basic ones, when it comes to dealing
with geometrical properties. In fact, many other fixed point theorems in this category are
proven by reducing it to the Schauder Theorem.
To state it, one needs the following definition:

Definition 1.4 Let X and Y be Banach spaces. A function f : X → Y is called compact, if f
maps bounded sets to relatively compact sets.

Theorem 1.5 (Schauder Fixed Point Theorem) Let X be a Banach space, M be a nonempty
convex subset of X, and f : M →M be continuous. If furthermore

• M is closed and bounded and f compact

or

• M is compact,

then f has a fixed point.

Remark: This theorem stays true, if we interchange ’Banach space’ and ’locally convex topolog-
ical vector space’ in the definition and the theorem. The result is then known as the Tychonoff
Fixed Point Theorem.

1.3 The Schaefer Fixed Point Theorem

Definition 1.6 Two continuous functions f and g from a topological space X to a topological
space Y are called homotopic, if there exists a continuous function H : X × [0, 1] → Y with
H(x, 0) = f(x) and H(x, 1) = g(x), x ∈ X.
The function H is called a homotopy.

There are two kinds of theorems in this category: Some deal with the question, under which
conditions the existence of a fixed point is invariant under a homotopy, while others look for
conditions under which a fixed point emerges. The Schaefer Theorem is of the first kind.
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Theorem 1.7 (Schaefer Fixed Point Theorem) Let X be a normed space and let f : X →
X be continuous and compact. Define H : X × [0, 1] → X as H(x, α) = αf(x). If, for each
α ∈ (0, 1), the set {x ∈ X : x = H(x, α)} is bounded, then f has a fixed point.

Homotopic fixed point theorems and geometrical ones are often connected in some way. For ex-
ample, the Schaefer Theorem can be derived from the Schauder Theorem using only geometrical
means. On the other hand, the Schauder Theorem can also be derived from the Leray-Schauder
fixed point index by homotopical means.

1.4 The Bourbaki-Kneser Fixed Point Theorem

Fixed point theorems of this, fourth, category are applied to progressive or regressive functions
(meaning x ≤ f(x) or f(x) ≤ x, respectively) or monotone functions. An interesting feature
of these theorems is, that there are generally no further restrictions to the function. The
Bourbaki-Kneser theorem is the most basic one of this type. It follows immediately from Zorn’s
Lemma.

Theorem 1.8 (Bourbaki-Kneser Fixed Point Theorem) Let M be an ordered set and let
f : M → M satisfy x ≤ f(x) for all x ∈ M . If every totally ordered subset of M has a
supremum, then f has a fixed point.

Apparently, this theorem remains true, if ’≤’ is replaced by ’≥’ and ’supremum’ by ’infimum’.
It is interesting to note that the Bourbaki-Kneser Fixed Point Theorem can be used to show
the equivalence of Zorn’s Lemma and the Axiom of Choice.
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Chapter 2

Set-valued Maps

For a set Y , denote by P(Y ) the power set of Y .
By a set-valued map, we mean a map

T : X →P(Y )

which thus assings to each point x ∈ X a subset T (x) ⊆ Y . Note that a map S : X → Y can
be identified with a set-valued map S′ : X → P(Y ) by setting S′(x) = {S(x)}. We will refer
to a map S : X → Y as a single-valued map.
For T : X →P(Y ) and M ⊆ X we define

T (M) =
⋃
x∈M

T (x),

and the graph G(T ) of T will be the set

G(T ) = {(x, y) : x ∈ X, y ∈ T (x)}.

Set-valued maps are important objects for many applications, for example in game theory or
mathematical economics. They also often arise when studying certain optimization problems
or when dealing with variational inequalities (for examples see Zeidler [Z1]).

2.1 Continuity

We generalize the concept of continuity to set-valued maps.

Definition 2.1 Let X and Y be topological spaces and T : X →P(Y ) a set-valued map.

1. T is called upper semi-continuous, if for every x ∈ X and every open set V in Y with
T (x) ⊆ V , there exists a neighbourhood U(x) such that T (U(x)) ⊆ V .

2. T is called lower semi-continuous, if for every x ∈ X, y ∈ T (x) and every neighbourhood
V (y) of y, there exists a neighbourhood U(x)of (x) such that

T (u) ∩ V (y) 6= ∅, u ∈ U(x).

3. T is called continuous if it is both upper semi-continuous and lower semi-continuous.
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Using simple topological arguments, these definitions can be equivalently stated in a simpler
formulation. The preimage T−1(A) of a set A ⊆ Y under a set-valued map T is defined as

T−1(A) = {x ∈ X : T (x) ∩A 6= ∅}

Note that, unlike for single valued maps, the inclusion T (T−1(A)) ⊆ A need not hold. However,
unless T−1(A) = ∅, we have T (T−1(A)) ∩A 6= ∅.

Proposition 2.2 Let X and Y be topological spaces and T : X →P(Y ) a set-valued map.

1. T is upper semi-continuous if and only if T−1(A) is closed for all closed sets A ⊆ Y .

2. T is lower semi-continuous if and only if T−1(A) is open for all open sets A ⊆ Y .

Proof:

1. Suppose T is upper semi-continuous and A ⊆ Y closed. Choose x ∈ (T−1(A))C , then
T (x) ⊆ AC . Since AC is open, there exists a neighbourhood U(x) of x, such that
T (U(x)) ⊆ AC . Therefore U(x) ⊆ (T−1(A))C and it follows that T−1(A) is closed.
Conversely suppose T−1(A) is closed for all closed A ⊆ Y . Let x ∈ X V ⊆ Y be open with
T (x) ⊆ V . Then V C is closed and by assumption so is T−1(V C). Moreover x /∈ T−1(V C).
Hence there exists a neighbourhood of x with U(x) ⊆ (T−1(V C))C . This neighbourhood
apparently satisfies T (U(x)) ⊆ V .

2. Suppose T is lower semi-continuous and A ⊆ Y open. Assume that x ∈ T−1(A), and
choose y ∈ T (x) ∩ A. Since A is open, there exists a neighbourhood of y with V (y) ⊆ A.
Because of the lower semi-continuity of T , there exists a neighbourhood U(x) of x with
T (u) ∩ V (y) 6= ∅ for all u ∈ U(x). This means U(x) ⊆ T−1(V (y)) ⊆ T−1(A). It follows
that T−1(A) is open.
Conversely suppose T−1(A) is open for every open set A ⊆ Y . Assume that x ∈ X,
y ∈ T (x) and V (y) is an open neighbourhood of y. Then T−1(V (y)) is open and x ∈
T−1(V (y)). Therefore there exists a neighbourhood U(x) of x with U(x) ⊆ T−1(V (y)).
It follows that T (u) ∩ V (y) 6= ∅ for all u ∈ U(x).

2

Proposition (2.2) shows that for single-valued maps lower semi-continuity is identical with con-
tinuity in the classical sense
When only dealing with subsets of the spaces X and Y the terms open and closed naturally
mean open and closed in the induced topologies.

In some special cases, the graph of a map can be used to characterize semi-continuity. We
will give an example:

Theorem 2.3 Let X and Y be compact spaces and T : X → P(Y ) a set-valued mapping.
Assume that T (x) is closed for all x ∈ X. Then T is upper semi-continuous if and only if G(T )
is closed in X × Y .

Proof: Suppose T is upper semi-continuous and choose (x, y) ∈ X × Y with (x, y) /∈ G(T ).
Then y does not belong to the closed set T (x). Since Y is compact there exist two neigh-
bourhoods V1of y and V2 of T (x) with V1 ∩ V2 = ∅. Since T is upper semi-continuous, we can
find a neighbourhood U of x with T (U) ⊆ V2. Thus U × V1 is a neighbourhood of (x, y) with
U(×V1) ∩G(T ) = ∅, and therefore G(T ) is closed.
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Conversely assume that G(T ) is closed and that T is not upper semi-continuous at a point
x ∈ X. Choose an open set V ( Y containing T (x). Note that because T is not uppersemi-
continuous we can find such a set V . Let {Ui}i∈I be the family of all neighbourhoods of x.
Because T is not upper semi-continuous we have for every Uj ∈ {Ui}i∈I

G(T ) ∩ (Uj × (Y \V )) 6= ∅

Since G(T ), Uj and Y \V are all closed the intersection is also closed and when looking at it for
different Uj ∈ {Ui}i∈I it is obvious, that this intersections have the finite intersection property.
Because X × Y with the product topology is compact it follows, that⋂

i∈I
G(T ) ∩ (Ui × (Y \V )) 6= ∅.

The only point in the intersection of all Ui is x, therefore there exists y ∈ Y , such that (x, y)
is in this intersection. Then y ∈ T (x) ∩ Y \V . But this contradicts our choice of V as a neigh-
bourhood of T (x). Therefore T must be upper semi-continuous. 2

2.2 Selection Theorems

If T : X → P(Y ) is a set-valued mapping, we call a single-valued mapping t : X → Y a
selection of T , if

t(x) ∈ T (x) for all x ∈ X.

The existence of a selection is obviously equivalent to the fact, that T (x) 6= ∅ for all x ∈ X.
Often it is practical to reduce a problem involving set-valued maps to a question about single-
valued maps. Hence, selections are an important tool, and it is of interest to show existence of
selections with additional properties. We will give one example of a statement of this kind.

Michael’s Selection Theorem

This selection theorem guarantees the existence of a continuous selection.
Recall, that a topological space is called paracompact if every open cover has a locally fi-
nite refinement, where a collection of sets is called locally finite, if every point of a set has a
neighbourhood which intersects at most finitely many of these sets. Important examples for
paracompact spaces are compact spaces, metric spaces and locally compact spaces with a count-
able basis.
Paracompactness is an important property since it guarantees existence of partitions of unity.
Recall that the family {fi}i∈I of continuous mappings is called a partition of unity subordinate
to the open covering {Oj}j∈J , if for every i, there is a j such that supp(fi) ⊆ Oj . Furthermore,
for all x ∈ X, 0 ≤ fi(x) ≤ 1 and

∑
i fi(x) = 1 hold and for fixed x there is a open set Ox with

x ∈ Ox such that at most finitely many fi are not identically zero on Ox.

Theorem 2.4 Let T : X →P(Y ) be a lower semi-continuous set-valued map. If

• X is paracompact,

• Y is a Banach-Space,

• T (x) is nonempty, closed and convex for all x ∈ X,
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then there exists a continuous selection t : X → Y of T.

Proof: As a first step we show, that for each ε > 0 there exists a continuous map f : X → Y
such that

d(f(x), T (x)) < ε, x ∈ X. (2.1)

where d is the distance on Y induced by its norm.
Fix ε > 0 and choose a selection m : X → Y . Let Bε(m(x)) denote the open ball with

radius ε and center m(x). Since T is lower semi-continuous, for each x ∈ X there exists an open
neighbourhood U(x) of x such that

T (u) ∩Bε(m(x)) 6= ∅, u ∈ U(x). (2.2)

Since X is paracompact there exists a partition of unity {fα} subordinate to the open covering
{U(x)}x∈X . Set

f(x) =
∑
α

fα(x)m(xα),

then f is a continuous function of X into Y . If fα(x) > 0 for some α, then x ∈ U(xα) and
therefore by (2.2)

m(xα) ∈ T (x) +Bε(0).

Since T (x)+Bε(0) is convex, and f(x) a finite convex combination of elements from fα(x)m(xα)
with fα(x) > 0, we have f(x) ∈ T (x) +Bε(0). Hence d(f(x), T (x)) ≤ ε, i.e. f satisfies (2.1).

In the second step, we construct the requested selection. Set εn = 2−n. We will define
inductively a sequence {fn}n∈N of continuous mappings fn : X → Y with

d(fn(x), T (x)) < εn, x ∈ X, n = 1, 2, . . . (2.3)

d(fn(x), fn−1(x)) < εn−1, x ∈ X, n = 2, 3, . . . (2.4)

As we showed in the first step, there exists f1 with d(f1(x), T (x)) < 1/2, x ∈ X.
Assume that n ≥ 2 and we already have constructed f1, . . . , fn−1. For each x ∈ X we define

G(x) = (fn−1(x) +Bεn−1(0)) ∩ T (x)

By the induction hypothesis, G(x) is not empty. Since T (x) convex, so is G(x). Further
G : X →P(Y ) is lower semi-continuous, since fn−1 is continuous and T lower semi-continuous.
So we can apply the first part of our proof also to G, since the only additional property of T is,
that T (x) is closed, which was not used in that argument. Therefore there exists a continuous
map fn : X → Y such that (2.3) holds. By construction fn also satisfies (2.4).

Since
∑
εn converges, {fn}n∈N is a uniform Cauchy sequence and hence converges to a con-

tinuous map t : X → Y . Since T (x) is closed, t is a selection of T . 2
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Application to Differential Inclusions

We now show an easy application of Michael’s theorem and consider the initial value problem

x′(t) ∈ F (x(t), t), x(t0) = x0 (2.5)

where t ∈ R and x ∈ Rn. F (x, t) gives the set of all possible velocities of the system at a
time t. Such differential inclusions arise when modeling systems for which we have no complete
description. We are looking for a solution x : R→ Rn.

Theorem 2.5 (Generalized Peano Theorem) Suppose we have t0 ∈ R and x0 ∈ Rn, where
(x0, t0) ∈ U . Let

F : U ⊆ Rn+1 →P(Rn)

be a lower semi-continuous map such that F (x, t) is a nonempty closed and convex set in Rn for
all (x, t) ∈ U . Then the initial value problem (2.5) has a C1-solution x = x(t) in a neighbourhood
of t0.

Proof: By Michael’s Selection Theorem there exists a continuous selection f : U → Rn of F .
By the classical Peano Theorem, the initial value problem

x′(t) = f(x(t), t), x(t0) = x0

has (locally at t0) a solution x(t). This function solves (2.5). 2
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Chapter 3

Fixed Point Theorems for set-valued
Maps. Contraction Principle

Definition 3.1 A point x of a space X is called a fixed point of a set-valued map T : X →
P(X), if

x ∈ T (x)

For single-valued maps, we presented four principles, by which fixed point theorems can be
achieved. For set-valued maps we will only consider fixed point theorems achieved due to con-
tractivity or by geometrical means.
Although there exist a few results by homotopic means, they are applicable only in very special
settings. For more details, see for example Sim, Xu, Yuan [SXY].
Achieving fixed point theorems for set-valued maps by set theoretic means is also more com-
plicated. The approach shown in the introduction certainly works only for a map from a space
X into itself. Still, some results were achieved when looking for common fixed points of two
set-valued maps, but only with additional assumptions about compatibility with metric values.
For an example, see Beg, Butt [BB].

3.1 Hausdorff-Metric

The key to the classical Banach fixed point theorem is that one is working in a complete metric
space. To get an analogous result for set-valued mappings, we have to equip the powerset of a
metric space with a metric.
Let (X, d) be a metric space. For each two nonempty elements M and N of P(X) we define

D(x,N) = inf {d(x, y) : y ∈ N} ∈ [0,∞), x ∈M,

D(M,N) = sup {D(x,N) : x ∈M} ∈ [0,∞].

Let us remark, that D(M,N) being small thus means, that each point of M is close to some
point of N . The value of D(M,N) will certainly be finite, if M and N are bounded.

Lemma 3.2 Let (X, d) be a metric space and let M , N , and Q be nonempty, bounded elements
of P(X). Then

1. D(M,N) = 0 if and only if M ⊆ N,

2. D(M,N) ≤ D(M,Q) +D(Q,N).
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Proof: The first assertion follows directly from the definition of D(M,N). We come to the
proof of 2.
We have

d(m,n) ≤ d(m, q) + d(q, n), m ∈M,n ∈ N, q ∈ Q

By taking the infimum over n ∈ N, the inequality

D(m,N) ≤ d(m, q) +D(q,N), m ∈M, q ∈ Q

follows. By taking the supremum over all q ∈ Q we obtain

D(m,N) ≤ D(m,Q) +D(Q,N), m ∈M

and by taking the supremum over all m ∈M the assertion follows. 2

In general the equality D(M,N) = D(N,M) need not hold, thus we need to symmetrize.

Definition 3.3 The Hausdorff semi-metric on the family of all nonempty bounded subsets of a
metric space is defined as

δ(M,N) = max{D(M,N), D(N,M)}.

Theorem 3.4 On the family of all nonempty bounded and closed sets of a metric space the
Hausdorff semi-metric is a metric.

Proof: Symmetry is built into the definition of δ, the equivalence

δ(M,N) = 0⇔M = N

holds since we restrict ourselves to closed subsets of X, and the triangle inequality since

D(M,N) ≤ D(M,Q) +D(Q,M) ≤ δ(M,Q) + δ(Q,N),
D(N,M) ≤ D(N,Q) +D(Q,M) ≤ δ(N,Q) + δ(Q,M).

2

In the following, we will denote by CB(X) the family of all nonempty closed and bounded
subsets of the metric space (X, d). Note, that different metrics on X result in different Haus-
dorff metrics on CB(X). The following theorem shows, that the completeness of the metric
space (X, d) is preserved by going to the space (CB(X), δ).

Theorem 3.5 If (X, d) is a complete metric space, then (CB(X), δ) is a complete metric space,
where δ is the Hausdorff metric induced by d.

Proof: Let {Mn}n∈N be a sequence of bounded and closed subsets of X and suppose it is a
Cauchy sequence with respect to δ. We define

M =
∞⋂
n=1

(
∞⋃
m=n

(Mm))

and show that

lim δ(Mn,M) = 0.
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Boundedness of M follows easily from the definition and the fact, that {Mn} is Cauchy sequence.
Hence, M ∈ CB(X).
For a given ε > 0, choose a number Nε such that

δ(Mm,Mn) < ε, n,m ≥ Nε

We claim that
δ(M,MNε) ≤ 2ε. (3.1)

Once this claim has been established, we obtain

δ(M,Mn) ≤ δ(M,MNε) + δ(MNε ,Mn) < 2ε+ ε = 3ε, n ≥ Nε

and the assertion of the theorem will follow.

To prove (3.1) we need to show that:

1. D(x,MNε) ≤ 2ε for all x ∈M

2. D(y,M) ≤ 2ε for all y ∈MNε .

We first consider the set

Ai = {x ∈ X : D(x,Mi) ≤ ε}.

Note that Ai is closed. Since {Mn} is a Cauchy sequence, we have Mn ⊆ ANε for n ≥ Nε. By
the definition of M

M ⊆
⋃
i≥Nε

Ai,

and therefore M ⊆ ANε which implies 1.
Next consider the sequence

ni = Nε/2i , i ≥ 0.

Since {Mn} is a Cauchy sequence, we can inductively construct a sequence mni with

• mni ∈Mni , i ≥ 0,

• mn0 = y,

• d(mni ,mni−1) ≤ ε/2i−1, i ≥ 1.

The sequence {mni} is a Cauchy sequence, because

d(mnp ,mnq) ≤ ε
p∑

i=q+1

1/2i−1ε/2q−1, p > q.

Since (X, d) is complete there exists the limit m = limmni , and from the definition of M we
have m ∈M . Since

d(mnp ,mn0) = d(mnp , y) ≤ 2ε

by taking the limit we get

d(m, y) ≤ 2ε

From this 2. follows. Together, we have established our claim (3.1). 2
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3.2 Contractive Maps

We can extend the existence part of the Banach Fixed Point Theorem to set-valued contraction
mappings.

Theorem 3.6 Let (X, d) be a complete metric space, and let T : X → CB(X) be a set-valued
contraction where CB(X) is endowed with the Hausdorff metric induced by d. Then T has a
fixed point.

Proof: Denote by k the Lipschitz constant of T .
We are going to construct a sequence {xn}n∈N with

d(xn, xn+1) ≤ δ(T (xn−1), T (xn)) + kn, xn ∈ T (xn−1), n ≥ 1. (3.2)

For x0 we choose an arbitrary point of X, and for x1 an arbitrary point of T (x0). Then we can
find a point x2 ∈ T (x1) such that

d(x1, x2) ≤ δ(T (x0), T (x1)) + k

holds. By repating this appropriately, we can construct a sequence {xn}n∈N with the desired
properties.
From (3.2) we obtain the estimate

d(xn, xn+1) ≤ δ(T (xn−1), T (xn)) + kn

≤ kd(xn−1, xn) + kn

≤ k(δ(T (xn−2), T (xn−1)) + kn−1) + kn

≤ k2d(xn−2, xn−1) + 2kn ≤ · · ·
≤ knd(x0, x1) + nkn

This implies that, for any n,m ≥ 0,

d(xn, xn+m) ≤ d(xn, xn+1) + · · ·+ d(xn+m−1, xn+m)

≤
n+m−1∑
l=n

(kld(x0, x1) + lkl).

Therefore {xn}n∈N is a Cauchy sequence. Since X is complete, it converges to some point
x ∈ X. Because T is a Lipschitz mapping, this implies that T (xn) converges to T (x). This
means that for each ε > 0 there is an Nε such that for all n ≥ Nε

δ(T (xn), T (x)) < ε.

Assume x /∈ T (x). Then

D(x, T (x)) = λ

for some λ > 0. Choose ε = λ/2. Since xn+1 ∈ T (xn), for all n ≥ Nε we have

d(xn, x) > λ/2.

This is a contradiction to xn → x, and thus we have x ∈ T (x). 2

We now give a second theorem of this kind, in which the assumptions about the contractivity
of T are loosened some. In order to formulate this result, we need the two following definitions:
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Definition 3.7 A complete metric space (X, d) is called ε-chainable, if, for any points a, b ∈ X
and fixed ε > 0, there exists a finite set of points

a = x0, x1, · · · , xn−1, xn = b

such that

d(xi−1, xi) ≤ ε i = 1, 2, 3, · · · , n.

Each such set is called an ε-chain.

Definition 3.8 Let (X, d) be a complete metric space, and let ε > 0 and λ ∈ [0, 1). A set-valued
mapping T : X → CB(X) is called an (ε, λ)-uniformly local contraction if

δ(T (x), T (y)) ≤ λd(x, y)

whenever d(x, y) < ε.

Theorem 3.9 Let (X, d) be an ε-chainable space and T : X → CB(X) a set-valued (ε, λ)-
uniformly local contraction. Then T has a fixed point.

Proof: We define a new metric on X by

d̃(x, y) = inf

{
n∑
i=1

d(xi−1, xi)

}

where x0 = x, xn = y and the infimum is taken over all ε-chains (x0, · · · , xn).
It is easy to see, that d̃ is indeed a metric on X. Since d(x, y) ≤ d̃(x, y) holds trivially and
d(x, y) = d̃(x, y) if d(x, y) < ε, (X, d̃) is also a complete metric space. We denote by δε the
Hausdorff metric induced by d̃.
Let x, y ∈ X and consider an ε-chain

x = x0, x1, · · · , xn−1, xn = y.

We have d(xi−1, xi) < ε for i = 1, 2, · · · , n, and since T is an (ε, λ)-uniformly locally contraction
we have δ(T (xi−1), T (xi)) ≤ λd(xi−1, xi). It follows that

δε(T (x), T (y)) ≤
n∑
i=1

δε(T (xi−1), T (xi))

=
n∑
i=1

δ(T (xi−1), T (xi))

≤ λ
n∑
i=1

d(xi−1, xi)

Taking the infimum over all possible ε-chains we obtain

δε(T (x), T (y)) ≤ λd̃(x, y)

Therefore T is a contraction mapping with respect to the metrices d̃ and δε. Hence, we can
apply Theorem (3.6). 2
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3.3 Sequences of Contractive Maps

We now want to consider the following problem: Assume we have a sequence of contractive
mappings Ti and a sequence xi, where for every i the point xi is a fixed point of Ti. If the
sequence {Ti}i∈N converges to T0, does {xi}i∈N (or at least a subsequence) converge to a fixed
point of T0?
Without further assumptions, this is not the case: Suppose (X, d) = (R, d) with a metric d so R
is bounded, Tn(x) = R and xn = n. Then every xn is a fixed point, but there is no converging
subsequence.
For this reason we restrict ourselves to set-valued mappings with compact values. We will
denote by K(X) the family of all nonempty compact subsets of X. Naturally K(X) ⊆CB(X),
and therefore (K(X), δ) is a metric space. K(X) preserves many important properties of X:

Proposition 3.10 Let δ be the Hausdorff metric on K(X) induced by the metric d of (X, d).

1. If (X, d) is a complete metric space, then (K(X), δ) is a complete metric space.

2. If (X, d) is a compact metric space, then (K(X), δ) is a compact metric space.

3. If (X, d) is a locally compact metric space, then (K(X), δ) is a locally compact metric
space.

Proof: 1) Let {Mn} be a Cauchy sequence in K(X). Since this is naturally also a Cauchy
sequence in CB(X), it follows from Theorem (3.5), that the limit limMn exists in CB(X). We
show, that M = limn→∞Mn is compact. To do that it is sufficient to show that M is totally
bounded.
Let ε > 0 and choose Nε such that for all n ≥ Nε we have

δ(M,Mn) ≤ ε/2.

Since the sets Mn are compact, we find a finite number of spheres of radius ε/2 which cover
MNε . Obviously the spheres with the same centers and radius ε cover M .

2) We have to show, that K(X) is totally bounded. Therefore we fix ε > 0. The set of
open balls {Bε(x)|x ∈ X} is an open cover of X. Since X is compact there is a finite set J such
that X ⊆ {Bε(xj)|j ∈ J}. Let Y = {xj |j ∈ J}. We look at the collection of nonempty subsets
of Y , P0(Y ) = P(Y )\{∅}. Since Y is finite, so is P0(Y ). Also every Z ∈ P0(Y ) is compact
and thus P0(Y ) ⊆ K(X). We show that the balls {Bε(Z)|Z ∈P0(Y )} cover K(X).
For any A ∈ K(X) let Z ∈P0(Y ) be defined by

Z = {y ∈ Y |D(y,A) < ε}.

We also define

Nε(A) = {x ∈ X|D(x,A) < ε}.

Then Z ⊆ Nε(A) by construction. We also claim that A ⊆ Nε(Z): If not then there exists a
point a ∈ A such that D(a, Z) ≥ ε. By our choice of Y there exists a y ∈ Y such that d(y, a) < ε.
By definition of Z, y ∈ Z. Thus D(a, Z) < ε. A contradiction.
Now since Z ⊆ Nε(A) and A ⊆ Nε(Z), we have δ(Z,A) < ε.

3) We show that every A ∈ K(X) has a compact neighbourhood. Since A is compact in
X and X is locally compact, there exist finitely many compact sets A1, · · ·AN such that
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A =
⋃N
n=1An ⊇ A. A is as a finite union of compact sets compact and thus (A, d|A×A)

is a compact metric space. Therefore (K(A), δA) is a compact metric space and in partic-
ular locally compact. So there exists a compact neighbourhood V of A in K(A). Since
(K(A), δA) = (K(X)|K(A), δ|K(A)×K(A)), V is also a compact neighbourhood of A in (K(X), δ).

2

The following lemma shows us, how we can construct a Lipschitz mapping in K(X) from a
set-valued Lipschitz mapping.

Lemma 3.11 Let T : X → K(Y ) be a Lipschitz mapping with Lipschitz constant k. Then for
any compact K ⊆ X,

AT (K) =
⋃
x∈K

T (x)

is a compact subset of Y , i.e. AT (K) ∈ K(Y ).
The thusly defined map AT :K(X)→K(Y ) is a Lipschitz mapping with Lipschitz constant k.

Proof: We show that every sequence of AT (K) has a convergent subsequence.
Let {ai} be a sequence in AT (K). Then ai ∈ T (ki) for some ki ∈ K. So we have a sequence
{ki} in the compact set K, and therefore there exists a subsequence {kij} which converges to
some k ∈ K. Since T is a Lipschitz mapping, {T (kij )}∞j=1 converges to T (k). Therefore all
limit points of {aij} lie in T (k). So to an arbitrary limit point x we can choose a subsequence
of {aij} that converges to x ∈ T (k) ⊆ AT (K). Thus we have found a convergent subsequence
of {ai}.
So AT is well defined map K(X)→ K(Y ). We now show, that AT is a Lipschitz map.
By using the definition of the Hausdorff metric we gain

DY (AT (F1), AT (F2)) = sup
u∈AT (F1)

inf
v∈AT (F2)

dY (u, v)

= sup
u∈AT (F1)

inf
y∈F2

DY (u, T (y))

= sup
x∈F1

inf
y∈F2

DY (T (x), T (y))

≤ sup
x∈F1

inf
y∈F2

δY (T (x), T (y))

≤ k sup
x∈F1

inf
y∈F2

dX(x, y) = kDX(F1, F2).

Analogue we get that DY (AT (F2), AT (F1)) ≤ kDX(F2, F1) and thus

δY (AT (F1), AT (F2)) ≤ kδX(F1, F2).

2

To prove the main result of this section, we first need a few results about sequences of single-
valued contraction mappings. For the following three propositions, fi will denote a single-valued
contraction mapping of a metric space (X, d) into itself with a fixed point ai for i = 0, 1, 2, · · · .

Proposition 3.12 If all the mappings {fi}∞i=1 have the same Lipschitz constant k < 1, and the
sequence {fi}∞i=1 converges pointwise to f0, then the sequence {ai}∞i=1 converges to a0.
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Proof: By the pointwise convergence, we can choose to given ε > 0 an Nε, such that

d(fn(a0), f0(a0)) ≤ ε(1− k)

for all n ≥ Nε. Then

d(an, a0) = d(fn(an), f0(a0)) ≤ d(fn(an), fn(a0)) + d(fn(a0), f0(a0)) ≤ kd(an, a0) + ε(1− k)

which yields

d(an, a0) ≤ ε, n ≥ Nε.

2

Proposition 3.13 If the sequence {fi}∞i=1 converges uniformly to f0, then the sequence {ai}∞i=1

converges to a0.

Proof: To given ε > 0 choose Nε, such that for all x ∈ X and n ≥ Nε

d(fn(x), f0(x)) ≤ ε(1− k0)

where k0 < 1 is the Lipschitz constant of f0. Then

d(ai, a0) = d(fi(ai), f0(a0)) ≤ d(fi(ai), f0(ai)) + d(f0(ai), f0(a0)) ≤ ε(1− k0) + k0d(ai, a0).

This yields

d(ai, a0) ≤ ε, i ≥ Nε.

2

Proposition 3.14 If the space (X, d) is locally compact and the sequence {fi}∞i=1 converges
pointwise to f0, then the sequence {ai}∞i=1 converges to a0.

Proof: Let ε > 0 and assume ε is sufficiently small, so that

K(a0, ε) = {x ∈ X : d(a0, x) ≤ ε}

is a compact subset of X. Then, since {fi}∞i=1 is as a sequence of Lipschitz mappings equicontinu-
ous and converges pointwise to f0 and since K(a0, ε) is compact, the sequence {fi}∞i=1 converges
uniformly on K(a0, ε) to f0. Choose Nε such that if i ≥ Nε, then

d(fi(x), f0(x)) ≤ (1− k0)ε

for all x ∈ K(a0, ε), where k0 < 1 is the Lipschitz constant for f0. Then, if i ≥ Nε and
x ∈ K(a0, ε),

d(fi(x), a0) ≤ d(fi(x), f0(x)) + d(f0(x), f0(a0)) ≤ (1− k0)ε+ k0d(x, a0) ≤ (1− k0)ε+ k0ε = ε.

This proves that if i ≥ Nε, then fi maps K(a0, ε) into itself. Letting gi be the restriction of fi
to K(a0, ε) for each i ≥ Nε, we see that each gi is a contraction mapping of K(a0, ε) into itself.
Since K(a0, ε) is a complete metric space, gi has a fixed point for each i ≥ Nε which must, from
the definition of gi and the fact that fi has only one fixed point, be ai. Hence, ai ∈ K(a0, ε) for
each i ≥ Nε. It follows that the sequence {ai}∞i=1 of fixed points converges to a0. 2
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Lemma 3.15 Let (X, d) be a metric space, let Ti : X → CB(X) be a set-valued contraction
mapping with fixed point xi for each i = 1, 2, · · · , and let T0 : X → CB(X) be a set-valued
contraction mapping. If the sequence {Ti}∞i=1 converges pointwise to T0 and if {xij}∞j=1 is a
convergent subsequence of {xi}∞i=1 then {xij}∞j=1 converges to a fixed point of T0.

Proof: Set x0 = limj→∞ xij and fix ε > 0. Choose Nε such that

δ(Tij (x0), T0(x0)) ≤ ε

2
and d(xij , x0) ≤ ε

2

for all j ≥ Nε. Then for such j, we have

δ(Tij (xij ), T0(x0)) ≤ δ(Tij (xij ), Tij (x0)) + δ(Tij (x0), T0, (x0)) ≤ d(xij , x0) + δ(Tij (x0), T0, (x0)) ≤ ε.

This shows, that limj→∞ Tij (xij ) = T0(x0). And since xij ∈ Tij (xij ) for each j, it follows, that
x0 ∈ T0(x0). 2

Theorem 3.16 Let (X, d) be a complete metric space, let Ti : X → K(X) be a set-valued
contraction mapping with fixed point xi for each i = 1, 2, · · · , and let T0 : X → K(X) be a
set-valued contraction mapping. Suppose one of the following holds:

1. Each of the mappings Ti, i ≥ 1 has the same Lipschitz constant k < 1 and the sequence
{Ti}∞i=1 converges pointwise to T0.

2. The sequence {Ti}∞i=1 converges uniformly to T0.

3. (X, d) is a locally compact space and the sequence {Ti}∞i=1 converges pointwise to T0.

Then there exists a subsequence {xij}∞j=1 of {xi}∞i=1 such that {xij}∞j=1 converges to a fixed point
of T0.

Proof: For each i define the map ATi : K(X) → K(X) as in Lemma (3.11). Then, ATi is a
contraction mapping and therefore has a unique fixed point Fi ∈ K(X). If the sequence {Ti}∞i=1

converges pointwise to T0, then {Ti}∞i=1 converges uniformly on compact subsets of X to T0

and therefore {ATi}∞i=1 converges pointwise on K(X) to AT0 . If {Ti}∞i=1 converges uniformly
to T0, then {ATi}∞i=1 converges uniformly on K(X) to AT0 . So we can use Proposition (3.12)
with assumption 1, Proposition (3.13) with assumption 2 and the Propositions (3.14) and (3.10)
with assumption 3 to conclude, that the sequence {Fi}∞i=1 converges to F0. We now show, that
K =

⋃∞
i=0(Fi) is compact.

Let {yk}∞k=1 be a sequence in K. Then either one of the Fi contains infinitely many yk or each
contains only finitely many. In the first case, we can choose convergent subsequence in the
compact set Fi. In the second case, every limit point of {yk}∞k=1 must lie in F0, because of the
convergence of the sequence {Fi}∞i=1. So we can choose a subsequence, that converges to one of
these limit point.
By the Banach Fixed Point Theorem (1.3), the sequence {AnTi(xi)}

∞
n=1 converges to Fi. And

since xi ∈ AnTi(xi) for all n > 0, it follows that xi ∈ Fi. Hence, {xi}∞i=1 is a sequence in the
compact set K. Thus there exists a convergent subsequence {xij}∞j=1 which, by Lemma (3.15),
converges to x0. 2
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Chapter 4

Fixed Point Theorems for set-valued
Maps. Geometric Principle

4.1 The KKM-Principle

The KKM-Principle borrows its name from a lemma by Knaster, Kuratowski, and Mazurkiewicz,
see the below Lemma (4.2). By the KKM-principle one means deriving results from this, or
similar, results. Such techniques are used not only in fixed point theory, but also in mathe-
matical economics, the study of variational inequalities, best approximation theory, and other
disciplines. We will use it to prove the classical fixed point theorem of Brouwer for single-valued
maps. Then we will show examples for fixed point theorems for set-valued maps derived from
the KKM-Lemma.
To prove it, we will need the Sperner Lemma.

Lemma 4.1 (Sperner) Let S be an n-dimensional Simplex with vertices {pi|i = 0, · · · , n}.
For 0 ≤ k ≤ n the face with vertices pi0 , · · · , pik will be denoted by pi0pi1 · · · pik . Divide S
simplicialy, i.e. into finitely many simplices T1, · · · , TJ of the same dimension such that the
intersection of two of them is either empty, a common k-dimensional face or a common vertex
and that

⋃J
j=1 Tj = S.

To every vertex e of a subsimiplex we assign a number ν(e) ∈ {0, · · · , n} such that

if e lies on a k-dimensional face pi0pi1 · · · pik (0 ≤ k ≤ n) of S
then ν(e) ∈ {i0, i1, · · · , ik}.

(4.1)

Then there exist an odd number of subsimplices Tj such that each i ∈ {0, · · · , n} is assigned to
a vertex of Tj by ν(e).

Proof: For n = 0 the assertion is trivial. So we want to prove it for n > 0 under the
assumption, that it is true for n− 1.
We call a subsimplex Tj of S representative if it fulfills our assumption. Analogue we call
a face representative, in short r-face, is ν(e) assigns to the vertices of this face all numbers
0, 1, · · · , n− 1. We then set

ρ = number of representative subsimplices
σ = number of r-faces lying on the boundary of S

α(Tj) = number of r-faces of a subsimplex Tj

and first show, that
ρ ≡ σ (mod 2). (4.2)
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It is obvious, that if Tj is representative, α(Tj) = 1 need hold. If Tj is not representative, then
either α(Tj) = 0 or α(Tj) = 2, depending if one of the numbers 0, · · ·n − 1 is missing on the
vertices of Tj or not. It follows that

ρ ≡
∑

α(Tj) (mod 2), (4.3)

where the sum is taken over all subsimplices Tj of the division. Because of our condition,
that this division is simplicial, every r-face is counted once or twice, depending if it is on the
boundary of S or not. Therefore we have σ ≡

∑
α(Tj) (mod 2) and because of (4.3) this yields

(4.2).
If we now look at one of the from p0p1 · · · pn−1 different (n-1)-dimensional faces Z of S, then

under the vertices of Z one of the points pi, 0 ≤ i ≤ n − 1 is missing. By (4.1) Z contains no
point e for which ν(e) = i and in conclusion no r-face. That means that all r-faces, that lie on
the boundary of S, are contained in the face p0p1 · · · pn−1. So σ denotes the number of repre-
sentative subsimplices of the simplicial division of the (n-1)-dimensioanl simplex p0p1 · · · pn−1.
It follows, since we know that the assertion is true for n-1, that σ is odd. The assertion follows
by (4.2). 2

For us, the important property of the Sperner Lemma will be, that, since 0 is an even number,
it guarantees the existence of at least one such subsimplex.

Lemma 4.2 (KKM-Lemma) Let S be a simplex in Rn with vertices p0, · · · , pn. Let {A0, · · · , An}
be a family of closed sets such that for each subset J ⊆ {0, · · · , n} with J = {j0, · · · , jk} we
have

pj0pj1 · · · pjk ⊆
⋃
j∈J

Aj ,

then
n⋂
i=0

Ai 6= ∅.

Proof: Fix m > 0 and divide S simplicialy such that each subsimplex has a diameter < 2−m.
Let e be an arbitrary point of a subsimplex and let pi0pi1 · · · pik be the lowest-dimensional sim-
plex containing e.
By our assumption pi0pi1 · · · pik ⊆ Ai0 ∪ · · · ∪ Aik , and therefore there exists at least one in-
dex ij (0 ≤ j ≤ k), such that e ∈ Aij . If we set ν(e) = ij the condition of Lemma (4.1) is
fulfilled. So we have a representative subsimplex which we can denote with em0 e

m
1 · · · emn , by

setting ν(emi ) = i. Because e ∈ Aν(e) holds, we have emi ∈ Ai.
By letting m grow towards infinity, we can assume without loss of generality, that we gain a
convergent sequence {em0 }∞m=1. Set a = limm→∞ e

m
0 . Because the diameter of the subsimplices

converges to 0 with growing m, we have that a = limm→∞ e
m
i for each i = 0, · · · , n. Because

each Ai is closed, this yields a ∈
⋂n
i=0Ai. 2

As one can see from the nature of the lemma, the KKM-Lemma can be used for existence
theorems. Since fixed point theorems fall into that category, it naturally has its applications in
fixed point theory. We want to note however, that the main applications of the KKM-Principle
lie not there, but in the fields already noted at the beginning of this section.
However, it allows us to give a short proof of the Brouwer Fixed Point Theorem. This is
surely one of the most important fixed point theorems for single-valued maps. Most fixed point
theorems that deal with geometrical properties are in some way derived from this theorem.
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Theorem 4.3 (Brouwer Fixed Point Theorem) Let C ⊆ Rn be nonempty, compact, and
convex. Then every continuous map f : C → C has a fixed point.

Proof: Let S be a simplex with vertices p0, · · · , pn. We denote each x ∈ S by its unique
representation as convex combination of the vertices of S, x = c0p0 + · · ·+ cnpn, where ci ≥ 0,
and c0 + · · · cn = 1. Let G : S → S be continuous. Define n + 1 maps gi : R → R by
G(x) = g0(c0)p0 + · · ·+ gn(cn)pn.
Set Ai = {x ∈ S|gi(ci) ≤ ci}. We show that the sets A0, · · · , An satisfy the conditions of the
KKM-Lemma.
Because of the continuity of g, each Ai is closed. Suppose that a point x of a k-dimensional
simplex pi0pi1 · · · pik does not lie in any of the sets Ai0 , · · · , Aik . Then we would have gil(cil) > cil
for 0 ≤ l ≤ k and thus

∑k
l=0 gil(cil) >

∑k
l=0 cil . A contradiction, since the left sum can not

be greater than 1 by the definition of convex combinations and the right sum is equal to one
because x ∈ pi0pi1 · · · pik .
Thus we have a point a ∈

⋂n
i=0Ai by Lemma (4.2). Because of our definition of the Ai we have

for x = a: gi(ci) ≤ ci for each i = 0, · · · , n. Thus

1 = g0(c0) + · · · gn(cn) ≤ c0 + · · ·+ cn = 1

and hence gi(ci) = ci. This yields G(a) = a.
Since C and S are both nonempty compact convex subsets of Rn, one can show, that there
exists a homeomorphism h : S → C. Then h−1 ◦ f ◦ h : S → S is a continuous map and
therefore has a fixed point a: (h−1 ◦ f ◦ h)(a) = a. We therefore get, that h(a) is a fixed point
of f . 2

We now want to give two examples of fixed point theorems for set-valued maps derived by
the KKM-Principle. First, we will give an example for a fixed point theorem that is derived from
a generalized version of the KKM-Lemma. Then we will show results from a similar lemma.

Lemma 4.4 (Generalized KKM-Lemma) Let X be a topological vector space, M be a
nonempty subset of X, and F : M →P(X). Assume that

• F (x) is nonempty and closed for all x ∈M ,

• F (x0) is compact for at least one x0 ∈M ,

• for every finite subset {x1, · · ·xn} ⊆M we have

co{x1, · · · , xn} ⊆
n⋃
i=1

F (xi).

Then ⋂
x∈M

F (x) 6= ∅.

Proof: 1) If M is finite, co(M) is homeomorphic to a simplex in Rn. Therefore we can apply
Lemma (4.2).
2) Let M be infinite and suppose

⋂
x∈M F (x) = ∅. Because F (x0) is compact for some x0,

there exists by the finite intersection property a tuple {x1, · · · , xm} with
⋂m
i=1 F (xi) = ∅. This

contradicts 1). 2
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Theorem 4.5 Let C be a nonempty compact convex subset of a topological vector space X. Let
T : C →P(C) be a set valued map such that

• T (x) is closed for each x ∈ C,

• T−1(y) is open for each y ∈ C.

Then T has a fixed point.

Proof: Define a map S : C →P(C) by S(y) = C\T−1(y). Then S(y) is nonempty and closed
in C, and therefore compact. Note that C =

⋃
{T−1(y)|y ∈ C}. Given any x0 in C choose a

y0 ∈ T (x0). Then x0 ∈ T−1(y0). Thus⋂
y∈C

S(y) =
⋂
y∈C

(C\T−1(y)) = [
⋃
y∈C

T−1(y)]C = ∅,

where by [A]C we denote the complement of A. By Lemma (4.4) there exist yi, i = 1, · · ·n such
that the convex combination w =

∑n
i=1 λiyi /∈

⋃n
i=1 S(yi). Hence, we have w ∈ C\

⋃n
i=1 S(yi) =⋂n

i=1 T
−1(yi). Thus w ∈ T−1(yi) for each i = 1, · · ·n. and therefore yi ∈ T (w). Since T (w) is

convex, we have w =
∑n

i=1 λiyi ∈ T (w). 2

For the next example we use a KKM-like lemma to prove two fixed point theorems. That
this lemma is closely related to the KKM-Lemma (or more exactly its generalization) can be
seen in its proof.

Lemma 4.6 Let M be a nonempty convex subset of a topological vector space X. Let F : M →
P(X) be a set valued map that satisfies

(a) x ∈ F (x) for each x ∈M

(b) F (x0) is compact for some x0 ∈M ,

(c) the set A(x) = {y ∈M |x /∈ F (y)} is convex for each x ∈M ,

(d) the intersection of F (x) with any finite dimensional subspace of X is closed for each
x ∈M ,

(e) F (x0) ∩ F (x) is closed for each x ∈M .

Then
⋂
x∈M F (x) 6= ∅.

Proof: First we show, that for any finite set {x1, · · · , xm} ⊆M , co{x1, · · · , xm} ⊆
⋃m
i=1 F (xi).

Suppose there is an x ∈ co{x1, · · · , xm} with x /∈
⋃m
i=1 F (xi). Then each xi ∈ A(x). Since A(x)

is convex and x ∈ co{x1, · · · , xm}, we have x ∈ A(x), which means x /∈ F (x). This contradicts
(a).
Next we show, that the F (x) have the finite intersection property. Assume therefore that⋂m
i=1 F (xi) = ∅. Denote by L the finite dimensional subspace spanned by {x1, · · · , xm} and let

C = co{x1, · · · , xm} ⊆ L. Because L∩F (xi) is closed, we have D(x, L∩F (xi)) = 0 if and only
if x ∈ L ∩ F (xi). Since

⋂m
i=1 L ∩ F (xi) = ∅ by assumption the function f : C → R, f(x) =∑m

i=1D(x, L ∩ F (xi)) is never zero for any x ∈ C. So by setting

g(x) =
1

f(x)

m∑
i=1

D (x, L ∩ F (xi))xi
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we have a continuous function g : C → C. By Theorem (4.3) g has a fixed point x0 ∈ C. Denote
with I = {i|D (x0, L ∩ F (xi)) 6= 0}. Then x0 /∈

⋃
{F (xi)|i ∈ I}. But since

x0 = g(x0) ∈ co{xi|i ∈ I} ⊆
⋃
{F (xi)|i ∈ I}

we have a contradiction and thus the F (x) have the finite intersection property.
So now we have that for each finite set {x1, · · · , xm} the (

⋂m
i=1 F (xi)) ∩ F (x0) is a nonempty

intersection of closed sets in the compact set F (x0). Therefore we have
⋂
x∈M F (x) 6= ∅. 2

Theorem 4.7 Let K be a nonempty convex subset of a topological vector space X. Let T :
K →P(K) be a set-valued map such that

(i) T (x) is nonempty and convex for each x ∈ K,

(ii) for some x0 ∈ K, [T−1(x0)]C is compact,

(iii) the intersection of [T−1(x)]C with any finite dimensional subspace of X is closed for each
x ∈ K,

(iv) [T−1(x)]C ∩ [T−1(x0)]C is closed for each x ∈ K.

Then T has a fixed point.

Proof: Assume there is no point x ∈ K with x ∈ T (x). This implies that there is no x ∈ K
such that x ∈ T−1(x). Set F (x) = [T−1(x)]C . Then we have (a) x ∈ F (x) for each x ∈ K. We
also have, that

A(x) = {y ∈ K|x /∈ F (y)} = {y ∈ K|x /∈ [T−1(y)]C} = {y ∈ K|y ∈ T−1(y)} = T (x)

is convex by (i), which is condition (c) of Lemma (4.6). Conditions (b), (d), and (e) follow from
assumptions (ii), (iii) and (iv), respectively.
Hence, there is a point x0 such that x0 ∈

⋂
x∈K F (x). So x0 ∈ [T−1(x)]C for each x ∈ K, which

means x0 /∈ T−1(x) for any x ∈ K. Since x0 ∈ K =
⋃
x∈K T

−1(x), we have a contradiction. 2

Theorem 4.8 Let K be a nonempty convex subset of a topological vector space X. Let T :
K →P(K) be a set-valued map such that

(i) T (x) is nonempty for each x ∈ K,

(ii) for some x0 ∈ K, [T (x0)]C is compact,

(iii) T−1(x) is convex for each x ∈ K (but may be empty),

(iv) the intersection of [T (x)]C with any finite dimensional subspace of X is closed,

(v) [T (x)]C ∩ [T (x0)]C is closed for each x ∈ K,

(vi)
⋃
x∈K T (x) = K.

Then T has a fixed point.
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Proof: Assume, that T has no fixed point and set F (x) = [T (x)]C . Then we have condition
(a) of Lemma (4.6). Since

A(x) = {y ∈ K|x /∈ F (y)} = {y ∈ K|x ∈ T (y)} = T−1(x)

is convex by (iii), we also have (c). The conditions (ii), (iv), and (v) imply, respectively,
conditions (b), (d), and (e) of Lemma (4.6). Therefore there is a point x0 ∈ K such that
x0 ∈

⋂
x∈K F (x) =

⋂
x∈K [T−1(x)]C . This implies x0 /∈

⋃
x∈K T (x) which is a contradiction to

(vi). 2

We now give to each of this theorems a corollary, in which the assumptions are easier to verify.

Corollary 4.9 Let K be a nonempty convex subset of a topological vector space X. Let T :
K →P(K) be a set-valued map such that

1. T (x) is nonempty and convex for each x ∈ K,

2. for some x0 ∈ K, [T−1(x)]C is compact,

3. T−1(x) is open for each x ∈ K.

Then T has a fixed point.

Proof: Since T−1(x) is open, each [T−1(x)]C is closed. We can apply Theorem (4.7). 2

Corollary 4.10 Let K be a nonempty convex subset of a topological vector space X. Let T :
K →P(K) be a set-valued map such that

1. T (x) is nonempty and open for each x ∈ K,

2. for some x0 ∈ K, [T (x0)]C is compact,

3. T−1(x) is convex for each x ∈ K (but may be empty),

4.
⋃
x∈K T (x) = K.

Then T has a fixed point.

Proof: Since each T (x) is open the [T (x)]C are closed and we can apply Theorem (4.8). 2

Remark:We want to bring attention to the fact, that in this fixed point theorems we derived by
the KKM-principle, there is no mention of continuity. This is remarkable, since in the following
sections, this will be a basic assumption on the viewed map.
Also note, that these theorems and their corollaries belong to the rare kind of fixed point theo-
rems for set-valued maps, that can’t be applied to single-valued maps, since the condition, that
T (x) or T−1(x) is open, can not be met in that case (except for some trivial examples).
We therefore see, that the strength of the KKM-principle lies therin, that with it, one can derive
theorems with rather unusual assumptions.
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4.2 The Kakutani Fixed Point Theorem

The Kakutani-Fixed Point Theorem was the first fixed point result about set-valued mappings.
It is a generalization of the fixed point theorem by Brouwer. The statement is as follows:

Theorem 4.11 (Kakutani Fixed Point Theorem) Let K be a nonempty compact convex
subset of Rn. Let T : K →P(K) satisfy

• for each x ∈ K, T (x) is nonempty closed and convex,

• T is upper semi-continuous.

Then T has a fixed point.

Note, that by Theorem (2.3) the upper semi-continuity of T is in this case equivalent to the
closedness of the graph G(T ) in K ×K.
Before we come to the proof of this theorem, we will need a few preliminary results, that will
allow us to state it in this general form. To show them, we will need the concept of retraction
mappings:

Definition 4.12 We say that X is a retract of a topological space Y , if X ⊆ Y and there exists
a continuous mapping r : Y → X such that r restricted to X acts like the identity mapping on
X.
The map r is called a retraction.

The following lemma is a well known result in functional analysis which we will give without
proof. We will denote by M̊ the interior of M , and by ∂M the boundary of M .

Lemma 4.13 Let M ⊆ Rn be closed and convex, and let 0 ∈ M̊ . Then the Minkowksi functional

gM (x) = inf{c > 0|x ∈ cM}

is a continuous real function on Rn such that

1. gM (ax) = agM (x) for a ≥ 0,

2. gM (x+ y) ≤ gM (x) + gM (y),

3. 0 ≤ gM (x) < 1 if x ∈ M̊ ,

4. gM (x) > 1 if x /∈M ,

5. gm(x) = 1 if x ∈ ∂M .

In the following lemma M − x will denote the set {y − x|y ∈M}.

Lemma 4.14 Let M be a nonempty closed and convex subset of Rn with nonempty interior
and x0 ∈ M̊ . Then the radial retraction defined by

r(x) = x/max{1, gM−x0(x− x0)}

is a retraction of Rn onto M .

Proof: Trivial. 2
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Theorem 4.15 A nonempty closed convex subset M of Rn is a retract of any larger subset N
with M ⊆ N ⊆ Y .

Proof: Equip N with the trace topology of Rn.
If M̊ 6= ∅ this follows immediately from Lemma (4.14). If M̊ = ∅ then M ⊆ Rm for some m < n.
Let r be the radial retraction of Rm onto M and Pm the orthogonal projection of Rn onto Rm.
Then r ◦ Pm is a retraction of Rn onto M . The assertion follows again by Lemma (4.14). 2

The following lemma will allow us to restrict ourselves to very simple subsets of Rn when
proving the Kakutani Theorem.

Lemma 4.16 If Theorem (4.11) holds for U ⊆ Rn then it also holds for any retract of U .

Proof: Let r be a retraction of U onto V . Let T : V →P(V ) have the same properties as in
Theorem (4.11). Define a map S : U →P(U), S(x) = T (r(x)). Due to the continuity of r and
Proposition (2.2), S also fulfills all conditions of Theorem (4.11). Therefore S has a fixed point
x so that x ∈ S(x) = T (r(x)) ⊆ V . Thus r(x) = x and x ∈ T (x). 2

Now, to prove Theorem (4.11), we can restrict ourselves to proving it for simplices.
Proof of Theorem (4.11): Let S be a simplex with K ⊆ S and let U : S → P(S) satisfy
the properties required in the theorem. Denote by Si be a simplical division of S where each
simplex in Si has a diameter < 2i. To each vertex xi of Si choose an arbitrary yi ∈ U(xi). We
construct a map ui : S → S by setting u(xi) = yi and extending it linearly in each simplex of
Si. Thus ui is a continuous map of the compact convex set S into itself and therefore there
exists a fixed point xi of ui by the Brouwer Fixed Point Theorem. Since S is compact, there
exists a subsequence {xij}∞j=1 of {xi}∞i=1, that converges to some x0 ∈ S.
Let ∆i be a simplex of Si which contains xi. Let xi0, x

i
1, · · · , xin be the vertices of ∆i. Then it

is obvious, that {xijk }
∞
j=1 converges to x0 for each k ∈ {0, · · · , n}. Further, xi =

∑n
k=0 λ

i
kx

i
k for

some λik with λik ≥ 0 and
∑n

k=0 λ
i
k = 1. We then set yik = ui(xik). W.l.o.g. we can assume, that

the yijk converge to a yk and the λijk to a λk with λk ≥ 0 and
∑n

k=0 λk = 1.
By Theorem (2.3) the graph G(U) of U is closed. Since (xijk , y

ij
k ) is in G(U) and converges to

(x0, yk), it follows that yk ∈ U(x0) for each k. Thus

x0 = lim
j→∞

xij = lim
j→∞

uij (xij ) = lim
j→∞

n∑
k=0

λ
ij
k u(xijk ) = lim

j→∞

n∑
k=0

λ
ij
k y

ij
k =

n∑
k=0

λkyk ∈ U(x0)

since U(x0) is convex, and therefore the theorem holds for the simplex S.
Since K ⊆ S, K is a retract of S by Theorem (4.15). Hence, we can apply Lemma (4.16), which
completes the proof. 2

It is easy to see, that the Kakutani Theorem implies the Brouwer Fixed Point Theorem. Since
we used only the Brouwer Theorem to prove it, we see, that these two theorems are in fact
equivalent.

4.3 Generalizations

We now want to generalize the Kakutani Theorem, which only holds in Rn, to more general
spaces. Namely, to seperable Banach spaces, where we will get fixed point theorems similar
to the Schauder Theorem. Later, we will also give a generalization of Tychonoffs Fixed Point
Theorem in topological vector spaces.
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Although the results for Banach spaces could be derived as corollaries from the results in
topological vector spaces, we will give the proofs here, because the methods differ profoundly.

4.3.1 Banach spaces

Again, we will first need a few preliminary results.

Definition 4.17 We define the Hilbert cube H0 as the subset of the Hilbert space l2 consisting
of all points a = (a1, a2, · · · ) with |ar| ≤ r−1 for all r.

We will denote by Pn the projection of l2 onto an n-dimensial subspace given by

Pn(a1, a2, · · · ) = (a1, a2, · · · , an, 0, 0, · · · ).

We then have, that Pn(H0) is compact for each n ∈ N, and that

‖Pna− a‖ ≤

( ∞∑
n+1

r−2

) 1
2

< ε,

for each ε > 0 and n sufficiently large.
From that we can easily derive, that H0 is a compact convex set.

Proposition 4.18 Theorem (4.11) holds for the Hilbert cube H0.

Proof: Let U : H0 → P(H0) satisfy the conditions of Theorem (4.11). Then the map
Pn ◦ U : PnH0 → P(PnH0) also satisfies them: that the set (Pn ◦ U)(x) is closed and convex
for each x ∈ PnH0 is trivial and if we choose n sufficiently large, it is also nonempty. To see,
that Pn ◦U is also upper semi-continuous, we observe, that the graph G(Pn ◦U) of Pn ◦U is the
projection of G(U) onto PnH0×PnH0. By Theorem (2.3) G(U), and therefore also G(Pn ◦U),
is closed and thus Pn ◦ U upper semi-continuous.
Since we can identify PnH0 with a nonempty compact convex subset of Rn, by the Kakutani
Theorem Pn ◦ U has a fixed point yn ∈ PnU(yn). Thus yn = Pnzn with zn ∈ U(yn).
W.l.o.g we may assume, that the sequence {yn}∞n=0 converges to some y ∈H0. Since we have

‖yn − zn‖ = ‖Pnzn − zn‖ → 0 for n→∞

we see, that {zn}∞n=0 also converges to y. Thus the points (yn, zn) ∈ G(U) converge to
(y, y) ∈ G(U) since G(U) is closed. This means, that y is a fixed point for U . 2

We are now able to reduce the Banach space case to a problem in a Hilbert space.

Lemma 4.19 Every compact convex subset K of a Banach space X is homeomorphic, under a
linear mapping, to a compact convex subset of H0.

Proof: W.l.o.g assume, that K is a subset of the unit ball in X. Since K and the linear hull
span(K) of K are separable, we can choose a sequence {xn}∞n=0 that lies dense in span(K). For
each n ∈ N choose an fn in the dual space X ′ such that

fn(xn) =
‖xn‖
n

, ‖fn‖ = 1/n.

Then the mapping F : x 7→ (f1(x), f2(x), · · · ) maps K into H0. We can see that F is a bounded
linear operator on X to l2. Further we have for x, y ∈ span(K), x 6= y and xn sufficiently close
to x− y

‖fn(x)− fn(y)‖ ≥ ‖fn(xn)‖ − ‖fn(x− y − xn)‖ ≥ ‖xn‖
n
− ‖(x− y)− xn‖

n
> 0.
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So F is injective on span(K) and thus bijective on K to F (K). Since F is also continuous, it is
a homeomorphism.
Since compactnes and convexity are preserved under linear homeomorphisms, F (K) is compact
and convex. 2

Theorem 4.20 Let K be a nonempty compact convex subset of a Banach space X. Let T :
K →P(K) satisfy

• for each x ∈ K, T (x) is nonempty closed and convex,

• T is upper semi-continuous.

Then T has a fixed point.

Proof: By Lemma (4.19), K is homeomorphic, under a linear mapping, to a compact convex
subset M of the Hilbert cube H0. By Theorem (4.15), M is a retract of H0. Since the theorem
holds for H0, it also does for M by Lemma (4.16).
Let f be the linear homeomorphism of K onto M . Then f ◦ T ◦ f−1 : M →P(M) has a fixed
point y ∈ (f ◦ T ◦ f−1)(y). Thus f−1(y) ∈ (T ◦ f−1)(y), and f−1(y) is a fixed point for T . 2

Remark: Theorem (4.15) and Lemma (4.16) were stated only for the spaces Rn, but the proofs
hold, as they are, also for Hilbert spaces.

This fixed point theorem, together with the next one, is the analogon of the Schauder Fixed
Point Theorem we saw in the first chapter. To prove the second part, we need the following
result by Mazur.

Lemma 4.21 (Mazur) Let X be a Banach space and K ⊆ X be relatively compact. Then the
convex hull co(K) of K is relatively compact.

Proof: For each ε > 0 choose finitely many (yi)mi=1 such that the ε-balls Bε(yi) cover K.
We define K̃ = {y1, · · · , ym} and X̃ = span{y1, · · · , ym}. Set R = max1≤i≤m ‖yi‖. Then
co(K̃) ⊆ BR(0) in X̃ and since X̃ is finite dimensional, co(K̃) is relatively compact. Let
x =

∑N
k=1 λkxk ∈co(K) be a convex combination of x1, · · · , xN ∈ K. To each xk, k = 1, · · ·N ,

there exists a yik with ‖xk − yik‖ < ε. Thus, we have for ỹ =
∑N

k=1 λkyik ∈co(K̃) the estimate

‖x− ỹ‖ ≤
N∑
k=1

λk ‖xk − yik‖ < ε
N∑
k=1

λk = ε.

The relatively compact set co(K̃) is covered by finitely many Bε(ỹi), i = 1, · · · , p. So for every
x ∈co(K), there exists an i such that

‖x− ỹi‖ ≤ ‖x− ỹ‖+ ‖ỹ − ỹi‖ < 2ε.

Thus the balls (B2ε(ỹi))
p
i=1 provide a open cover of co(K) and therefore co(K) is relatively

compact. 2

Corollary 4.22 (Bohnenblust-Karlin Fixed Point Theorem) Let M be a nonempty closed
convex subset of a Banach space X. Let T : M →P(M) satisfy
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• for each x ∈M , T (x) is nonempty closed and convex,

• T is upper semi-continuous,

• T (M) is relatively compact.

Then T has a fixed point.

Proof: Since T (M) is relatively compact the closure of the convex hull co(T (M)) is compact
by Lemma (4.21). If we restrict T to co(T (M)), we can apply Theorem (4.20). 2

4.3.2 Topological vector spaces

Next, we want to consider fixed point theorems in topological vector spaces, where we will prove
analogous results to the Tychonoff Fixed Point Theorem and even a generalization of it.

Theorem 4.23 (Fan-Glicksberg Fixed Point Theorem) Let X be a locally convex topo-
logical vector space and let M ⊆ X be nonempty compact and convex. Let T : M → P(M)
satisfy

• for each x ∈M , T (x) is nonempty closed and convex,

• T is upper semi-continuous.

Then T has a fixed point.

In order to prove this, we need the following lemma.

Lemma 4.24 If C is closed set in X, then the sets

Q = {x ∈M |x ∈ T (x) + C},
P = {(x, y)|x ∈M,y ∈ T (x) + C}

are also closed.

Proof: We show that (M ×X)\P is open. Let (x0, y0) /∈ P , i.e., x0 ∈M and y0 /∈ T (x) +C.
Then there exists a neighbourhood U of zero with

(y0 + U) ∩ (T (x0) + C + U) = ∅.

Since T is upper semi-continuous, there exists a neighbourhood V (x0) of x0 in M with

v ∈ V (x0)⇒ T (x) ⊆ T (x0) + U,

and hence

x ∈ V (x0)⇒ (y0 + U) ∩ (T (x) + C) = ∅

Therefore a neighbourhood of (x0, y0) in M ×X does not belong to P .
Analogous arguments show, that Q is also closed. 2
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Proof of Theorem (4.23): Let B be a neighborhood basis of zero in X which consists
of open, balanced, and convex sets. For every U ∈ B we define

SU = {x ∈M |x ∈ T (x) + U}.

By Lemma (4.24), each of this sets is closed. Below we will show, that SU is nonempty for
each U ∈ B. Then it follows from the choice of B, that the intersection of finitely many SU is
nonempty. By the finite intersection property, there exists an x with x ∈

⋂
U∈B SU . This means

that x ∈ T (x).
We now have to show that SU 6= ∅. Since M is compact, we can choose finitely many points
x1, · · · , xm ∈M such that (xk + U)mk=1 form a covering of M . We set K =co{x1, · · · , xm} and
define

TU (x) = (T (x) + U) ∩K.

Because of T (x) ⊆M and U = −U it follows that TU (x) is nonempty, convex, and closed. The
set K lies in a finite-dimensional subspace of X which can be identified with Rn. According to
Lemma (4.24) the map TU : K → P(K) has a closed graph. The Kakutani Theorem implies
the existence of a point x with x ∈ TU (x), i.e., SU 6= ∅. 2

To get an analogous result to the Bohnenblust-Karlin Theorem, we would need an analogous
result of Lemma (4.21) in topological vector spaces. Although it is possible to generalize Mazurs
result that way, by taking a different path we can achieve a more general result without great
difficulties.

Lemma 4.25 Let X and Y be topological vector spaces. Let M ⊆ X be convex and suppose
F,G : M →P(Y ) satisfy

• F is upper semi-continuous,

• F (x) is nonempty closed and convex for each x ∈M ,

• F (M) is relatively compact

• for each y ∈ F (M), G−1(y) is convex,

•
⋃
x∈M

˚(G(x)) covers F (M).

Then there exists a point x0 ∈M such that F (x0) ∩G(x0) 6= ∅.

Proof: Since F (M) is compact and covered by the open sets ˚(G(x)), there is a finite set
N = x1, · · · , xn in M such that F (M) ⊆

⋃
x∈N

˚(G(x)). Let {f1, · · · , fn} be the partition of
unity subordinated to this cover and set P =co(N). We define f : F (M)→ P by

f(y) =
n∑
i=1

fi(y)xi =
∑
i∈Ny

fi(y)xi

for y ∈ F (M) ⊆ Y , where i ∈ Ny if and only if fi(y) 6= 0, which implies that y ∈ ˚(G(xi)). Then,
for i ∈ Ny, xi ∈ G−1(y). Obviously f is continuous and by our assumptions we have f(y) ∈
co{xi|i ∈ Ny} ⊆ G−1(y) for each y ∈ F (M).
Since P ⊆ M is finite dimensional compact and convex, we can apply the Kakutani Theorem
to f ◦ F : P → P(P ). Thus we have a fixed point x0 ∈ P ⊆ M . Since x0 ∈ (f ◦ F )(x0) and
f−1(x0) ⊆ G(x0), we have F (x0) ∩G(x0) 6= ∅. 2
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Lemma 4.26 Let M be a nonempty convex subset of a topological vector space X. Let T : M →
P(M) be upper semi-continuous and T (x) nonempty, closed, and convex for each x ∈M , and
T (M) relatively compact.
If U = {Vi|i ∈ I} is a finite family covering T (M) and Vi is an open convex subset of M for all
i ∈ I, then there exists a V ∈ U such that V ∩ T (V ) 6= ∅.

Proof: Choose an xi ∈ Vi for each i ∈ I and set Z = co{xi|i ∈ I}. We define a map
T̃ : Z → P(M) as the restriction of T on Z. We further define a map G : Z → P(M) by
G−1(x) = Z ∩

⋂
{Vi|x ∈ Vi} for each x ∈ M . Then each G−1(x) is open and convex. We also

have for any z ∈ Z and x ∈M

z ∈ G−1(x)⇔ (for each i, x ∈ Vi ⇒ z ∈ Vi).

We show that G(z) ⊆ G−1(z) and therefore also co(G(z)) ⊆ G−1(z).
For any x ∈ G(z), we have z ∈ G−1(x). Suppose x /∈ G−1(z) ⊆

⋂
{Vi|z ∈ Vi}. Then x ∈⋃

{Vj |z /∈ Vj} and hence, there exists Vj such that x ∈ Vj and z /∈ Vj . This contradicts
z ∈ G−1(x).
Since T̃ (Z) is compact and T̃ (M) ⊆

⋃
{Vi|i ∈ I}, T̃ (Z) is covered by a finite number of G−1(z)’s.

By Lemma (4.25) there exist x0 ∈ Z and y0 ∈ T̃ (x0)∩ co(G(x0)) = T (x0)∩ co(G(x0)) 6= ∅. Since

y0 ∈ co(G(x0)) ⊆ G−1(x0) =
⋂
{Vi|x0 ∈ Vi},

we can choose a Vj such that x0 ∈ Vj and y0 ∈ Vj . Note that y0 ∈ Vj ∩ T (x0). Hence
y0 ∈ Vj ∩ T (Vj) 6= ∅. 2

Theorem 4.27 (Himmelberg Fixed Point Theorem) Let M be a nonempty convex subset
of a topological vector space X. Let T : M →P(M) satisfy

• for each x ∈M , T (x) is nonempty closed and convex,

• T is upper semi-continuous,

• T (M) is relatively compact.

Then T has a fixed point.

Proof: Let V be a symmetric neighbourhood of 0 in X. Since T (M) is compact we can choose
finitely many points xi ∈M and open convex sets Ci ⊆ V such that

T (M) ⊆
⋃
{(xi + Ci) ∩M |i ∈ I}.

By Lemma (4.26) there exists a j ∈ I such that W ∩ T (W ) 6= ∅ where W = (xj + Cj) ∩M .
Thus there exist a xV ∈W and a yV ∈W ∩ T (xV ). Then

xV − yV ∈ (xj + Cj)− (xj + Cj) = Cj − Cj ⊆ V + V. (4.4)

Since the balanced 0-neighbourhoods with the set-theoretical inclusion are directed, the {yV }
form a net. And since yV ∈ T (xV ) ⊆ T (M) and T (M) is compact the net {yV } has a subnet
converging to a point x0 ∈M . The corresponding subnet of {xV } also converges to x0 ∈M by
(4.4).
Since T can be viewed as an upper semi-continuous map from M into P(T (M)), the graph
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G(T ) of T is closed by Theorem (2.3) (review the proof to see, that this implication remains
true, even if M is not compact).
Now, since (xV , yV ) ∈ G(T ) converges to (x0, x0) ∈ G(T ), we have that x0 ∈ T (x0). 2

Remark:Had we taken the different route by generalizing Lemma (4.21) to locally convex spaces
and arguing like in the proof of Corollary (4.22), we would have gotten the same result but with
the additional restriction, that M would have had to be closed too.

Set-valued fixed point theorems naturally always deal with mappings from a set into its own
powerset. With our last theorem, we want to give an example, how the concept of fixed point
theorems can be generalized.
This leads us to the theory of best approximation, for which the following result by Ky Fan is
one of the basic tools. There the question then is: if a mapping does not go from a set into
itself but can have values anywhere in the viewed space, can one choose a point that is at least
not mapped far away from the set in some sense?

Theorem 4.28 (Ky Fan’s Best Approximation Theorem) Let C be a nonempty compact
convex subset of a topological vector space X. Let p be a continuous seminorm on X and denote
by dp(A,B) = inf{p(a − b)|a ∈ A, b ∈ B}. If F : C → P(X) is a continuous set-valued map
whith compact convex values, then there exists y ∈ C such that

dp(y, F (y)) = dp(F (y), C).

If p is a norm and dp(F (y), C) > 0, then y ∈ ∂C.

Proof: We define a map Q : C → P(C) by Q(x) = {y ∈ C|dp(y, F (x)) = dp(F (x), C)} and
want to apply Theorem (4.23). We first show that Q is upper semi-continuous.
Let A be a closed subset of C. By Proposition (2.2) we have to show that

Q−1(A) = {x ∈ C|A ∩Q(x) 6= ∅} = {x ∈ C|A ∩ {y ∈ C|dist(y, F (x)) = dist(F (x), C)} 6= ∅}

is closed. Let {xi}i∈I be a convergent net in Q−1(A). To every xi we can choose a yi ∈ A∩Q(xi).
Since C is compact, we can assume without loss of generality, that the yi converge to a y0 ∈
A ⊆ C. Denote by x0 the limit of {xi}i∈I , then we have because of the continuity of F

dp(y0, F (x0)) = lim
i∈I

dp(yi, F (xi)) = lim
i∈I

dp(F (xi), C) = dp(F (x0), C).

Thus y0 ∈ A ∩Q(x0) and therefore Q−1(A) is closed.
Since C is compact, Q(x) 6= ∅ for each x ∈ C. It is also easy to see, that Q(x) is closed: Let
{yj}j∈J ⊆ Q(x) converge to y, then

dp(y, F (x)) = lim
j∈J

dp(yj , F (x)) = dp(F (x), C).

and thus y ∈ Q(x). Now choose x, y ∈ Q(x). Since F (x) is compact we can choose a, b ∈ F (x)
with p(x − a) = p(y − b) = dp(F (x), C). Set z = λx + (1 − λ)y with λ ∈ (0, 1). Since F (x) is
convex, c = λa+ (1− λ)b ∈ F (x). We therefore have

p(z − c) = p(λx+ (1− λ)y − λa− (1− λ)b) ≤ λp(x− a) + (1− λ)p(y − b) = dp(F (x), C).

Since p(z− c) < dp(F (x), C) can not be true, we have equality and hence z ∈ Q(x). Thus Q(x)
is convex.
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We are now able to apply the Fan-Glicksberg Theorem. That is, there is a point x ∈ C such
that dp(x, F (x)) = dp(F (X), C).
For the additional assertion, assume that p is a norm, dp(F (x), C) = dp(x, F (x)) > 0 and x ∈ C̊.
We then may choose y ∈ F (x) such that p(y−x) = dp(x, F (x)). Since C is convex, there exists
z ∈ C ∩ co{x, y}\{x}. Since p is a norm p(z − x) > 0. Then

dp(F (x), C) ≤ p(z − y) < p(x− y) = dp(x, F (x)) = dp(F (x), C),

a contradiction. Hence x ∈ ∂C. 2

Under special conditions, these theorems can turn into fixed point theorems. For example
we can derive a fixed point theorem from the Ky Fan Theorem without any additional work.

Corollary 4.29 Let C be a nonempty compact convex subset of a Banach space X. If F : C →
P(X) is a continuous set-valued map with compact convex values, and if F (x)∩C 6= ∅ for each
x ∈ C, then F has a fixed point.
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Overview of achieved Results

We now give a overview of our main fixed point theorems with their necessary conditions on the
space X, the set M , and the set-valued map T and their counterparts for single-valued maps.

Theorem X M T : M →P(M) s.v. analogon
Theorem (3.6) complete —– T is a contraction Banach Fixed

metric space with values in CB(X) Point Theorem
Theorem (3.9) ε-chainable —– T is a (ε, λ)-uniformly —–

complete local contraction
metric space with values in CB(X)

Theorem (4.5) locally convex nonempty, ∀x ∈M : T (x) is closed, —–
topological compact, ∀y ∈M : T−1(y) is open

vector space convex
Corollary (4.9) locally convex nonempty, ∀x ∈M : T (x) 6= ∅, —–

topological convex ∀x ∈M : T (x) is convex,
vector space ∃x0 ∈M : [T−1(x0)]C is compact,

∀y ∈M : T−1(y) is open
Corollary (4.10) locally convex nonempty, ∀x ∈M : T (x) 6= ∅, —–

topological convex ∀x ∈M : T (x) is open,
vector space ∃x0 ∈M : [T (x0)]C is compact,

∀y ∈M : T−1(y) is convex,⋃
x∈M T (x) = M

Theorem (4.11) Rn nonempty, ∀x ∈M : T (x) 6= ∅, Brouwer Fixed
(Kakutani Fixed compact, ∀x ∈M : T (x) is closed and convex, Point Theorem
Point Theorem) convex T is upper semi-continuous
Theorem (4.20) Banach space nonempty, ∀x ∈M : T (x) 6= ∅, Schauder Fixed

compact, ∀x ∈M : T (x) is closed and convex, Point Theorem
convex T is upper semi-continuous

Corollary (4.22) Banach space nonempty, ∀x ∈M : T (x) 6= ∅, Schauder Fixed
(Bohnenblust- closed, ∀x ∈M : T (x) is closed and convex, Point Theorem
Karlin Fixed convex T is upper semi-continuous,
Point Theorem) T (M) is relatively compact
Theorem (4.23) locally convex nonempty, ∀x ∈M : T (x) 6= ∅, Tychonoff Fixed
(Fan-Glicksberg topological compact, ∀x ∈M : T (x) is closed and convex, Point Theorem
Fixed Point vector space convex T is upper semi-continuous
Theorem)
Theorem (4.27) locally convex nonempty, ∀x ∈M : T (x) 6= ∅, —–
(Himmelberg topological convex ∀x ∈M : T (x) is closed and convex,
Fixed Point vector space T is upper semi-continuous,
Theorem) T (M) is relatively compact
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