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1 Introduction

As stated in the title, the aim of this bachelor thesis is to introduce absolute neighbor-
hood retracts, find some examples of them and find out some of their properties. Basic
knowledge about topological spaces is required in order to understand this bachelor thesis.
All important theorems, which the author does not count as basic knowledge in topology,
are either proofed in this bachelor thesis or at least stated with a reference to a place
where the proof can be found. What is assumed to be known is strongly related to what is
taught during the bachelor study at TU Wien. The introduction to absolute neighborhood
retract theory should also enable the reader to easily continue studying absolute neighbor-
hood retracts in [Hu65] or [Mil01]. The book [Hu65], while being rather old, comprises a
very comprehensive study of absolute neighborhood retracts. The book [Mil01] introduces
absolute neighborhood retracts rather as a tool that is used to proof other theorems.

The bachelor thesis starts with a chapter about topological spaces, where a lot of pre-
liminary work for the following chapters is done. Chapter two is concerned with absolute
neighborhood extensors because they are strongly related to absolute neighborhood re-
tracts. The third chapter immediately starts with an investigation of this relation, which
enables us to state many results from the second chapter for absolute neighborhood retracts.
After this, the relation between special homotopies and absolute neighborhood retracts is
investigated.
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2 Topological spaces

Topological spaces are the most important mathematical structures in this bachelor thesis.
Many properties of topological spaces, which are assumed to be known when reading this
paper, can be found in [Kal14]. Throughout this paper, we employ the notation N :=
{0, 1, 2, . . .}, Z+ := {1, 2, 3, . . .} and R+ := (0,+∞).

2.1 Basic properties

Lemma 2.1.1. If A is a closed subset of a topological space (X, T ), U is an open subset
of (X, T ) and V is an open subset of (A, T |A) such that V ⊆ U , then V ∪ (U \A) is open
in (X, T ).

Proof. By definition of the subspace topology, there exists an open subset W of (X, T )
such that W ∩A = V . Hence,

V ∪ (U \A) = (W ∩A) ∪ (U \A) = (W ∩A ∩ U) ∪ (U \A)

= (W ∪ (U \A)) ∩ (A ∪ (U \A)) ∩ (U ∪ (U \A))

= (W ∪ (U \A)) ∩ (U ∪A) ∩ U = (W ∪ (U \A)) ∩ U.

Since W , as well as U \ A and U are open in (X, T ), so is (W ∪ (U \A)) and therefore,
V ∪ (U \A).

Definition 2.1.2. Let X be a set and d : X ×X → R a metric on X. Given x ∈ X and
ε ∈ R+, we define the open ball

Bd(x, ε) := {y ∈ X | d (x, y) < ε}.

Furthermore, we define the distance between two non-empty sets A,B ⊆ X by

dist (A,B) := inf {d (a, b) | a ∈ A, b ∈ B}

and dist (x,A) := dist ({x}, A).

Lemma 2.1.3. If (X, T ) is a metrizable space and λ ∈ R+, then there exists a metric
d : X ×X → [0, λ] that induces T .

Proof. Let (X, T ) be a metrizable space, λ ∈ R+ and d̃ a metric that induces T . We define

a function d : X × X → [0, λ] by d (x, y) := min
{

d̃(x, y), λ
}

. For arbitrary x, y, z ∈ X

clearly d (x, y) ≥ 0. Furthermore,

d (x, y) = 0⇔ d̃(x, y) = 0⇔ x = y.
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2 Topological spaces

The symmetry property of d̃ is obviously transferred to d and

d (x, z) = min
{

d̃(x, z), λ
}
≤ min

{
d̃(x, y) + d̃(y, z), λ

}
≤ min

{
d̃(x, y), λ

}
+ min

{
d̃(y, z), λ

}
= d (x, y) + d (y, z).

Therefore, d is a metric.
It remains to show that d induces T . In order to do this, consider an arbitrary x ∈ X

and ε ∈ R+. Defining ρ := min {ε, λ}, for arbitrary y ∈ Bd(x, ρ) we have

d̃(x, y) ≤ min
{

d̃(x, y), λ
}

= d (x, y) < ε.

Hence, Bd(x, ρ) ⊆ Bd̃(x, ε). For z ∈ Bd̃(x, ρ) we obtain

d (x, z) = min
{

d̃(x, z), λ
}

= d̃(x, z) < ε,

which shows Bd̃(x, ρ) ⊆ Bd(x, ε). Therefore, d̃ and d induce the same topology T .

Definition 2.1.4. Let (X, T ) be a topological space.
Two subsets A,B ⊆ X are said to be separated in (X, T ), if each is disjoint from the

others closure in (X, T ). Two points x, y ∈ X are said to be separated in (X, T ), if the
sets {x} and {y} can be separated in (X, T ).

A subset U of X is called a neighborhood of a subset A of X in (X, T ) if there exists
a set O ∈ T with A ⊆ O ⊆ U . The neighborhoods of a point x ∈ X in (X, T ) are the
neighborhoods of the set {x} in (X, T ).

Two subsets A and B of X are said to be separated by neighborhoods in (X, T ), if there
are disjoint neighbourhoods of the two sets.

Definition 2.1.5. We define the following separation axioms for a topological space (X, T ).

(T1) Any two distinct points can be separated in (X, T ).

(T2) Any two distinct points can be separated by neighbourhoods in (X, T ).

(T3) Any closed subset A of (X, T ) and any point x ∈ X \ A can be separated by neigh-
bourhoods in (X, T ).

(T4) Any two disjoint closed subsets of (X, T ) can be separated by neighbourhoods.

Remark 2.1.6. A topological space that satisfies (T2) is also called a Hausdorff space.

Lemma 2.1.7. Let A and X ′ be closed subsets of a topological space (X, T ) that satisfies
(T4) and A′ := X ′ ∩A. If B′ is a closed neighborhood of A′ in (X ′, T |X′), then there exists
a closed neighborhood B of A in (X, T ) such that B′ = X ′ ∩B.

Proof. Since B′ is a neighborhood of A′ in (X ′, T |X′), there exists an open subset O′ of
(X ′, T |X′) such that A′ ⊆ O′ ⊆ B′. There exists an open subset O of (X, T ) such that
O ∩ X ′ = O′. We obtain X ′ \ O′ = X ′ \ (O ∩X ′) = X ′ \ O. Therefore, X ′ \ O′ is
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2 Topological spaces

closed in (X, T ). Since X ′ \ O′ and A are two disjoint and closed subsets of (X, T ), a
space that satisfies (T4), there exists a closed neighborhood C of A in (X, T ) such that
C ∩ (X ′ \O′) = ∅. Hence, X ′ ∩ C ⊆ O′ ⊆ B′.

Since B′ and C are closed subsets of (X, T ), so is B := B′∪C. Since C is a neighborhood
of A in (X, T ), so is B. We have

X ′ ∩B = X ′ ∩
(
B′ ∪ C

)
= (X ′ ∩B′) ∪

(
X ′ ∩ C

)
= B′ ∪

(
X ′ ∩ C

)
= B′.

Definition 2.1.8. Let K ∈ {R,C}. The tuple
(
L,+, (ωλ)λ∈K,O

)
is said to be a topological

vector space over K, if and only if
(
L,+, (ωλ)λ∈K

)
is a vector space over K with the scalar

multiplication · : K×X → X defined by ·(λ, x) = ωλ(x), and (L,O) is a topological space
such that + and · are continuous functions, when K is furnished with the standard toplogy
and products of sets with the product toplogy.

The topological vector space is called locally convex, if and only if for every neighborhood
U of 0 in (L,O) there exists a convex neighborhood V of 0 in (L,O) such that V ⊆ U .

Remark 2.1.9. Whenever we deal with a subset A of some Rn or a set with an obvious
bijection to a subset of some Rn, then we denote with (A, E(A)) the topological space
endowed with the topology induced by the euclidean norm ‖·‖2 : A→ [0,∞) defined by

‖x‖2 :=

(
n∑
i=1

x∗ixi

) 1
2

.

2.2 The category of topological spaces

We want to use the notion of a class in this bachelor thesis. Since the whole bachelor
thesis is based on the ZFC-axioms, we can not define classes as objects, because they do
not exist in this axiomatic system. We can think of a class as a property, written down
as a mathematical formula. An object, which is always a set in our axiomatic system, is
said to be in the class C, if and only if it has the property that characterizes C. We will for
example talk about the class of all metrizable spaces.

Definition 2.2.1. A category C is given by the following.

1. A class Ob (C) of objects.

2. For any two objects A,B of C there is a set HomC (A,B) of morphisms. All these
sets have to be pairwise disjoint. For every object A there is the identity morphism
idA ∈ HomC (A,A).

3. For all A,B,C in Ob (C) there is a function

HomC (B,C)×HomC (A,B)→ HomC (A,C)

given by (g, f) 7→ g ◦ f which is called composition. For all A,B,C,D in Ob(C) and
for all f ∈ HomC(A,B), g ∈ HomC(B,C) and h ∈ HomC(C,D) we have h ◦ (g ◦ f) =
(h ◦ g) ◦ f and idB ◦f = f as well as g ◦ idB = g.
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2 Topological spaces

Definition 2.2.2. A full subcategory of a category C consists of a subclass of objects of C
together with all the morphisms between sets of this subclass and the composition of C.

Example 2.2.3. Examples for categories are the following.

1. The category Set of all sets with the functions between sets as the morphisms and
the usual composition of functions as the composition.

2. The categroy Top of all topological spaces with the continuous functions as morphisms
and the usual composition of functions as the composition.

3. The category TVSK of all topological vector spaces over a given topological field K
with the continuous and K-linear functions as morphisms and the usual composition
of functions as the composition.

4. The full subcategory LCTVSK of TVSK containing all locally convex topological
vector spaces over a given topological field K.

Definition 2.2.4. A full subcategory C of Top is said to be weakly hereditary, if and only
if for all objects (X, T ) of C and all closed subspaces A of (X, T ), the topological space
(A, T |A) is also an object of C.

Example 2.2.5. Examples for weakly hereditary categories of topological spaces are the
following.

1. The full subcategory Haus of Top containing all topological spaces that satisfy the
axiom (T2).

2. The full subcategory T4 of Top containing all topological spaces that satisfy the axiom
(T4).

3. The full subcategory Met of Top containing all metrizable spaces.

4. The full subcategory sepMet of Top containing all separable and metrizable spaces.

Some properties of categories can be found in [Rei20].

Remark 2.2.6. Instead of introducing categories, it would be possible to solely work with
classes, but this would not make much difference for our purposes. Since we will only
deal with the category of topological spaces in this bachelor thesis, we are going to write
Hom ((X, T ), (Y,O)) for the set HomTop ((X, T ), (Y,O)) of all continuous function from
(X, T ) to (Y,O).

Lemma 2.2.7. If (X, T ) be a topological space and (K,O) a compact topological space,
then the projection π1 ∈ Hom ((X ×K, T ×O), (X, T )) defined by π1((x, k)) := x is a
closed function.

Proof. Let A be a closed subset of (X ×K, T ×O) and (π1((xi, ki)))i∈I a net in π1[A] that
converges in (X, T ) to some x ∈ X. Since K is compact, there exists a subnet

(
kij
)
j∈J of

(ki)i∈I that converges in (K,O) to some k ∈ K. Given any neighborhoods U of x in (X, T )
and V of k in (K,O) there exists j0 ∈ J such that for all j ≥ j0 we have

(
xij , kij

)
∈ U ×V .

Hence,
(
xij , kij

)
j∈J converges in (X ×K, T ×O) to (x, k). Since A is closed, we have

(x, k) ∈ A and x = π1((x, k)) ∈ π1[A]. This shows that π1[A] is closed in (X, T ).
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2 Topological spaces

The following Lemma 2.2.8 is a well known result in topology, which can for example be
found in [Kal14, p. 445].

Lemma 2.2.8 (Urysohn’s Lemma). If A and B are two closed and disjoint subsets of a
topological space (X, T ) that satisfies (T4), then there exists an

f ∈ Hom ((X, T ), ([0, 1], E([0, 1])))

such that f [A] ⊆ {0} and f [B] ⊆ {1}.

2.3 Covers of topological spaces

Definition 2.3.1. Let (X, T ) be a topological space. A set U of subsets of X is called
locally finite if for every x ∈ X there exists a neighborhood W of x in (X, T ) such that the
set {U ∈ U | U ∩W 6= ∅} is finite. Another set V of subsets of X is called a refinement of
U if for every V ∈ V there exists a U ∈ U such that V ⊆ U . The set U is called a cover of
X if

⋃
U = X. The set U is said to be an open (closed) cover of (X, T ) if U is a cover of

X and U ⊆ T ({X \ U | U ∈ U} ⊆ T ).

Lemma 2.3.2. Let (X, T ) and (Y,O) be two topological spaces and A a locally finite,
closed cover of (X, T ). If for all A ∈ A there exists a function fA ∈ Hom ((A, T |A), (Y,O))
such that for all A,B ∈ A the equality fA|A∩B = fB|A∩B is satisfied, then the function
f : X → Y defined by f(x) := fA(x), x ∈ A, satisfies f ∈ Hom ((X, T ), (Y,O)).

Proof. Let x ∈ X be a given point. Since A is a locally finite cover of (X, T ), there
exists an open neighborhood Ux of x in (X, T ), such that Ax := {A ∈ A | Ux ∩A 6= ∅} is
finite. Consequently, the set A′x := {A ∈ A | x ∈ A} is finite as well. Consider an arbitrary
neighborhood W of f(x) in (Y,O). For every A ∈ A′x there exists an open neighborhood

ṼA of x in (A, T |A) such that fA

[
ṼA

]
⊆ W . Clearly, ṼA = VA ∩ A for some VA ∈ T .

Consequently

V :=
(
Ux ∩

(⋂{
VA | A ∈ A′x

}))
\
(⋃(

Ax \ A′x
))

is an open neighborhood of x in (X, T ).
Let z ∈ V be a given point. Since A is a cover of X, there exists A ∈ A such that z ∈ A.

Hence, z ∈ Ux ∩ A and consequently, we have A ∈ Ax. Since z /∈
⋃

(Ax \ A′x), we even
obtain A ∈ A′x. Hence, by definition of V we have z ∈ VA and in turn z ∈ VA ∩ A = ṼA.
Consequently, f(z) ∈W .

Remark 2.3.3. We denote by clT (A) the closure of a subset A of a topological space
(X, T ). For a subset A of P(X) we define clT [A] := {clT (A) | A ∈ A}.

Lemma 2.3.4. Let (X, T ) be a topological space. If A ⊆ P(X) is locally finite, then

clT

(⋃
A
)

=
⋃

clT [A].
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2 Topological spaces

Proof. For any A ∈ A we have A ⊆
⋃
A and hence, clT (A) ⊆ clT (

⋃
A). Thus,

⋃
clT [A] ⊆

clT (
⋃
A).

For the converse inclusion we take x ∈ clT (
⋃
A). There exists a neighborhood U of x in

(X, T ) such that the set Ax := {A ∈ A | A ∩ U 6= ∅} is finite. Since U ∩ (
⋃

(A \ Ax)) = ∅,
we have x /∈ clT (

⋃
(A \ Ax)). From

x ∈ clT

(⋃
A
)

= clT

(⋃
(A \ Ax)

)
∪ clT

(⋃
Ax
)

we conclude

x ∈ clT

(⋃
Ax
)

=
⋃

clT [Ax] ⊆
⋃

clT [A].

Lemma 2.3.5. If A is a locally finite, closed cover of a topological space (X, T ), then
every point x ∈ X has an open neighborhood U in (X, T ) such that {A ∈ A | A ∩ U 6= ∅}
is finite and coincides with {A ∈ A | x ∈ A}.

Proof. Let x ∈ X be a given point. Since A is locally finite, there exists an open neigh-
borhood V of x in (X, T ) such that the set AV := {A ∈ A | A ∩ V 6= ∅} is finite. Let
Ax := {A ∈ A | x ∈ A} and A′ := AV \ Ax. Since all sets contained in the finite set AV
are closed in (X, T ), so are all sets contained in A′ and therefore also

⋃
A′. Hence, the set

U := V \ (
⋃
A′) is an open neighborhood of x in (X, T ).

If A ∈ A is a given set and A ∩ U 6= ∅, then A ∩ V 6= ∅ implies A ∈ AV . Furthermore,
A /∈ A′ and therefore A ∈ Ax, which implies x ∈ A.

Lemma 2.3.6. Let A be a subset of a topological space (X, T ) and let B be a locally finite,
closed cover of (X, T ). If for all B ∈ B the set UB is a neighborhood of B ∩A in (B, T |B),
then U :=

⋃
{UB | B ∈ B} is a neighborhood of A in (X, T ).

Proof. Let x be a given element of A. By Lemma 2.3.5 there exists an open neighborhood
Nx of x in (X, T ) such that the set Bx := {B ∈ B | Nx ∩B 6= ∅} = {B ∈ B | x ∈ B} is
finite. For a given B ∈ Bx we have x ∈ B, which implies x ∈ B ∩A ⊆ UB. Hence, UB is a
neighborhood of x in (B, T |B). Therefore, there exists an open subset WB of (X, T ) such
that x ∈WB ∩B ⊆ UB.

Since Bx is finite, Wx := Nx ∩ (
⋂
{WB | B ∈ Bx}) is open in (X, T ). Let z ∈ Wx be

given. Since B is a cover of (X, T ), there exists a B̃ ∈ B such that z ∈ B̃. The fact that
z ∈ Nx, implies B̃ ∩ Nx 6= ∅. Hence, B̃ ∈ Bx and therefore z ∈ B̃ ∩WB̃ ⊆ UB̃ ⊆ U . We
conclude that Wx ⊆ U .

The set W :=
⋃
{Wx | x ∈ A} is clearly open in (X, T ) satisfying A ⊆W ⊆ U . Therefore

U is a neighborhood of A in (X, T ).

Definition 2.3.7. Let < be a well order on a set S and 0 := minS. An element b ∈ S is
called successor of a ∈ S, if a < b and there exists no b′ ∈ S, such that a < b′ < b. All
elements of S which are neither 0 nor the successor of another element of S are called limit
points.
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2 Topological spaces

The proof of the following theorem is from [Bra03] and uses transfinite induction. We
will make use of the well-ordering theorem, a proof of which can be found in [GGH20, p.
126].

Lemma 2.3.8. Let U be a locally finite, open cover of a topological space (X, T ) that
satisfies (T4). Then there exists an open cover V = {VU | U ∈ U} of (X, T ) such for all
U ∈ U the inclusion clT (VU ) ⊆ U holds true.

Proof. By the well-ordering theorem, there exists a well order < on the set U . Define
0 := minU and for every W ∈ U the set UW := {U ∈ U | U > W}. We claim that for all
W ∈ U there exists a function fW : U \ UW → T , such that the set fW [U \ UW ] ∪ UW is
a cover of X and for all Ŵ ≤ W the function fW is an extension of fŴ and the inclusion

clT

(
fW

(
Ŵ
))
⊆ Ŵ holds true. The definition VU := fU (U) for all U ∈ U will then finish

proof.
We proof our claim with transfinite induction and start with the base case defining the

open subset A := X \ (
⋃
U0) of (X, T ) that clearly satisfies A ⊆ 0. Since (X, T ) satisfies

(T4) there exists V0 ∈ T such that A ⊆ V0 ⊆ clT (V0) ⊆ 0. Defining f0(0) := V0 finishes the
the treatment of the base case.

We need to proof that our claim is true for a successor W ′ of an element W ∈ U
for which the claim is true. In order to do this, define VW ′ := fW [U \ UW ] and A :=
X \ (

⋃
(VW ′ ∪ UW ′)). The set A is clearly closed in (X, T ) and

⋃
(VW ′ ∪W ′ ∪ UW ′) =⋃

(VW ′ ∪ UW ) = X implies A ⊆W ′. Since (X, T ) satisfies (T4) there exists an open subset
VW ′ of (X, T ) such that A ⊆ VW ′ ⊆ clT (VW ′) ⊆W . Defining fW ′ := fW ∪{(W ′, VW ′)} the
claim is true for W ′.

It remains to proof the claim for a limit point W under the assumption that for all

Ŵ < W the claim is true. Define VW :=
{
fŴ

(
Ŵ
)
| Ŵ < W

}
and the closed subset

A := X \ (
⋃

(VW ∪ UW )) of (X, T ). In the case A 6= ∅ let x ∈ A be given. There exists
Ŵ ∈ U such that x ∈ Ŵ and the definition of A guarantees Ŵ ≤ W . Supposing Ŵ < W
and recalling that Ux := {U ∈ U | x ∈ U} is finite, we find W̃ such that U < W̃ < W
for all U ∈ Ux. By assumption fW̃

[
U \ UW̃

]
∪ UW̃ covers X and UW̃ ∩ Ux = ∅ implies

x ∈ fW̃
[
U \ UW̃

]
. This clearly contradicts x /∈

⋃
VW ⊇ fW̃

[
U \ UW̃

]
showing x ∈ W .

Hence, in any case A ⊆ W . Just like in the previous steps we find VW ∈ T such that

A ⊆ VW ⊆ clT (VW ) ⊆ W . With the definition fW := {(W,VW )} ∪
(⋃{

fŴ | Ŵ < W
})

we are finished.

Lemma 2.3.9. Let A be a closed subspace of a topological space (X, T ) that satisfies
(T4). If U is a locally finite, open cover of (A, T |A) and V := {VU | U ∈ U} is a locally
finite, open cover of (X, T ) such that for all U ∈ U the inclusion VU ∩ A ⊆ U is satisfied,
then there exists a closed neighborhood B of A in (X, T ) and a locally finite, closed cover
W = {WU | U ∈ U} of (B, T |B) such that for all U ∈ U the inclusion WU ∩ A ⊆ U holds
true and for all finite subsets U ′ 6= ∅ of U we have⋂

U ′ = ∅ ⇒
⋂{

WU | U ∈ U ′
}

= ∅.

Proof. Since V is a locally finite cover of a topological space satisfying (T4), by Lemma
2.3.8 there exists an open, locally finite cover V ′ = {V ′U | U ∈ U} of (X, T ) such that for
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2 Topological spaces

all U ∈ U the inclusion clT (V ′U ) ⊆ VU holds true. Clearly, clT [V ′] is a closed, locally finite
cover of (X, T ). Hence, by Lemma 2.3.5, for every x ∈ X we find a neighborhood Nx of x
in (X, T ), such that for all U ∈ U with clT (V ′U ) ∩Nx 6= ∅ we have x ∈ clT (V ′U ).

For every x ∈ X we define Ux := {U ∈ U | x ∈ clT (V ′U )} and claim that the set O :=
{x ∈ X |

⋂
Ux 6= ∅} is open in (X, T ). In order to show this, let x ∈ O and consider z ∈ Nx.

For any given U ∈ Uz we have z ∈ Nx ∩ clT (V ′U ), hence clT (V ′U ) ∩ Nx 6= ∅. This implies
x ∈ clT (V ′U ), which means U ∈ Ux showing Uz ⊆ Ux. Therefore,

⋂
Ux 6= ∅ yields

⋂
Uz 6= ∅

and in turn z ∈ O. Since z was arbitrary in Nx, we have Nx ⊆ O showing that O is open
in (X, T ).

We also claim that A ⊆ O. Given any x ∈ A for every U ∈ Ux we have U ⊇ VU ∩ A ⊇
clT (V ′U ) ∩A and x ∈ clT (V ′U ). Hence,⋂

Ux ⊇
⋂
{VU ∩A | U ∈ Ux} ⊇

⋂{
clT
(
V ′U
)
∩A | U ∈ Ux

}
⊇ {x} 6= ∅

verifying x ∈ O and in turn A ⊆ O.
Since (X, T ) satisfies (T4), there exists a closed neighborhood B of A in (X, T ) such that

A ⊆ B ⊆ O. For every U ∈ U we define WU := B ∩ clT (V ′U ) and W := {WU | U ∈ U}.
Since V = {clT (V ′U ) | U ∈ U} is a locally finite, closed cover of (X, T ), W is a locally finite,
closed cover of (B, T |B). Furthermore, WU ∩A ⊆ VU ∩A ⊆ U for every U ∈ U .

It remains to show the second property of W. In order to do this, consider a finite,
non-vanishing U ′ ⊆ U with

⋂
{WU | U ∈ U ′} 6= ∅. For x ∈

⋂
{WU | U ∈ U ′} ⊆ B and a

given U ∈ U ′ we have x ∈ WU = B ∩ clT (V ′U ) implying U ∈ Ux. Hence, U ′ ⊆ Ux and the
fact that x ∈ B ⊆ O finally implies ∅ 6=

⋂
Ux ⊆

⋂
U ′.

2.4 Paracompact and fully T4 spaces

Definition 2.4.1. Let X 6= ∅ be a set. For M ⊆ X and A ⊆ P(X) we define the star of
M with respect to A by

St (M,A) :=
⋃
{A ∈ A | A ∩M 6= ∅}.

A set B ⊆ P(X) is called a star refinement of A if the set {St (B,B) | B ∈ B} is a refinement
of A.

Definition 2.4.2. A topological space (X, T ) is called paracompact if every open cover of
(X, T ) has a locally finite, open refinement that covers (X, T ). It is said to be fully T4 if
every open cover of (X, T ) has an open star refinement that covers (X, T ). We denote by
fT4 the full subcategory of Top that consists of all fully T4 spaces.

Lemma 2.4.3. The full subcategory fT4 of Top is a weakly hereditary subcategory of T4.

Proof. Let (X, T ) be a topological space that is fully T4. First, we want to show that
(X, T ) satisfies (T4). In order to do this, consider two closed and disjoint subsets A,B
of (X, T ). The set U := {X \A,X \B} is clearly an open cover of (X, T ). Since (X, T )
is fully T4, there exists an open cover V of (X, T ), such that V is a star refinement of
U . The set WA :=

⋃
{V ∈ V | V ∩A 6= ∅} is an open neighborhood of A in (X, T ) and

9
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WB :=
⋃
{V ∈ V | V ∩B 6= ∅} is an open neighborhood of B in (X, T ). If x ∈WA is given,

then there exists V ∈ V such that x ∈ V and V ∩ A 6= ∅. Since V is a star refinement of
U , we obtain St (V,V) ⊆ X \ B. Therefore, V ∩ B = ∅ for all V ′ ∈ V with V ′ ∩ V 6= ∅.
Consequently, WA ∩WB = ∅.

It remains to show that fT4 is weakly hereditary. Let A be a given closed subset of

(X, T ) and U an open cover of (A, T |A). Clearly, U =
{
U ∩A | U ∈ Û

}
for some Û ⊆ T .

Obviously, the cover Ũ := Û ∪ {X \A} is an open cover of (X, T ). Since (X, T ) is fully
T4, there exists an open cover Ṽ of (X, T ) such that Ṽ is a star refinement of Ũ . The

set V :=
{
V ∩A | V ∈ Ṽ ∧ V ∩A 6= ∅

}
is clearly an open cover of (A, T |A). Consider

an arbitrary V ∩ A ∈ V with V ∈ Ṽ. Since Ṽ is a star refinement of Ũ , there exists

U ∈ Ũ such that St
(
V, Ṽ

)
⊆ U . The fact, that V * X \ A, implies U ∈ Û . Finally,

A ⊇ St (V ∩A,V) ⊆ St
(
V, Ṽ

)
⊆ U shows that V is a star refinement of U .

The proof of the following Theorem 2.4.4 can be found in [BT19, p. 66].

Theorem 2.4.4. Every metrizable space is paracompact.

Lemma 2.4.5. If A is a closed subspace of a fully T4 topological space (X, T ) and U
is a locally finite, open cover of (A, T |A), then there exists a locally finite open cover
V = {VU | U ∈ U} of (X, T ), such that VU ∩A = U for every U ∈ U .

Proof. For every x ∈ A there exists an open subset W̃x of (A, T |A) that contains x and

for which the set Ux :=
{
U ∈ U | U ∩ W̃x 6= ∅

}
is finite. We write Wx ∩ A = W̃x for some

Wx ∈ T . Since Ŵ := {Wx | x ∈ A}∪ {X \A} is clearly an open cover of the fully T4 space
(X, T ), it has a star refinement W that is an open cover of (X, T ).

Fix some Ũ ∈ U and define VŨ := Ũ ∪ (X \A), which is clearly open in (X, T ). For

all U ∈ U \
{
Ũ
}

, the set VU := U ∪ (St (U,W) \A) is open in (X, T ) by Lemma 2.1.1.

Therefore, V := {VU | U ∈ U} is an open cover of (X, T ). For all U ∈ U we clearly have
VU ∩A = U .

It remains to show that V is locally finite. In order to show this, let x ∈ X be a given

point. SinceW is a cover of X, there exists W ∈ W such that x ∈W . For any U ∈ U \
{
Ũ
}

the inclusion U ⊆ St (U,W) is satisfied. Therefore, if VU ∩W 6= ∅, then W ∩St (U,W) 6= ∅.
Equivalently, we can say that there exists W ′ ∈ W such that W ∩W ′ 6= ∅ and W ′ ∩U 6= ∅,
which we can write as U ∩ St (W,W) 6= ∅. By definition of W there exists Ŵ ∈ Ŵ such
that St (W,W) ⊆ Ŵ . We obtain U ∩ Ŵ ⊇ U ∩ St (W,W) 6= ∅. Since U ∩ (X \A) = ∅,
there exists z ∈ A such that Ŵ = Wz. Hence, U ∈ Uz which concludes the proof, because{
VU ∈ V | U ∈ Uz ∪

{
Ũ
}}

is clearly finite.

Lemma 2.4.6. Let (X, T ) be a paracompact topological space and A and B two closed
subsets of (X, T ). If

∀x ∈ B ∃Ux, Vx ∈ T : (A ⊆ Ux ∧ x ∈ Vx ∧ Ux ∩ Vx = ∅),

then A and B are separated by neighbourhoods.

10
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Proof. Let A and B be closed subsets of a paracompact topological space (X, T ) and
for all x ∈ B the sets Ux and Vx as in the statement of the Lemma. Since (X, T ) is
paracompact and V := {Vx | x ∈ B} ∪ (X \B) is an open cover of (X, T ), there exists a
locally finite, open cover W̃ of (X, T ) which is a refinement of V. We define the set W :={
W ∈ W̃ |W * X \B

}
. For every W ∈ W there exists x ∈ B such that W ⊆ Vx. Since

Vx ∩Ux = ∅ and Ux ∈ T , we obtain clT (W ) ⊆ X \Ux ⊆ X \A. Therefore clT (W )∩A = ∅.
Since W was arbitrary, we have A ∩ (

⋃
clT [W]) = ∅. Defining V :=

⋃
W and applying

Lemma 2.3.4 we obtain A ∩ clT (V ) = ∅, and hence, A ⊆ X \ clT (V ) =: U . Since W̃ is a
cover of X, we clearly have B ⊆ V . Therefore, U and V separate A and B.

Corollary 2.4.7. Every paracompact Hausdorff space satisfies (T4).

Proof. We start the proof by showing that (X, T ) satisfies (T3). In order to do this, we
consider an arbitrary closed subset B of (X, T ) and z ∈ X \B. Since (X, T ) is Hausdorff,
we find for every x ∈ B a neighborhood Vx of x and a neighborhood Ux of z such that
Vx ∩ Ux = ∅. We apply Lemma 2.4.6 with A := {z} and obtain immediately that (X, T )
satisfies (T3).

Let A and B be two given disjoint and closed subsets of (X, T ). Since we already know
that (X, T ) satisfies (T3), we can easily convince ourselves that all preconditions of Lemma
2.4.6 are met, hence we obtain that A and B are separated by neighborhoods. Therefore,
(X, T ) satisfies (T4).

A proof of the following theorem can be found in [BT19, p. 77].

Theorem 2.4.8 (Stone’s coincidence thoerem). If (X, T ) is an object of Top that fulfills
(T1), then the following statements are equivalent.

1. The topological space (X, T ) satisfies (T2) and is paracompact.

2. The topological space (X, T ) is fully T4.

Our next goal is to extend Theorem 2.4.8 by one more equivalence. This will be achieved
by Corollary 2.4.12.

Definition 2.4.9. Let (X, T ) be a topological space. A set
F ⊆ Hom ((X, T ), ([0, 1], E([0, 1]))) is called a partition of unity, if and only if for every
x ∈ X the sum

∑
f∈F f(x) converges unconditionally to 1. This partition of unity F is

said to be subordinate to a cover U of X if for every f ∈ F there is a U ∈ U such that
f−1((0, 1]) ⊆ U . The partition of unity F is called locally finite if for every x ∈ X there
exists a neighborhood V of x such that

{
f ∈ F | V ∩ f−1((0, 1]) 6= ∅

}
is finite.

Lemma 2.4.10. If F is a locally finite partition of unity of a topological space (X, T ),
then U :=

{
f−1((0, 1]) | f ∈ F

}
is a locally finite, open cover of (X, T ).

Proof. Since (0, 1] is an open set in ([0, 1], E([0, 1])) and f ∈ Hom ((X, T ), ([0, 1], E([0, 1]))),
F clearly consists of open sets.

In order to show that U is a cover of X, consider an arbitrary x ∈ X. By
∑

f∈F f(x) = 1

there exists g ∈ F such that g(x) > 0. Therefore, x ∈ g−1((0, 1]) and by definition we have
g−1((0, 1]) ∈ U . Since F is a locally finite partition of unity, there is a neighborhood V of
x, such that

{
f ∈ F | V ∩ f−1((0, 1]) 6= ∅

}
is finite. This shows that U is locally finite.
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Lemma 2.4.11. Let (X, T ) be a topological space that satisfies (T4) and let U be an
open, locally finite cover of (X, T ). Then there exists a locally finite partition of unity
F = {fU | U ∈ U}, such that for all U ∈ U the inclusion f−1U ((0, 1]) ⊆ U is satisfied.

Proof. By Lemma 2.3.8 there exists an open cover V = {VU | U ∈ U} of (X, T ), such that
for all U ∈ U the inclusion clT (VU ) ⊆ U holds true. In accordance with Lemma 2.2.8,
there exists for every U ∈ U a function gU ∈ Hom ((X, T ), ([0, 1], E([0, 1]))) such that
gU [clT (VU )] ⊆ {1} and g−1U ((0, 1]) ⊆ U . For every W ∈ U we set

fW := gW

(∑
U∈U

gU

)−1
.

Given x ∈ X there exists Ux ∈ U , such that x ∈ Ux. Furthermore, there exists a neighbor-
hood Nx of x in (X, T ) such that Ux := {U ∈ U | Nx ∩ U 6= ∅} is finite. Consequently,

0 < gUx(x) ≤
∑
U∈U

gU (x) =
∑
U∈Ux

gU (x) < +∞.

Hence, for every W ∈ U , the function fW is well defined. Since fW restricted to Nx consists
of sums and quotients of finitely many non-zero, continuous functions,

fW |Nx = gW

(∑
U∈Ux

gU

)−1
,

it is itself continuous. As continuity is a local property we obtain

fW ∈ Hom ((X, T ), ([0, 1], E([0, 1]))).

For all x ∈ X we clearly have
∑

U∈U fU (x) = 1 and f−1U ((0, 1]) ⊆ U for all U ∈ U . From
the fact that F := {fW |W ∈ U} is subordinate to U , we immediately obtain that F is a
locally finite partition of unity.

Corollary 2.4.12. A topological space (X, T ) that satisfies (T2) is paracompact if and
only if every open cover U of (X, T ) admits a locally finite partition of unity which is
subordinate to U .

Proof. Let (X, T ) be a paracompact topological space that satisfies (T2) and let U be an
arbitrary open cover of (X, T ). Choose a locally finite, open cover V of (X, T ), such that
V is a refinement of U . By Corollary 2.4.7, the space (X, T ) satisfies (T4). Hence, we can
apply Lemma 2.4.11.

For the converse, consider an open cover U of a given topological space (X, T ). Assume
that there exists a locally finite partition of unity F which is subordinate to U . By Lemma
2.4.10 the set V :=

{
f−1((0, 1]) | f ∈ F

}
is a locally finite, open cover of (X, T ). Since F is

subordinate to U , we conclude that V is a refinement of U .
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2.5 Abstract simplicial complexes

Definition 2.5.1. A set A is said to be an abstract simplex if #A ∈ Z+. A set K is said
to be an abstract simplicial complex if it contains only abstract simplices and satisfies that
with A ∈ K all non-vanishing B ⊆ A belong to K. The set I :=

⋃
K is called the vertex set

of K and the elements of I are called vertices of K. The elements A ∈ K are called faces
of K and the abstract dimension of a face is defined by adimA := #A − 1. The abstract
star of a face is defined as aStA := {B ∈ K | A ⊆ B}. Although the abstract star of a face
clearly depends on the abstract simplicial complex under consideration, we do not include
this in the notation since it should always be clear which abstract simplicial complex is
meant. An abstract simplicial complex K′ ⊆ K is called an abstract subcomplex of K. The
abstract closure of L ⊆ K is defined as aclL :=

⋂
{K′ | K′ is subcomplex of K ∧ L ⊆ K′}.

Definition 2.5.2. Let K be an abstract simplicial complex and I :=
⋃
K the vertex set of

K. Define

Y :=

{
(λi)i∈I ∈ [0, 1]I | {i ∈ I | λi > 0} ∈ K ∧

∑
i∈I

λi = 1

}
and for every A ∈ K the set SA :=

{
(λi)i∈I ∈ Y | {i ∈ I | λi > 0} ⊆ A

}
. If O is the finest

topology on Y such that for all A ∈ K we have ιA ∈ Hom ((SA, E(SA)), (Y,O)), where ιA is
the inclusion map, then (Y,O) is said to be the geometric realization of K. For arbitrary
J ∈ K the set gStJ :=

{
(λi)i∈I ∈ Y | ∀j ∈ J : λj > 0

}
is called the geometric star of J .

The set SA considered as a subset of R#A can be endowed with the euclidean metric.
Accordingly, we denote a ball with radius ε ∈ R+ around a point (λi)i∈I ∈ SA by

BSA

(
(λi)i∈I , ε

)
:=

(µi)i∈I ∈ SA |

(∑
a∈A

(µa − λa)2
)1/2

< ε

.
Lemma 2.5.3. If K is an abstract simplicial complex with vertex set I and the geomet-
ric realization (Y,O) of K, then for every A ∈ K the function fA : Y → R defined by
fA
(
(λi)i∈I

)
:=
∑

a∈A λa belongs to Hom ((Y,O), (R, E(R))).

Proof. Let A,B ∈ K be given and define ιB : SB → Y as the inclusion function. Consider

arbitrary (λi)i∈I ∈ SB, ε ∈ R+ and (µi)i∈I ∈ BSB

(
(λi)i∈I ,

ε
#B

)
. We obtain

∣∣fA(ιB((µi)i∈I))− fA(ιB((λi)i∈I))∣∣ =

∣∣∣∣∣∑
a∈A

(µa − λa)

∣∣∣∣∣ ≤∑
a∈A
|µa − λa|

=
∑

b∈A∩B
|µb − λb| ≤

∑
b∈B
|µb − λb|

≤ #Bmax {|µb − λb| | b ∈ B}

≤ #B

(∑
b∈B

(µb − λb)2
)1/2

< #B
ε

#B
= ε.

Therefore, fA ◦ ιB ∈ Hom ((SB, E(SB)), (R, E(R))). Since B ∈ K was arbitrary and O is
the final topology of all ιB, we obtain fA ∈ Hom ((Y,O), (R, E(R))).
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Remark 2.5.4. As a consequence of Lemma 2.5.3, gSt {i} = f−1{i}(R
+) is open in (Y,O)

for every i ∈ I.

Definition 2.5.5. If X is a set and U ⊆ P(X), then we call

K :=
{
U ′ ⊆ U |

⋂
U ′ 6= ∅ ∧#U ′ ∈ Z+

}
the abstract nerve of U .

Remark 2.5.6. The abstract nerve of U from Definition 2.5.5 is an abstract simplicial
complex with vertex set U . In order to show this, consider U ′ ∈ K and ∅ 6= U ′′ ⊆ U ′. We
clearly have U ′′ ⊆ U , #U ′′ ∈ Z+ as well as

⋂
U ′′ ⊇

⋂
U ′ 6= ∅. Therefore, U ′′ ∈ K.

Lemma 2.5.7. Let (X, T ) is a topological space that satisfies (T4) and let U be an open,
locally finite cover of (X, T ) with abstract nerveK of U . If (Y,O) is the geometric realization
of K, then there exists f ∈ Hom ((X, T ), (Y,O)) such that for all U ∈ U the inclusion
f−1(gSt {U}) ⊆ U is satisfied.

Proof. By Lemma 2.4.11 there exists a partition of unity

F = {fU | U ∈ U} ⊆ Hom ((X, T ), ([0, 1], E([0, 1]))), (2.1)

such that for every U ∈ U we have f−1U ((0, 1]) ⊆ U . Local finiteness of U in (X, T ) allows
us to define a function f : X → Y by f(x) := (fU (x))U∈U .

By ι : Y → [0, 1]U we denote the embedding and for every V ∈ U by πV : [0, 1]U → [0, 1]
we denote the projection map defined by πV

(
(λU )U∈U

)
:= λV . Furthermore, let V ∈ K and

ε ∈ R+ be given. Recall

SV =
{

(λU )U∈U ∈ Y | {U ∈ U | λU > 0} ⊆ V
}

and the embedding ιV : SV → Y . Consider an arbitrary (µU )U∈U ∈ SV and W ∈ U . For
arbitrary (νU )U∈U ∈ BSV

(
(µU )U∈U , ε

)
we obtain

∣∣πW (ι(ιV((νU )U∈U
)))
− πW

(
ι
(
ιV
(
(µU )U∈U

)))∣∣ = |νW − µW | ≤

(∑
V ∈V
|νV − µV |2

)1/2

< ε.

Therefore, πW ◦ ι◦ ιV ∈ Hom ((SV , E(SV)), ([0, 1], E([0, 1]))). Since W and V were arbitrary,

we obtain ι ∈ Hom
(

(Y,O),
(

[0, 1]U ,
∏
U∈U E([0, 1])

))
.

In order to show the continuity of f , consider x ∈ X. Since U is a locally finite cover of
(X, T ), there exists a neighborhood N of x in (X, T ), such that Ux := {U ∈ U | U ∩N 6= ∅}
is finite. For every V ∈ K the topological space (SV , E(SV)) is compact. Hence, SV = ιV(SV)
is compact in (Y,O). Consequently, Z :=

⋃
{SV | V ∈ K,V ⊆ Ux} is a finite union of

compact sets and therefore a compact subset of (Y,O).
Let ι′ : Z → Y be the embedding and idZ : Z → Z the identity map. From ι ◦ ι′ ◦ idZ ∈

Hom
(

(Z,O|Z),
(

[0, 1]U ,
∏
U∈U E([0, 1])

))
we conclude

idZ ∈ Hom

(
(Z,O|Z),

(
Z,

(∏
U∈U
E([0, 1])

)
|Z

))
.
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(Y,O)(SV , E(SV))

(X, T )

(
[0, 1]U ,

∏
U∈U E([0, 1])

)

(Z,O|Z)

([0, 1], E([0, 1]))

ιV

f

ι

ι′

πU

Figure 2.1: Diagram for V ∈ K.

Since (Z,O|Z) is a compact space, idZ is a bijection from Z to Z and
(
Z,
(∏

U∈U E([0, 1])
)
|Z
)

is a Hausdorff space, by a Corollary in [Kal14, p.452] idZ is a homeomorphism and therefore,
O|Z =

(∏
U∈U E([0, 1])

)
|Z .

For y ∈ N we have Vy := {U ∈ U | y ∈ U} ⊆ Ux which implies f(y) ∈ Z. Since for
arbitrary W ∈ U we have πW ◦ f = fW and because of (2.1) we obtain

f ∈ Hom

(
(N, T |N ),

(
Z,

(∏
U∈U
E([0, 1])

)
|Z

))
= Hom ((N, T |N ), (Z,O|Z)).

Therefore, we also have f ∈ Hom ((N, T |N ), (Y, T )). Since continuity is a local property,
we obtain f ∈ Hom ((X, T ), (Y,O)).

It remains to show that for a given U ∈ U we have f−1(gSt {U}) ⊆ U . Consider an
arbitrary x ∈ f−1(gSt {U}). By definition of f we have fU (x) > 0 and in turn x ∈
f−1U ((0, 1]) ⊆ U . Since x was arbitrary, we obtain f−1(gSt {U}) ⊆ U .

Definition 2.5.8. A subset K′ of an abstract simplicial complex is said to be finite di-
mensional if there exists n ∈ N such that for all A ∈ K′ the inequality adimA < n is
satisfied.

The following two lemmas are taken from [Dow47, p. 207-209].

Lemma 2.5.9. Let K be an abstract simplicial complex with vertex set I and (Y,O) be
its geometric realization. Then U := {gSt {i} | i ∈ I} is an open cover of (Y,O) that has a
refinement W with abstract nerve L, such that for all j ∈

⋃
L the subset aSt {j} of L is

finite dimensional.

Proof. By Lemma 2.5.3, for every A ∈ K the function fA : Y → R defined by fA
(
(λi)i∈I

)
:=∑

a∈A λa belongs to Hom ((Y,O), (R, E(R))). We define for every A ∈ K and every α ∈
[0,+∞] the following subsets of Y

Gα(A) := f−1A

((
1− α+ 1

α+ 2
2−(#A+1),+∞

))
, G∞(A) := f−1A

((
1− 2−(#A+1),+∞

))
Gα(A) := f−1A

([
1− α+ 1

α+ 2
2−(#A+1),+∞

))
, G∞(A) := f−1A

([
1− 2−(#A+1),+∞

))
.
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Clearly, Gα(A) and G∞(A) are open and Gα(A), G∞(A) are closed subsets of (Y,O). For
every subcomplex K′ of K we set

Gα
(
K′
)

:=
⋃{

Gα(A) | A ∈ K′
}
, G∞

(
K′
)

:=
⋃{

G∞(A) | A ∈ K′
}

Gα
(
K′
)

:=
⋃{

Gα(A) | A ∈ K′
}
, G∞

(
K′
)

:=
⋃{

G∞(A) | A ∈ K′
}
.

Gα(K′) and G∞(K′) are open subsets of (Y,O). We claim that Gα(K′) is a closed subset
of (Y,O). In order to show this, let (λi)i∈I ∈ Y \ Gα(K′) be given and define A :=

{i ∈ I | λi > 0} ∈ K. Furthermore we set K̃ := K′ ∩ (acl {A}) and U := Gα(A) \ Gα
(
K̃
)

.

Since A is a finite set and acl {A} consists of all nonempty subsets of A, the set K̃ is finite.

Therefore, Gα

(
K̃
)

is closed and hence, U is open in (Y,O). Gα

(
K̃
)
⊆ Gα(K′) yields

(λi)i∈I /∈ Gα
(
K̃
)

. By
∑

a∈A λa = 1 we have (λi)i∈I ∈ Gα(A) implying (λi)i∈I ∈ U .

Suppose there exists a point (µi)i∈I ∈ U ∩ Gα(K′). Then (µi)i∈I ∈ Gα(B) for some

B ∈ K′ \ K̃. In the case C := A ∩ B 6= ∅ we have C ∈ acl {A} and C ∈ K′. Therefore,
C ∈ K̃ and hence, (µi)i∈I /∈ Gα(C). Since B /∈ K̃, we have #C < #B and A /∈ K′ implies
#C < #A. We obtain∑

a∈A
µa > 1− α+ 1

α+ 2
2−(#A+1) ≥ 1− α+ 1

α+ 2
2−(#C+2)

∑
b∈B

µb ≥ 1− α+ 1

α+ 2
2−(#B+1) ≥ 1− α+ 1

α+ 2
2−(#C+2)

∑
c∈C

µc < 1− α+ 1

α+ 2
2−(#C+1).

Adding the first two lines and subtracting the third line gives
∑

i∈A∪B µi > 1, which
contradicts

∑
i∈A∪B µi ≤ 1. If A ∩ B = ∅, then we obtain the same contradiction just by

adding the first inequalities of the first two lines without introducing C and the third line.
Therefore, U ⊆ Y \Gα(K′). Since (λi)i∈I was arbitrarily chosen, Gα(K′) is closed in (Y,O).
By a similar reasoning G∞(K′) is closed in (Y,O).

For every i ∈ I we set

Ki := acl (aSt {i}) \ aSt {i} and Vi := gSt {i} \G∞(Ki).

Let A ∈ Ki and ∅ 6= B ⊆ A be given. Since A is an element of the abstract subcomplex
acl (aSt {i}) of K, so is B. From i /∈ A and B ⊆ A we conclude i /∈ B and B /∈ aSt {i}.
Since we just showed that B ∈ Ki, Ki is an abstract subcomplex of K. Therefore, the set
Vi is well defined and, in accordance with Remark 2.5.4, open.

We claim that V := {Vi | i ∈ I} is a cover of Y . In order to show this, consider (λi)i∈I ∈
Y . Define A := {i ∈ I | λi > 0} and let j ∈ A be such that λj = max {λi | i ∈ I}. Suppose
(λi)i∈I /∈ Vj . From (λi)i∈I ∈ gSt {j}, we obtain the existence of a B ∈ Kj such that

(λi)i∈I ∈ G∞(B). Therefore,
∑

b∈B λb ≥ 1− 2−(#B+1) and hence,

λj ≥
1

#B

∑
b∈B

λb ≥
1

#B

(
1− 2−(#B+1)

)
=

2#B+1 − 1

#B2#B+1
> 2−(#B+1).
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B ∈ Kj implies j /∈ B. We obtain∑
i∈I

λi =
∑
b∈B

λb +
∑
i∈I\B

λi >
(

1− 2−(#B+1)
)

+ 2−(#B+1) = 1

in contradiction to
∑

i∈I λi = 1. Hence, (λi)i∈I ∈ Vj .
We already know that V is an open cover of (Y,O). In order to show that V is also locally

finite let (λi)i∈I ∈ Y be given and set A := {i ∈ I | λi > 0}. The set G∞(A) is clearly a
neighborhood of (λi)i∈I in (Y,O). Suppose there exists j ∈ I \A such that Vj∩G∞(A) 6= ∅.
We find (µi)i∈I ∈ Vj ∩ G∞(A) and define B := {i ∈ I | µi > 0}. In the case A ∩ B 6= ∅
we define C := A ∩ B. From B ∈ aSt {j} and j /∈ A we conclude C ∈ Kj implying
(µi)i∈I /∈ G∞(Kj) ⊇ G∞(C). Therefore, we have∑

a∈A
µa =

∑
c∈C

µc < 1− 2−(#C+1) ≤ 1− 2−(#A+1), (2.2)

which clearly contradicts (µi)i∈I ∈ G∞(A). In the case A∩B = ∅, we have the contradiction

0 =
∑

a∈A µa > 1− 2−(#A+1). Hence, such a j ∈ I \ A can not exist. The fact that A is a
finite set implies local finiteness of V.

For every n ∈ N we define the abstract subcomplex K(n) := {A ∈ K | adimA ≤ n} of K.
Based on these sets we define H0 := G0

(
K(0)

)
as well as H1 := G1

(
K(1)

)
and for all n ∈ N

with n > 1 the set Hn := Gn
(
K(n)

)
\Gn−2

(
K(n−2)). H := {Hn | n ∈ N} clearly consists of

open sets. We claim that H is also a locally finite cover of (Y,O). In order to show this,
define A := {i ∈ I | λi > 0} for a given point (λi)i∈I ∈ Y . Clearly, (λi)i∈I ∈ G#A

(
K(#A)

)
.

Defining m := min
{
n ∈ N | (λi)i∈I ∈ Gn

(
K(n)

)}
there exists B ∈ K(m) such that (λi)i∈I ∈

Gm(B). From ∑
b∈B

λb ≥ 1− m+ 1

m+ 2
2−(#B+1) > 1− m+ 2

m+ 3
2−(#B+1)

we derive (λi)i∈I ∈ Gm+1(B) ⊆ Gm+1

(
K(m+1)

)
. For m = 0 we have (λi)i∈I ∈ H1. If m > 0,

(λi)i∈I /∈ Gm−1
(
K(m−1)) by definition of m and therefore (λi)i∈I ∈ Hm+1. Consider l ∈ N

with l < m. For (µi)i∈I ∈ Gl(C) with C ∈ K(l) we have∑
c∈C

µc > 1− l + 1

l + 2
2−(#C+1) ≥ 1− m

m+ 1
2−(#C+1).

Hence, Gl
(
K(l)

)
⊆ Gm−1

(
K(m−1)) and we obtain Hl∩Hm+1 = ∅. If l > m+2, then we have

Gm+1

(
K(m+1)

)
⊆ Gl−2

(
K(l−2)) and consequently, Hm+1 ∩ Hl = ∅. Since we just showed

that Hm+1 is a neighborhood of (λi)i∈I that meets at most three sets of H, namely Hm,
Hm+1 and Hm+2, the cover H is locally finite.

For i ∈ I and n ∈ N we define Wi,n := Vi ∩ Hn. Since V and H are locally finite,
open covers of (Y,O), so is W := {Wi,n | i ∈ I, n ∈ N}. By Wi,n ⊆ Vi ⊆ gSt {i}, W is a
refinement of U .

Denote by L := {M ⊆ I × N | #M ∈ Z+ ∧
⋂
{Wi,n | (i, n) ∈M} 6= ∅} a set that will

represent the abstract nerve of W and consider (j, p) ∈ I × N and M ∈ aSt {(j, p)} with
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2 Topological spaces

respect to L. There exists (λi)i∈I ∈
⋂
{Wl,m | (l,m) ∈M}. In particular, (λi)i∈I ∈ Hp ∩

(
⋂
{Vl | (l,m) ∈M}). By definition of Hp, there exists A ∈ K(p) such that

(λi)i∈I ∈ Gp(A) ∩
(⋂
{Vl | (l,m) ∈M}

)
(2.3)

Let (k, q) ∈ M be given. Suppose k ∈ I \ A and consider an arbitrary (µi)i∈I ∈ Vk =
gSt {k} \ G∞(Kk). We define B := {i ∈ I | µi > 0} and observe that µk > 0 yields B ∈
aSt {k}. Therefore, if C := A ∩ B 6= ∅, then it satisfies C ∈ acl (aSt {k}). Furthermore,
k /∈ C and in turn C ∈ Kk. Hence, (µi)i∈I /∈ G∞(Kk) ⊇ G∞(C). Because of (2.2) we derive

(µi)i∈I /∈ G∞(A) ⊇ Gp(A). If A ∩ B = ∅, then
∑

a∈A µa = 0 < 1 − 2−(#A+1) and hence,
(µi)i∈I /∈ G∞(A) ⊇ Gp(A) as well. Therefore, Vk ∩ Gp(A) = ∅, which clearly contradicts
(2.3). Thus, k ∈ A.
Hp ∩Hq 6= ∅ yields q ∈ {p− 1, p, p+ 1} and further

#M ≤ #(A× {p− 1, p, p+ 1}) = 3#A ≤ 3p.

This shows that aSt {(j, p)} is finite dimensional.

Lemma 2.5.10. If U is an open, locally finite cover of a topological space (X, T ) that
satisfies (T4), then there exists a refinement V of U , such that V is an open, locally finite
cover of (X, T ) and the abstract star of each vertex of the abstract nerve of V is finite
dimensional.

Proof. Let K be the abstract nerve of U and (Y,O) the geometric realization of K. By
Lemma 2.5.7, there exists a function f ∈ Hom ((X, T ), (Y,O)), such that for all U ∈ U we
have f−1(gSt {U}) ⊆ U . By Lemma 2.5.9, the set H := {gSt {U} | U ∈ U} is an open cover
of (Y,O) and there exists an open coverW of (Y,O), such thatW is a refinement of H and
the abstract star of each vertex of the abstract nerve of W is finite dimensional. Define
V := f−1[W]. For any given W ∈ W there exists U ∈ U such that W ⊆ gSt {U}. Hence,
f−1(W ) ⊆ f−1(gSt {U}) ⊆ U . Therefore, V is a refinement of U . SinceW is a locally finite
open cover of (Y,O), we conclude that V is a locally finite, open cover of (X, T ).

It remains to show that the abstract star of each vertex of the abstract nerve of V is finite
dimensional. In order to do this, let a vertex V ∈ V be given and consider an arbitrary
V ′ ∈ aSt {V }. Let WV ∈ W, such that f−1(WV ) = V and for every V ′ ∈ V ′ \ {V } let
WV ′ ∈ W such that f−1(WV ′) = V ′. There exists x ∈

⋂
V ′ = f−1(

⋂
{WV ′ | V ′ ∈ V ′}),

which implies f(x) ∈
⋂
{WV ′ | V ′ ∈ V ′} 6= ∅. Hence, we have {WV ′ | V ′ ∈ V ′} ∈ aSt {WV }.

Since #V ′ = #{WV ′ | V ′ ∈ V ′} and aSt {WV } is finite dimensional, so is aSt {V }.
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3 Absolute extensors and absolute
neighborhood extensors

Definition 3.0.1. A topological space (Y,O) is called absolute extensor for a full sub-
category C of Top if for every closed set A of an object (X, T ) of C and every f ∈
Hom ((A, T |A), (Y,O)) there exists an extension f ∈ Hom ((X, T ), (Y,O)) of f .

Definition 3.0.2. A topological space (Y,O) is called absolute neighborhood extensor for
a full subcategory C of Top if for every closed subset A of an object (X, T ) of C and every
f ∈ Hom ((A, T |A), (Y,O)) there exists a neighborhood U of A in (X, T ) and an extension
f ∈ Hom ((U, T |U ), (Y,O)) of f .

In this chapter we will study absolute extensors and absolute neighborhood extensors, be-
cause they are strongly connected to absolute retracts and absolute neighborhood retracts.
The connection is stated in Theorem 4.1.1 and Theorem 4.1.4.

3.1 Basic properties

The following two Propositions obviously hold true.

Proposition 3.1.1. Every absolute extensor for a full subcategory C of Top is an absolute
neighborhood extensor for C.

Proposition 3.1.2. Every absolute extensor (respectively absolute neighborhood exten-
sor) for a full subcategory C of Top is also an absolute extensor (respectively absolute
neighborhood extensor) for every full subcategory C of C.

Requiring that topological spaces are not empty, we obtain the following Proposition.

Proposition 3.1.3. If a subcategory C of Top contains an object which does not fulfill
(T4), then every absolute neighborhood extensor for C, which satisfies (T2), consists of a
single point.

Proof. Suppose there exists a Hausdorff space (Y,O) which is an absolute neighborhood
extensor for C that contains two distinct points y1, y2 ∈ Y . Let (X, T ) be an object of C
which is does not satisfy (T4). Hence, we find two disjoint closed sets B and C of (X, T )
which can not be separated by neighborhoods. The set A := B ∪C is closed in (X, T ). We
define a function f : A→ Y by

f(x) :=

{
y1 , if x ∈ B,
y2 , if x ∈ C,
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which by Lemma 2.3.2 belongs to Hom ((A, T |A), (Y,O)). Since (Y,O) is an absolute
neighborhood extensor for the class C, there exists a neighborhood U of A in (X, T ) and
an extension f ∈ Hom ((U, T |U ), (Y,O)) of f . Since (Y,O) is Hausdorff, we find a neigh-

borhood V of y1 and a neighborhood W of y2 such that V ∩W = ∅. Therefore, f
−1

(V )

is a neighborhood of B in (U, T |U ), the set f
−1

(W ) is a neighborhood of C in (U, T |U )

and f
−1

(V ) ∩ f−1(W ) = ∅. Thus we separated B and C by neighborhoods, which is a
contradiction to our assumptions.

Proposition 3.1.4. The product space of absolute extensors for a full subcategory C of
Top is an absolute extensor for C.

Proof. Let (Y,O) be the product space of a family ((Yi,Oi))i∈I of absolute extensors for C.
Consider a closed set A of any arbitrary object (X, T ) of C and f ∈ Hom ((A, T |A), (Y,O)).
For any i ∈ I we define fi := πi ◦ f , where πi : Y → Yi denotes the projection. Since
fi ∈ Hom ((A, T |A), (Yi,Oi)) and (Y,O|Y ) is an absolute extensor for C, there exists an
extension f i ∈ Hom ((X, T ), (Yi,Oi)) of fi. This allows us to define an extension f ∈
Hom ((X, T ), (Y,O)) of f by f(x) :=

(
f i(x)

)
i∈I .

Proposition 3.1.5. Every product space of finitely many absolute neighborhood extensors
for a full subcategory C of Top is an absolute neighborhood extensor for C.

Proof. Given n ∈ N set I := {1, . . . , n} and let ((Yi,Oi))i∈I be absolute neighborhood
extensors for C and (Y,O) be the corresponding product space. Consider any closed set
A of an object (X, T ) of C and f ∈ Hom ((A, T |A), (Y,O)). For every i ∈ I we define
fi : A → Yi by fi(x) := πi(f(x)) satisfying fi ∈ Hom ((A, T |A), (Yi,Oi)). Since (Yi,Oi) is
an absolute neighborhood extensor for C, there exists a neighborhood Ui of A in (X, T )
and an extension f i ∈ Hom ((Ui, T |Ui), (Yi,Oi)) of fi. We define U :=

⋂
{Ui | i ∈ I} and

f : U → Y by f(x) :=
(
f i(x)

)
i∈I . Clearly, U is a neighborhood of A in (X, T ) and

f ∈ Hom ((U, T |U ), (Y,O)) is an extension of f .

Proposition 3.1.6. Every open subspace of an absolute neighborhood extensor for a full
subcategory C of Top is an absolute neighborhood extensor for C.

Proof. Let (Y,O) be a given absolute neighborhood extensor for C and V an arbitrary
open subset of (Y,O). Consider any closed subset A of a given object (X, T ) of C and a
function f ∈ Hom ((A, T |A), (V,O|V )). We clearly also have f ∈ Hom ((A, T |A), (Y,O)).
Since (Y,O) is an absolute neighborhood extensor for C, there exists a neighborhood U of
(A, T |A) in (X, T ) and an extension g ∈ Hom ((U, T |U ), (Y,O)) of f . The set g−1(V ) is an
open neighborhood of A in (X, T ). The function f ∈ Hom

((
g−1(V ), T |g−1(V )

)
, (V,O|V )

)
defined by f(x) := g(x) is an extension of f and hence, (V,O|V ) is an absolute neighborhood
extensor for C.

Definition 3.1.7. Let (X, T ) be a topological space. A set A ⊆ X is said to be a retract of
(X, T ) if there exists r ∈ Hom ((X, T ), (A, T |A)) such that for all a ∈ A we have r(a) = a.
The function r is called retraction. The set A is called a neighborhood retract of (X, T ) if
there exists a neighborhood U of A in (X, T ) such that A is a retract of (U, T |U ).
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Proposition 3.1.8. Every neighborhood retract of an absolute neighborhood extensor for
a full subcategory C of Top is an absolute neighborhood extensor for C.

Proof. Let (Y,O) be an absolute neighborhood extensor for C and A a neighborhood retract
of (Y,O). Therefore, there exists a neighborhood U of A in (Y,O) and a retraction r ∈
Hom ((U,O|U ), (A,O|A)). Let B be a given closed subset of some object (X, T ) of C
and f ∈ Hom ((B, T |B), (A,O|A)). Clearly, we have g ∈ Hom ((B, T |B), (Y,O)). Since
(Y,O) is an absolute neighborhood extensor, there exists a neighborhood V of B in (X, T )
and an extension g ∈ Hom ((V, T |V ), (Y,O)) of g. We define W := g−1(U) and f ∈
Hom ((W, T |W ), (A,O|A)) by f(x) := r(g(x)). Since for x ∈ B we have f(x) = r(g(x)) =
g(x), f is an extension of f .

3.2 Examples of absolute extensors and absolute neighborhood
extensors

Example 3.2.1. The Tietze extension Theorem, a proof of which can be found in [Kal14,
p.446] states that all intervals of the form [−λ, λ], where λ ∈ R+, as well as R are absolute
extensors for T4. As a homeomorphic copy of one of the sets before, every interval [µ, ν],
where µ, ν ∈ R and µ < ν, is an absolute extensor for T4. By Proposition 3.1.4, all product
spaces of these spaces, in particular every Rn is an absolute extensor for T4. In accordance
with Proposition 3.1.2 and Proposition 3.1.6, every open subspace of Rn is an absolute
neighborhood extensor for T4.

The following theorem provides us with an even greater number of examples for absolute
extensors.

Theorem 3.2.2 (Dugundji extension theorem). Every convex subset of a locally convex
topological vector space is an absolute extensor for Met.

Proof. Let C be a convex subset of an object
(
L,+, (ωλ)λ∈K,O

)
of LCTVSK and let

(X, T ) be an object of Met with a metric d that induces T . Consider an arbitrary
closed subset A of (X, T ) and a function f ∈ Hom ((A, T |A), (C,O|C)). The set U :={

Bd

(
x, 4−1 dist (x,A)

)
| x ∈ X \A

}
is an open cover of

(
X \A, T |X\A

)
.

The metrizable space
(
X \A, T |X\A

)
is paracompact, see Theorem 2.4.4. Hence, there

exists a locally finite, open refinement V of U which covers X \ A. By Lemma 2.4.11,
for every V ∈ V we find a function gV ∈ Hom

((
X \A, T |X\A

)
, ([0, 1], E([0, 1]))

)
such

that g−1V ((0, 1]) ⊆ V and G := {gV | V ∈ V} is a locally finite partition of unity of(
X \A, T |X\A

)
.

Since V is a refinement of U , for a given V ∈ V there exists x ∈ X \ A such that V ⊆
Bd

(
x, 4−1 dist (x,A)

)
. Furthermore, there exists aV ∈ A such that d (x, aV ) < 5

4 dist (x,A).
As for arbitrary y ∈ V and a ∈ A

dist (x,A) ≤ d (x, a) ≤ d (x, y) + d (y, a) ≤ 1

4
dist (x,A) + d (y, a)
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we have dist (x,A) ≤ 4
3 dist (y,A). Consequently,

d (y, aV ) ≤ d (y, x) + d (x, aV ) ≤ 1

4
dist (x,A) +

5

4
dist (x,A) =

6

4
dist (x,A)

≤ 6

4

4

3
dist (y,A) = 2 dist (y,A).

Hence, for every V ∈ V we find a point aV ∈ A such that for all y ∈ V we have
d (y, aV ) ≤ 2 d (y,A). We define a function f : X → C by

f(x) :=

{
f(x) , if x ∈ A,∑

V ∈V gV (x)f(aV ) , if x ∈ X \A,

and show that f ∈ Hom ((X, T ), (C,O|C)). In order to prove this, consider some x ∈ X \A.
Since (L,O) is locally convex, there exists a neighborhood W of x in

(
X \A, T |X\A

)
that

only meets the elements of a finite subset V ′ of V. Hence, for an arbitrary y ∈W

f(y) =
∑
V ∈V

gV (y)f(aV ) =
∑
V ∈V ′

gV (y)f(aV ).

Since the last sum is a convex combination, we verified f(y) ∈ C. Furthermore, we see that
f restricted to W is continuous, because it can be written as a finite sum of continuous
functions. Therefore, f is continuous at any point in X \A.

It remains to show continuity at any point x ∈ A. In order to prove this, let W be a given
neighborhood of f(x) in (C,O|C). Since (L,O) is locally convex, we can assume without
loss of generality that W is convex. Since f is continuous, there exists δ ∈ R+ such that
f [Bd(x, δ) ∩A] ⊆W .

Consider any y ∈ Bd

(
x, 3−1δ

)
. For y ∈ A we obviously have f(y) = f(y) ∈ W . Let us

assume from now on that y /∈ A. Since G is locally finite, the set V ′ := {V ∈ V | y ∈ V } is
finite. From d (y,A) ≤ d (y, x) < 3−1δ we conclude for any V ∈ V ′

d (x, aV ) ≤ d (x, y) + d (y, aV ) ≤ d (x, y) + 2 d (y,A) < δ.

Therefore, aV ∈ Bd(x, δ) ∩A, which yields f(aV ) ∈W . We finally obtain

f(y) =
∑
V ∈V

gV (y)f(aV ) =
∑
V ∈V ′

gV (y)f(aV ) ∈W,

because the last sum is a convex combination.

3.3 Local absolute neighborhood extensors

Definition 3.3.1. A topological space (Y,O) is said to be a local absolute neighborhood
extensor for a full subcategory C of Top if for all y ∈ Y there exists a neighborhood U of
y in (Y,O), such that (U,O|U ) is an absolute neighborhood extensor for C.

Theorem 3.3.2. If all objects of a weakly hereditary, full subcategory C of Top are fully
T4 and satisfy (T1), then every local absolute neighborhood extensor for C is an absolute
neighborhood extensor for C.
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Proof. Let (Y,O) be a given local absolute neighborhood extensor for C, let A be a closed
subset of an object (X, T ) of C and f ∈ Hom ((A, T |A), (Y,O)). Since (Y,O) is a local
absolute neighborhood extensor, there exists an open cover U of (Y,O) that only consists
of absolute neighborhood extensors for C. In accordance with Lemma 2.4.3, (A, T |A) is
fully T4 and satisfies (T4). Since (A, T |A) also satisfies (T1), we can apply Theorem 2.4.8
and obtain that (A, T |A) is paracompact. Since f−1[U ] is a cover of (A, T |A), there exists
an open, locally finite cover Ṽ of (A, T |A) that is a refinement of f−1[U ]. By Lemma 2.5.10
we may assume that the abstract star of each vertex of the abstract nerve of Ṽ is finite
dimensional. For every Ṽ ∈ Ṽ we choose UṼ ∈ U such that

Ṽ ⊆ f−1
(
UṼ
)
. (3.1)

In accordance with Lemma 2.4.5 there exists a locally finite open coverW =
{
WṼ | Ṽ ∈ Ṽ

}
of (X, T ) such that for all Ṽ ∈ Ṽ the equality WṼ ∩ A = Ṽ is satisfied. Applying Lemma
2.3.9 we obtain a closed neighborhood F of A in (X, T ) and a locally finite closed cover

F =
{
FṼ | Ṽ ∈ Ṽ

}
of (F, T |F ) such that for all Ṽ ∈ V we have

FṼ ∩A ⊆ Ṽ (3.2)

and for all Ṽ ′ ⊆ Ṽ with #Ṽ ′ ∈ Z+ the implication⋂
Ṽ ′ = ∅ ⇒

⋂{
FṼ | Ṽ ∈ Ṽ

′
}

= ∅ (3.3)

holds true.
We choose a subset V ⊂ Ṽ such that for all Ṽ ∈ Ṽ there exists exactly one V ∈ V such

that FV = FṼ . Hence, V 3 V 7→ FV ∈ F constitutes a bijection. Let K be the abstract
nerve of F and consider an arbitrary V ∈ V and F ′ ∈ K, such that F ′ ∈ aSt {FV }. Due to
our choice of V, there is a unique V ′ ⊆ V, such that F ′ = {FV ′ | V ′ ∈ V ′}. The fact that by
(3.3) we have

⋂
V ′ 6= ∅ together with #V ′ = #F ′ ∈ Z+ implies V ′ ∈ aSt {V }. Since aSt {V }

is finite dimensional, so is aSt {FV }. Therefore, recalling that F̂ ∈ aStF ′ ⇔ F ′ ⊆ F̂ , we
can define p : K → N by

p
(
F ′
)

:= sup
{

#F̂ −#F ′ | F̂ ∈ K,F ′ ⊆ F̂
}
.

For every F ′ ∈ K, we define

DF ′ :=
(⋂
F ′
)
\
(⋃(

F \ F ′
))
, DaStF ′ :=

⋃{
DF̂ | F̂ ∈ aStF ′

}
and AF ′ := DF ′ ∩ A as well as AaStF ′ := DaStF ′ ∩ A. Define D := {DF ′ | F ′ ∈ K} and
DaSt := {DaStF ′ | F ′ ∈ K}. For a given x ∈ F , there exists a neighborhood Nx of x in
(F, T |F ), such that

Fx := {FV ∈ F | V ∈ V ∧ FV ∩Nx 6= ∅} and F ′x := {FV ∈ F | V ∈ V ∧ x ∈ FV }

are finite. We claim that D covers F by mutually disjoint sets. We clearly have F ′x ∈ K
and x ∈ DF ′x and hence, we conclude that D is a cover of F . Let F ′ ∈ K \ {F ′x} be given.
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3 Absolute extensors and absolute neighborhood extensors

In case there exists F ′ ∈ F ′ such that x /∈ F ′, we clearly have x /∈ DF ′ . Otherwise, there
exists F ∈ F \ F ′ such that x ∈ F , which implies x /∈ DF ′ . Hence, we showed that the
arbitrary x ∈ F is contained in exactly one element of D, namely DF ′x .

If F ′ ∈ K and x ∈
⋂
F ′, then F ′x ∈ aStF ′, which implies x ∈ DF ′x ⊆ DaStF ′ . If, on the

other hand, x ∈ DaStF ′ , then we obtain x ∈
⋂
F ′. Therefore, DaStF ′ =

⋂
F ′, showing that

DaSt is a closed cover of (F, T |F ). We claim that DaSt is also locally finite. Given x ∈ F
we conclude from Nx ∩DaStF ′ 6= ∅ that there exists F̂ ⊇ F ′ such that Nx ∩DF̂ 6= ∅. This

implies that for all F̂ ∈ F̂ we have Nx ∩ F̂ 6= ∅ and therefore, F ′ ⊆ F̂ ⊆ Fx. Since Fx
contains only finitely many subsets, we conclude that DaSt is locally finite.

For F ′ ∈ K we define UF ′ :=
⋂
{UV | V ∈ V ∧ FV ∈ F ′}. As a finite intersection of

open sets UF ′ is open in (UV ,O|UV
) for every V ∈ V with FV ∈ F ′. Since (UV ,O|UV

) is
an absolute neighborhood extensor for C, in accordance with Proposition 3.1.6 also UF ′ is
an absolute neighborhood extensor for C. For F1,F2 ∈ K with F1 ⊆ F2 we clearly have
UF2 ⊆ UF1 . Due to (3.1) and (3.2) for arbitrary F ′ ∈ K we obtain

f [AF ′ ] ⊆ f
[⋂{

FV ∩A | V ∈ V, FV ∈ F ′
}]
⊆ f

[⋂{
V ∈ V | FV ∈ F ′

}]
(3.4)

⊆
⋂{

f [V ] | V ∈ V ∧ FV ∈ F ′
}
⊆ UF ′ .

Now we start with the main part of the proof. It consists of a long induction, showing
the following claim for all n ∈ N:

If F ′ ∈ K and p(F ′) ≤ n, then there exists BF ′ ⊆ F , a function

gF ′ ∈ Hom
((
BF ′ , T |BF′

)
, (Y,O)

)
,

a set BaStF ′ and another function gaStF ′ ∈ Hom
((
BaStF ′ , T |BaStF′

)
, (Y,O)

)
such that

BaStF ′ =
⋃{

BF̂ | F̂ ∈ aStF ′
}

, gaStF ′ is an extension of gF̂ for all F̂ ∈ aStF ′ as well as

AF ′ ⊆ BF ′ ⊆ DF ′ , (3.5)

gF ′ |AF′ = f |AF′ , (3.6)

gF ′ [BF ′ ] ⊆ UF ′ , (3.7)

BaStF ′ is a neighborhood of AaStF ′ in
(
DaStF ′ , T |DaStF′

)
, (3.8)

BaStF ′ is closed in (F, T |F ). (3.9)

We start with the base case n = 0 and F ′ ∈ K with p(F ′) = 0. This implies aStF ′ = {F ′}
and consequently, DaStF ′ = DF ′ as well as AaStF ′ = AF ′ . Since DaStF ′ is a closed subset
of (F, T |F ) and F is a closed subset of (X, T ), DaStF ′ is a closed subset of (X, T ). Since
C is weakly hereditary,

(
DaStF ′ , T |DaStF′

)
is an object of C. Hence, it satisfies (T4), see

Lemma 2.4.3. Since (Y,O) is an absolute neighborhood extensor for C, and AaStF ′ = AF ′

is a closed subset of
(
DaStF ′ , T |DaStF′

)
, there exists a closed neighborhood BF ′ of AF ′

in
(
DaStF ′ , T |DaStF′

)
and an extension gF ′ ∈ Hom

((
BF ′ , T |BF′

)
,
(
UF ′ ,O|UF′

))
of f̃ ∈

Hom
((
AF ′ , T |AF′

)
,
(
UF ′ ,O|UF′

))
defined by f̃(x) = f(x), which is well defined because

of (3.4). The properties (3.5), (3.6) and (3.7) are obviously satisfied. With the definition
BaStF ′ := BF ′ and gaStF ′ := gF ′ it is clear that (3.8) and (3.9) are satisfied as well. This
finishes the base case.
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3 Absolute extensors and absolute neighborhood extensors

It remains to prove the induction step. Assume that our claim is true for some n ∈ N
and consider F ′ ∈ K with p(F ′) = n+ 1. As p

(
F̂
)
< p(F ′) for any F̂ ) F ′, we can define

ÃF ′ :=
⋃{

AF̂ | F̂ ∈ K,F
′ ( F̂

}
=
⋃{

AaSt F̂ | F̂ ∈ K,F
′ ( F̂

}
, (3.10)

B̃F ′ :=
⋃{

BF̂ | F̂ ∈ K,F
′ ( F̂

}
=
⋃{

BaSt F̂ | F̂ ∈ K,F
′ ( F̂

}
, (3.11)

D̃F ′ :=
⋃{

DF̂ | F̂ ∈ K,F
′ ( F̂

}
=
⋃{

DaSt F̂ | F̂ ∈ K,F
′ ( F̂

}
. (3.12)

The first equality from (3.10) together with (3.5) and the fact that D consists of mutually
disjoint sets assures that B̃F ′ ∪ AF ′ is a union of mutually disjoint sets as well. The
inclusions (3.4) and (3.7) allow us to define g̃F ′ : B̃F ′ ∪AF ′ → UF ′ by

g̃F ′(x) :=

{
f(x) , if x ∈ AF ′ ,
gF̂ (x) , if x ∈ BF̂ for F ′ ( F̂ ∈ K.

Property (3.5) assures AaStF ′ ⊆ B̃F ′ ∪ AF ′ . Using (3.6), we observe g̃F ′ |AaStF′ = f |AaStF′

and g̃F ′ |BaSt F̂
= gaSt F̂ for all F̂ ) F ′. Recall that gaSt F̂ is continuous for F̂ ) F ′. Since

DaSt is locally finite, the second equality of (3.11) is a representation of B̃F ′ as a union

of a locally finite set consisting of closed subsets of
(
D̃F ′ , T |D̃F′

)
Therefore, we can apply

Lemma 2.3.4 showing that B̃F ′ is closed in
(
D̃F ′ , T |D̃F′

)
. Furthermore, all BaSt F̂ for

F̂ ) F ′ together with AaStF ′ form a locally finite, closed cover of
(
B̃F ′ ∪AF ′ , T |B̃F′∪AF′

)
.

Thus, we can apply Lemma 2.3.2 and obtain

g̃F ′ ∈ Hom
((
B̃F ′ ∪AF ′ , T |B̃F′∪AF′

)
,
(
UF ′ ,O|UF′

))
.

Recall that DaSt is locally finite and
{
DaSt F̂ | F̂ ∈ K,F

′ ( F̂
}
⊆ DaSt only consists of

closed subsets of
(
D̃F ′ , T |D̃F′

)
. The second equality from (3.12) and an application of

Lemma 2.3.4 assert that D̃F ′ is a closed subset of (F, T |F ). By (3.8) and Lemma 2.3.6, we

obtain that B̃F ′ is a neighborhood of ÃF ′ in
(
D̃F ′ , T |D̃F′

)
. As a closed subspace of (F, T |F ),

the space
(
DaStF ′ , T |DaStF′

)
satisfies (T4). Since we clearly have D̃F ′ ⊆ DaStF ′ , we obtain

that D̃F ′ is a closed subset of
(
DaStF ′ , T |DaStF′

)
. By definition AaStF ′ is a closed subset

of
(
DaStF ′ , T |DaStF′

)
and it satisfies ÃF ′ = D̃F ′ ∩ AaStF ′ . Therefore, in accordance with

Lemma 2.1.7 for X = DaStF ′ , X
′ = D̃F ′ , A = AaStF ′ , A

′ = ÃF ′ and B′ = B̃F ′ , we obtain
a closed neighborhood EF ′ of AaStF ′ in

(
DaStF ′ , T |DaStF′

)
such that B̃F ′ = D̃F ′ ∩ EF ′ .

Defining B∗F ′ := EF ′ \ D̃F ′ we have B̃F ′ ∪B∗F ′ = EF ′ and B∗F ′ ⊆ DaStF ′ \ D̃F ′ .
Since EF ′ is a closed subset of (X, T ), we conclude that

(
EF ′ , T |EF′

)
is an object of

C. Since B̃F ′ ∪ AF ′ = B̃F ′ ∪ AaStF ′ is a closed subset of
(
EF ′ , T |EF′

)
and

(
UF ′ ,O|UF′

)
is an absolute neighborhood extensor for C, there exists a closed neighborhood E′F ′ of

B̃F ′ ∪ AF ′ in
(
EF ′ , T |EF′

)
and an extension g′F ′ ∈ Hom

((
E′F ′ , T |E′F′

)
,
(
UF ′ ,O|UF′

))
of

g̃F ′ . We define BF ′ := E′F ′ \ B̃F ′ and BaStF ′ :=
⋃{

BF̂ | F̂ ∈ aStF ′
}

. Finally, we define
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3 Absolute extensors and absolute neighborhood extensors

gF ′ ∈ Hom
((
BF ′ , T |BF′

)
, (Y,O)

)
by gF ′(x) := g′F ′(x) and, in accordance with Lemma

2.3.2, the function gaStF ′ ∈ Hom
((
BaStF ′ , T |BaStF′

)
, (Y,O)

)
by gaStF ′(x) := gF̂ (x) for

F ′ ⊆ F̂ ∈ K with x ∈ BF̂ . Since B̃F ′ ∪ AF ′ ⊆ B̃F ′ ∪ BF ′ and B̃F ′ ∩ AF ′ = ∅, we
obtain AF ′ ⊆ BF ′ ⊆ B∗F ′ ⊆ DF ′ . Hence, (3.5) holds true. Property (3.6) is clearly
satisfied as well. We have gF ′ [BF ′ ] ⊆ g′F ′

[
E′F ′

]
⊆ UF ′ and hence, (3.7) is satisfied. Since

BaStF ′ is a neighborhood of AaStF ′ in
(
B̃F ′ ∪B∗F ′ , T |B̃F′∪B∗F′

)
and B̃F ′ ∪ B∗F ′ = EF ′ is a

neighborhood of AaStF ′ in
(
DaStF ′ , T |DaStF′

)
, we obtain (3.8). Lastly, since we can write

BaStF ′ = B̃F ′ ∪ E′F ′ , the property (3.9) is satisfied. This finishes the induction.
The set B := {BF ′ | F ′ ∈ K} consists of mutually disjoint sets. Hence, for B :=

⋃
B

the function g : B → Y is well defined by g(x) := gF ′(x) if x ∈ BF ′ . By Lemma 2.3.6,
B is a neighborhood of A in (F, T ). Since BaSt := {BaStF ′ | F ′ ∈ K} is a locally finite,
closed cover of (B, T |B) and g|BaStF′ = gaStF ′ , we obtain from Lemma 2.3.2 that g ∈
Hom ((B, T |B), (Y,O)). Since A := {AF ′ | F ′ ∈ K} is a cover of A and g|AF′ = f |AF′ , we
have g|A = f |A.

Example 3.3.3. It follows from Theorem 3.3.2 together with Example 3.2.1 that every
manifold is an absolute neighborhood extensor for T4.
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4 Absolute retracts and absolute
neighborhood retracts

Definition 4.0.1. A topological space (X, T ) is called an absolute retract for a full sub-
category C of Top if (X, T ) is itself an object of C and every closed subset A of an object
(Y,O) of C, where (A,O|A) is homeomorphic to (X, T ), is a retract of (Y,O).

Definition 4.0.2. A topological space (X, T ) is called an absolute neighborhood retract for
a full subcategory C of Top if (X, T ) is an object of C itself and every closed set A of an
object (Y,O) of C, where (A,O|A) is homeomorphic to (X, T ), is a neighborhood retract
of (Y,O).

4.1 Relation to absolute extensors and absolute neighborhood
extensors

Theorem 4.1.1. Every object of a full subcategory C of Top that is an absolute neighbor-
hood extensor (respectively absolute extensor) for C is an absolute neighborhood retract
(respectively absolute retract) for C.

Proof. We will proof the Theorem only for absolute neighborhood extensors and abso-
lute neighborhood retracts. The proof for absolute extensors and absolute retracts is
similar. Let (X, T ) be an absolute neighborhood extensor for C and let A be some
closed subset of an object (Y,O) of C, such that (A,O|A) is homeomorphic to (X, T ).
Let f ∈ Hom ((X, T ), (A,O|A)) be a homeomorphism and g ∈ Hom ((A,O|A), (X, T ))
its inverse. Since (X, T ) is an absolute neighborhood extensor there exists a neighbor-
hood U of A in (Y,O) and an extension g ∈ Hom ((U,O|U ), (X, T )) of g. The function
f ◦ g ∈ Hom ((U,O|U ), (A,O|A)) is a retraction, since for a ∈ A we have g(a) = g(a) and
in turn f(g(a)) = f(g(a)) = a.

Remark 4.1.2. Theorem 4.1.1 asserts that all examples of absolute extensors and absolute
neighborhood extensors for a full subcategory C of Top that are objects of C themselves
are also examples of absolute retracts and absolute neighborhood retracts for C.

Theorem 4.1.3. For every metrizable space (X, T ) there exists convex subset C of a
topological vector space

(
L,+, (ωλ)λ∈R,O

)
, a norm ‖·‖ on

(
L,+, (ωλ)λ∈R

)
that induces O

and makes
(
L,+, (ωλ)λ∈R, ‖·‖

)
a Banach space and a closed subset Y of (C,O|C) such that

(X, T ) and (Y,O|Y ) are homeomorphic. If (X, T ) is separable, so is (C,O|C).

Proof. Given any metrizable topological space (X, T ), we consider the set of all continuous
and bounded real valued functions

L := {f ∈ Hom ((X, T ), (R, E(R))) : ‖f‖∞ < +∞}.
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4 Absolute retracts and absolute neighborhood retracts

It is a well known fact, which one can find for example in [Kal14] that
(
L,+, (ωλ)λ∈R, ‖·‖∞

)
is a Banach space. Let O be the topology induced by ‖·‖∞. In accordance with Lemma
2.1.3 we find a bounded metric d : X × X → R that induces T . We define a function
ι ∈ Hom ((X, T ), (L,O)) by ι(x1)(x2) := d (x1, x2).

According to the triangle inequality, for arbitrary x1, x2, x ∈ X we obtain

|ι(x1)(x)− ι(x2)(x)| = |d (x1, x)− d (x2, x)| ≤ d (x1, x2)

and therefore, ‖ι(x1)− ι(x2)‖∞ ≤ d (x1, x2). Since we also have

|ι(x1)(x2)− ι(x2)(x2)| = |d (x1, x2)− d (x2, x2)| = d (x1, x2),

we even obtain ‖ι(x1)− ι(x2)‖∞ = d (x1, x2), which means that ι is an isometry.
The set C := co (ι[X]) is clearly a convex subset of L. We define Y := ι[X] and claim

that it is a closed subset of (C,O|C). In order to show this, let f ∈ C \ Y be a given
function. By definition of C there exists a finite set I and there are (λi)i∈I ∈ [0, 1]I and
(zi)i∈I ∈ XI such that ∑

i∈I
λi = 1 and f =

∑
i∈I

λiι(zi).

As f /∈ Y we have ‖f − ι(zi)‖∞ > 0 for all i ∈ I. Hence, we can choose δ ∈ R+, such that
for all i ∈ I the inequality 2δ < ‖f − ι(zi)‖∞ is satisfied.

We claim that C ∩ B‖·‖∞(f, δ) ⊆ C \ Y . In order to show this, assume there exists
g ∈ C ∩B‖·‖∞(f, δ) such that g ∈ Y . By the triangle inequality for any i ∈ I we have

‖f − ι(zi)‖∞ ≤ ‖f − g‖∞ + ‖g − ι(zi)‖∞.

Therefore

‖g − ι(zi)‖ ≥ ‖f − ι(zi)‖∞ − ‖f − g‖∞ > 2δ − δ = δ.

Since g ∈ Y , there exists x ∈ X such that ι(x) = g. We saw above that ι is an isometry.
Hence

ι(zi)(x) = d (zi, x) = ‖ι(zi)− ι(x)‖∞ = ‖ι(zi)− g‖∞ > δ.

From this we obtain

‖f − g‖∞ ≥ |f(x)− ι(x)(x)| = |f(x)− d (x, x)| = |f(x)| =
∑
i∈I

λiι(zi)(x) >
∑
i∈I

λiδ = δ.

This clearly contradicts g ∈ B‖·‖∞(f, δ).
Assume that (X, T ) is separable. Since (Y,O|Y ) is homeomorphic to (X, T ), there exists

a countable, dense subset D of (Y,O|Y ). The set A := {coM |M ⊆ D ∧#M ∈ Z+} is
countable and consists of compact subsets of (L,O). By a Corollary in [Kal14, p. 457],
all elements of A, endowed with the subspace topology of O, are separable. Therefore,
coD =

⋃
A is, as a countable union of separable sets, itself separable. Hence, there exists

a countable, dense subset E of (coD,O|coD).
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4 Absolute retracts and absolute neighborhood retracts

We claim that E is dense in (C,O|C). In order to show this, let y ∈ C and δ ∈ R+ be
given. By definition of C, there exist a finite set I, for every i ∈ I a point yi ∈ Y and a
number λi ∈ [0, 1], such that y =

∑
i∈I λiyi and

∑
i∈I λi = 1. Since D is dense in (Y,O),

for every i ∈ I we find zi ∈ D, such that ‖zi − yi‖∞ < δ/2. The point z :=
∑

i∈I λizi is
obviously an element of coD and satisfies

‖z − y‖∞ =

∥∥∥∥∥∑
i∈I

λi(zi − yi)

∥∥∥∥∥
∞

≤
∑
i∈I

λi‖zi − yi‖∞ <
δ

2

∑
i∈I

λi =
δ

2
.

As z ∈ coD there exists u ∈ E, such that ‖u− z‖∞ < δ/2. Therefore, we obtain

‖y − u‖∞ ≤ ‖y − z‖∞ + ‖z − u‖∞ < δ.

Thus, E is dense in (C,O|C) and (C,O|C) is separable.

The following Theorem is from [Hu65, p. 84]. It also holds true for other categories of
topological spaces than the ones for which it is stated here.

Theorem 4.1.4. If C is one of the categories Met or sepMet, then every absolute neigh-
borhood retract (respectively absolute retract) for C is an absolute neighborhood extensor
(respectively absolute extensor) for C.

Proof. We will only proof the theorem for absolute neighborhood retracts and absolute
neighborhood extensors. The proof for absolute retracts and absolute extensors is similar.
According to Theorem 4.1.3, it suffices to show this Theorem for an absolute neighborhood
retract (Y,O|Y ) for C, where

(
L,+, (ωλ)λ∈R, ‖·‖

)
is a Banach space, O is the induced

topology of ‖·‖, the set C is a convex subset of L and Y is a closed subset of (C,O|C).
Since Theorem 4.1.3 asserts that (C,O|C) is an object of C, there exists a neighborhood V
of Y in (C,O|C) and a retraction r ∈ Hom ((V,O|V ), (Y,O|Y )).

Let A be a closed subset of a given object (X, T ) of C and f ∈ Hom ((A, T |A), (Y,O|Y )),
which implies f ∈ Hom ((A, T |A), (C,O|C)). Hence, by Theorem 3.2.2 there exists an
extension f̃ ∈ Hom ((X, T ), (C,O|C)) of f . Obviously, U := f̃−1(V ) is a neighborhood of
A in (X, T ). The function f ∈ Hom ((U, T |U ), (Y,O|Y )) defined by f := r ◦ f̃ |U satisfies

f(x) = r
(
f̃(x)

)
= r(f(x)) = f(x) for all x ∈ A. Thus, f is an extension of f and (Y,O|Y )

is an absolute neighborhood extensor.

4.2 Properties of absolute neighborhood retracts

The following two propositions are obviously true.

Proposition 4.2.1. Every absolute retract for a full subcategory C of Top is an absolute
neighborhood retract for C.

Proposition 4.2.2. Let C be a full subcategory of Top and B a full subcategory of C. If
a topological space (X, T ) is an object of B and an absolute neighborhood retract (respec-
tively absolute retract) for C, then it is also an absolute neighborhood retract (respectively
absolute retract) for B.
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4 Absolute retracts and absolute neighborhood retracts

An application of Theorem 4.1.4, Proposition 3.1.4 and Theorem 4.1.1 yields

Proposition 4.2.3. If the product space of absolute retracts for Met is metrizable, then
it is an absolute retract for Met.

Since the product space of finitely many metrizable spaces is itself metrizable, we can
apply Theorem 4.1.4, Proposition 3.1.5 and Theorem 4.1.1 and obtain

Proposition 4.2.4. The product space of finitely many absolute neighborhood retracts
for Met is an absolute neighborhood retract for Met.

An application of Theorem 4.1.4, Proposition 3.1.6 and Theorem 4.1.1 yields

Proposition 4.2.5. Every open subspace of an absolute neighborhood retract for Met is
an absolute neighborhood retract for Met.

An application of Theorem 4.1.4, Proposition 3.1.8 and Theorem 4.1.1 yields

Proposition 4.2.6. Every neighborhood retract of an absolute neighborhood retract for
Met is an absolute neighborhood retract for Met.

Definition 4.2.7. A topological space (X, T ) is said to be a local absolute neighborhood
retract for a full subcategory C of Top if for every point x ∈ X there exists a neighborhood
U of x in (X, T ), such that (U, T |U ) is an absolute neighborhood retract for C.

An application of Theorem 4.1.4, Theorem 3.3.2 and Theorem 4.1.1 yields

Theorem 4.2.8. If a metrizable space is a local absolute neighborhood retract for Met,
then it also is an absolute neighborhood retract for Met.

Example 4.2.9. Let d ∈ Z+ and Kd :=
{
x ∈ Rd : ‖x‖2 ≤ 1

}
be the closed unit ball in Rd

and Sd :=
{
x ∈ Rd : ‖x‖2 = 1

}
the unit sphere in Rd. Since Sd is a metrizable manifold, it

is by Remark 4.1.2, Proposition 4.2.5 and Theorem 4.2.8 an absolute neighborhood retract
for Met. On the other hand, by a Corollary in [WKB20, p.103], the set Sd is not a retract
of Kd. Thus, Sd is definitely not an absolute retract for Met.

4.3 Homotopies

Definition 4.3.1. Let (X, T ) and (Y,O) be topological spaces and U an open cover of
(Y,O). Two functions f, g ∈ Hom ((X, T ), (Y,O)) are called U-close if for every x ∈ X
there exists a U ∈ U such that {f(x), g(x)} ⊆ U . A homotopy

H ∈ Hom ((X × [0, 1], T × E([0, 1])), (Y,O)) (4.1)

is said to be limited by U if for every x ∈ X there exists U ∈ U such thatH[{x} × [0, 1]] ⊆ U .
The functions f and g are called U-homotopic if there exists a homotopy (4.1) that is limited
by U , such that H(·, 0) = f and H(·, 1) = g.
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4 Absolute retracts and absolute neighborhood retracts

Lemma 4.3.2. Let C be a convex subset of a locally convex, metrizable topological vector
space

(
L,+, (ωλ)λ∈R,O

)
and Y a closed subspace of (C,O|C). If U is an open cover of

(Y,O|Y ) and (Y,O|Y ) an absolute neighborhood retract for Met, then there exists an open
neighborhood N of Y in (C,O|C) and a retraction r ∈ Hom ((N,O|N ), (Y,O|Y )), such that
for every y ∈ N there exists an open and convex neighborhood Cy of y in (C,O|C) and that
V = {Y ∩ Cy | y ∈ N} is an open cover of (Y,O|Y ) and a refinement of U . Furthermore,
for every y ∈ N there exists Uy ∈ U , such that Cy ⊆ r−1(Uy).

Proof. Since (Y,O|Y ) is an absolute neighborhood retract for Met, there exists an open
neighborhood N of Y in (C,O|C) and a retraction r ∈ Hom ((N,O|N ), (Y,O|Y )). The set{
r−1(U) | U ∈ U

}
is obviously an open cover of (N,O|N ). Hence, for a given y ∈ N we find

a set Uy ∈ U such that y ∈ r−1(Uy). Since N is an open subset of (C,O|C), so is r−1(Uy).
Therefore, there exists an open subset Oy of (L,O), such that r−1(Uy) = Oy ∩ C. Since
L is locally convex, there exists a convex, open neighborhood C̃y of y in (L,O), such that
C̃y ⊆ Oy. As an intersection of two convex sets, Cy := C̃y ∩ C is convex, where

Cy = C̃y ∩ C ⊆ Oy ∩ C = r−1(Uy) ⊆ N.

Furthermore, Cy is an open subset of (C,O|C). Since r is a retraction, we have Y ∩ Cy ⊆
Y ∩r−1(Uy) ⊆ Uy. Thus, the set V := {Y ∩ Cy | y ∈ N} is clearly an open cover of (Y,O|Y )
and a refinement of U .

Theorem 4.3.3. For every open cover U of a metrizable space (Y,S) which is an absolute
neighborhood retract for Met there exists an open cover V of (Y,S) such that V is a
refinement of U and for every topological space (X, T ) the following holds true. Any two
V-close functions f, g ∈ Hom ((X, T ), (Y,S)) are U-homotopic.

Proof. By Theorem 4.1.3 we can assume without loss of generality that there exists a
convex subset C of a Banach space

(
L,+, (ωλ)λ∈R, ‖·‖

)
, where ‖·‖ induces the topology O

and such that Y is a closed subset of (C,O|C) with S = O|Y . Let U be an open cover
of (Y,O|Y ). In accordance with Lemma 4.3.2 we obtain an open neighborhood N of Y in
(C,O|C) and a retraction r ∈ Hom ((N,O|N ), (Y,O|Y )), such that for every y ∈ N there
exists an open and convex neighborhood Cy of y in (C,O|C), where V = {Y ∩ Cy | y ∈ N}
is an open cover of (Y,O|Y ) and a refinement of U . Furthermore, for every y ∈ W , there
exists Uy ∈ U , such that Cy ⊆ r−1(Uy).

Given a topological space (X, T ) and two V-close functions f, g ∈ Hom ((X, T ), (Y,O))
we define the homotopy H̃ ∈ Hom ((X × [0, 1], T × E([0, 1])), (N,O|N )) by H̃(x, λ) :=
λg(x) + (1 − λ)f(x). The function H ∈ Hom ((X × [0, 1], T × E([0, 1])), (Y,O)) defined
by H := r ◦ H̃ is clearly also a homotopy.

It remains to show that H is limited by U and that ran
(
H̃
)
⊆ N . In order to do this,

let x ∈ X be a given point. Since f and g are V-close, there exists y ∈ N , such that
{f(x), g(x)} ⊆ Y ∩ Cy. Since Cy is convex, we clearly have H̃[{x} × [0, 1]] ⊆ Cy. There

exists Uy ∈ U , such that Cy ⊆ r−1(Uy) ⊆ N and therefore, ran
(
H̃
)
⊆ N . Furthermore,

H[{x} × [0, 1]] = r
[
H̃[{x} × [0, 1]]

]
⊆ r[Cy] ⊆ r

[
r−1(Uy)

]
⊆ Uy.
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Theorem 4.3.4. Let (Y,S) be an absolute neighborhood retract for Met and A a closed
subset of a metrizable topological space (X, T ). If U is an open cover of (Y,S), then there
exists a refinement V of U that is still an open cover of (Y,S) and such that for any two
V-close functions f, g ∈ Hom ((X, T ), (Y,S)) and any homotopy

H̃ ∈ Hom ((A× [0, 1], T |A × E([0, 1])), (Y,S))

that is limited by V and satisfies H̃(·, 0) = f |A and H̃(·, 1) = g|A, there exists a homotopy
H ∈ Hom ((X × [0, 1], T × E([0, 1])), (Y,S)) that is limited by U and satisfies H(·, 0) = f ,
H(·, 1) = g and H|A×[0,1] = H̃.

Proof. By Theorem 4.1.3 we can assume without loss of generality that there exists a
convex subset C of a Banach space

(
L,+, (ωλ)λ∈R, ‖·‖

)
, where ‖·‖ induces the topology O

and such that Y is a closed subset of (C,O|C) with S = O|Y . Let U be an open cover
of (Y,O|Y ). In accordance with Lemma 4.3.2 we obtain an open neighborhood N of Y in
(C,O|C) and a retraction r ∈ Hom ((N,O|N ), (Y,O|Y )), such that for every y ∈ N there
exists an open and convex neighborhood Cy of y in (C,O|C), and V = {Y ∩ Cy | y ∈W}
is an open cover of (Y,O|Y ) and a refinement of U . Furthermore, for every y ∈ N , there
exists Uy ∈ U , such that Cy ⊆ r−1(Uy).

Let (X, T ) be a metrizable topological space and f, g ∈ Hom ((X, T ), (Y,O|Y )) be two
V-close functions. Furthermore, let H̃ ∈ Hom ((A× [0, 1], T |A × E([0, 1])), (Y,S)) be a
homotopy that is limited by V and satisfies H̃(·, 0) = f |A and H̃(·, 1) = g|A. Define the
function H ′ ∈ Hom ((X × [0, 1], T × E([0, 1])), (N,O|N )) by H ′(x, λ) := λg(x)+(1−λ)f(x).
For an arbitrary x ∈ X there exists y ∈ N , such that f(x), g(x) ∈ Y ∩Cy and Uy ∈ U , such
that Cy ⊆ r−1(Uy) ⊆ N . Since Cy is convex, we have

H ′[{x} × [0, 1]] ⊆ Cy ⊆ r−1(Uy) ⊆ N. (4.2)

The set

Q := (X × {0}) ∪ (A× [0, 1]) ∪ (X × {1})

is clearly a closed subset of (X × [0, 1], T × E([0, 1])). By Lemma 2.3.2, we have F ∈
Hom ((Q, (T × E([0, 1]))|Q), (Y,O|Y )), where

F (x, λ) :=


f(x) , if λ = 0

H̃(x, λ) , if x ∈ A
g(x) , if λ = 1.

Since (Y,O|Y ) is an absolute neighborhood retract for Met, we can apply Theorem 4.1.4.
Hence, we obtain that there exists an open neighborhoodW ofQ in (X × [0, 1], T × E([0, 1]))
and an extension

F ∈ Hom ((W, (T × E([0, 1]))|W ), (Y,O|Y ))

of F .
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Let x ∈ A be a given point and Vx ∈ V such that for all λ ∈ [0, 1] we have F (x, λ) =
H̃(x, λ) ∈ Vx. By continuity for a given λ ∈ [0, 1] there exists an open neighborhood
W x
λ of x in (X, T ) and an ελ ∈ R+, such that W x

λ × B[0,1](λ, ελ) ⊆ W and for all (z, µ) ∈
W x
λ×B[0,1](λ, ελ) we have F (z, µ) ∈ Vx. Since ([0, 1], E([0, 1])) is a compact topological space

and
{

B[0,1](λ, ελ) | λ ∈ [0, 1]
}

constitutes an open cover of ([0, 1], E([0, 1])), there exists a
finite subset Ex of [0, 1], such that

{
B[0,1](λ, ελ) | λ ∈ Ex

}
still covers [0, 1]. Define Wx :=⋂

{W x
λ | λ ∈ Ex} and consider (z, µ) ∈ Wx × [0, 1]. There exists ν ∈ Ex, such that µ ∈

B[0,1](ν, εν). Therefore (z, µ) ∈ W x
ν × B[0,1](ν, εν) ⊆ W showing Wx × [0, 1] ⊆ W . The set

M :=
⋃
{Wx | x ∈ A} is clearly an open neighborhood of A in (X, T ) satisfying A× [0, 1] ⊆

M × [0, 1] ⊆W .
We claim that the homotopy F ′ := F |M×[0,1] is limited by V. For a given x ∈ M there

exists z ∈ A, such that x ∈ Wz =
⋂
{W z

λ | λ ∈ Ez}. Let Vz ∈ V as before, satisfying in
particular F (z, λ) = H̃(z, λ) ∈ Vz for all λ ∈ [0, 1] we have . For an arbitrary µ ∈ [0, 1]
there exists ν ∈ Ez, such that µ ∈ B[0,1](ν, εν). Therefore, (x, µ) ∈ W z

ν × B[0,1](ν, εν) and

consequently, F ′(x, µ) = F (x, µ) ∈ Vz showing that F ′ is limited by V.
As a metrizable space, (X, T ) satisfies (T4). There exists an open subset R of (X, T ),

such that A ⊆ R ⊆ clT (R) ⊆M . In accordance with Lemma 2.2.8, there exists a function
s ∈ Hom ((X, T ), ([0, 1], E([0, 1]))), such that s[X \R] ⊆ {0} and s[A] ⊆ {1}. We define a
homotopy G ∈ Hom ((X × [0, 1], T × E([0, 1])), (N,O|N )) by

G(x, λ) :=

{
s(x)F ′(x, λ) + (1− s(x))H ′(x, λ) , if x ∈M
H ′(x, λ) , if x ∈ X \R.

We claim that the homotopy H ∈ Hom ((X × [0, 1], T × E([0, 1])), (Y,O)) defined by

H(x, λ) := r(G(x, λ))

is limited by U . In order to show this, consider an arbitrary x ∈ X. According to (4.2),
in case s(x) = 0 there exists Ux ∈ U , such that H ′[{x} × [0, 1]] ⊆ r−1(Ux) and further
H[{x} × [0, 1]] = r[H ′[{x} × [0, 1]]] ⊆ r

[
r−1(Ux)

]
⊆ Ux.

Consider the case that s(x) ∈ R+. Since we showed above that F ′ is limited by V, there
exists y ∈ N , such that F ′[{x} × [0, 1]] ⊆ Y ∩Cy. In particular, we have F ′(x, 0) = f(x) ∈
Y ∩Cy and F ′(x, 1) = g(x) ∈ Y ∩Cy. Cy being convex together with H ′[{x} × [0, 1]] ⊆ Cy
implies G[{x} × [0, 1]] ⊆ Cy as well. Since there exists Uy ∈ U , such that Cy ⊆ r−1(Uy),
we obtain that H[{x} × [0, 1]] = r[G[{x} × [0, 1]]] ⊆ r

[
r−1(Uy)

]
⊆ Uy.

Finally, we have H(·, 0) = r◦G(·, 0) = r◦f = f , as well as H(·, 1) = r◦G(·, 1) = r◦g = g
and H|A×[0,1] = r ◦G|A×[0,1] = r ◦ F ′|A×[0,1] = F |A×[0,1] = H̃|A×[0,1].

Theorem 4.3.5. A metrizable space (Y,O) is an absolute neighborhood retract for Met,
if and only if there exists an open cover V of (Y,O), such that for every metrizable space
(X, T ), every closed subspace A of (X, T ), every two V-close functions

f, g ∈ Hom ((X, T ), (Y,O))

and every homotopy H ∈ ((A× [0, 1], T |A × E([0, 1])), (Y,O)) that is limited by V with
H(·, 0) = f |A and H(·, 1) = g|A there exists a homotopy

H ∈ Hom ((X × [0, 1], T × E([0, 1])), (Y,O)),
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such that H|A×[0,1] = H as well as H(·, 0) = f and H(·, 1) = g.

Proof. In order to proof sufficiency, let (Y,O) be an absolute neighborhood retract for Met.
The set U := {Y } is obviously an open cover of (Y,O). Therefore, we can apply Theorem
4.3.4 and are finished.

It remains to show necessity. Let V be an open cover of the metrizable space (Y,O)
that is as required in the statement of the Theorem. Consider an arbitrary y ∈ Y . Since
V is a cover of Y , there exists V ∈ V such that y ∈ V . Define the functions f1, g1 ∈
Hom ((V,O|V ), (Y,O)) and the homotopy

H1 ∈ Hom
((
{y} × [0, 1],O|{y} × E([0, 1])

)
, (Y,O)

)
by f1(v) := y, g1(v) := v and H1(y, λ) := y. Since (Y,O) is metrizable, so is (V,O|V ) and
{y} is closed in (Y,O). Furthermore, f1 and g1 are obviously V-close and H1 is limited by
V. Therefore, there exists a homotopy H1 ∈ Hom ((V × [0, 1],O|V × E([0, 1])), (Y,O)) such
that H1|{y}×[0,1] = H1, as well as H1(·, 0) = f1 and H1(·, 1) = g1. Since ([0, 1], E([0, 1])) is

a compact space and H1(y, λ) = y for all λ ∈ [0, 1] there exists an open neighborhood U of
y in (Y,O), such that H1[U × [0, 1]] ⊆ V .

Let A be an arbitrary closed subspace of a given metrizable space (X, T ) and h ∈
Hom ((A, T |A), (U,O|U )). Define f2, g2 ∈ Hom ((X, T ), (Y,O)) and

H2 ∈ Hom ((A× [0, 1], T |A × E([0, 1])), (Y,O))

by f2(x) := g2(x) := y and

H2(x, λ) :=

{
H1(h(x), 2λ) , if λ ∈ [0, 1/2],

H1(h(x), 2− 2λ) , if λ ∈ [1/2, 1].

By assumption, there exists a homotopy H2 ∈ Hom ((X, T ), (Y,O)), such that H2|A×[0,1] =

H2, as well as H2(·, 0) = f2 and H2(·, 1) = g2. Define h̃ := H2(·, 1/2). We have

h̃|A = H2(·, 1/2)|A = H1(h|A(·), 1) = g1 ◦ h|A = h|A.

Hence, W := h̃−1(U) is an open neighborhood of A in (X, T ) and h := h̃|W is an extension
of h over the neighborhood W of A in (U,O|U ). We conclude that U is an absolute
neighborhood extensor for Met. By Theorem 4.1.4, the topological space (U,O|U ) is an
absolute neighborhood retract for Met and (Y,O) is a local absolute neighborhood retract
for Met. An application of Theorem 4.2.8 finishes the proof.

Lemma 4.3.6. Let A be a topological space (X, T ) that satisfies (T4). Then for every
neighborhood U of B := (X × {0})∪ (A× [0, 1]) in (X × [0, 1], T × E([0, 1])) there exists a
function F ∈ Hom ((X × [0, 1], T × E([0, 1])), (U, (T × E([0, 1]))|U )) such that F |B = idB.

Proof. Since U is a neighborhood of B in (X × [0, 1], T × E([0, 1])), there exists an open
subset U ′ of (X × [0, 1], T × E([0, 1])) such that B ⊆ U ′ ⊆ U . Since D := (X × [0, 1]) \ U ′
is closed in (X × [0, 1], T × E([0, 1])), we can apply Lemma 2.2.7 and obtain that π1[D] is
closed in (X, T ).
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By Lemma 2.2.8, which requires (X, T ) to satisfy (T4), there exists

f ∈ Hom ((X, T ), ([0, 1], E([0, 1])))

such that f [A] ⊆ {1} and f [π1[D]] ⊆ {0}. We claim that the function

F ∈ Hom ((X × [0, 1], T × E([0, 1])), (U, (T × E([0, 1]))|U ))

defined by F (x, λ) := (x, f(x)λ) satisfies F |B = idB. In order to show this let (x, λ) ∈ B
be given. If (x, λ) ∈ X × {0}, then F (x, λ) = F (x, 0) = (x, 0) = (x, λ). If, on the other
hand, (x, λ) ∈ A× [0, 1], then F (x, λ) = (x, f(x)λ) = (x, λ).

It remains to show that ranF ⊆ U . Given any (x, λ) ∈ X × [0, 1] we can distinguish two
cases. If x ∈ π1[D], then f(x) = 1 and F (x, λ) = (x, f(x)λ) = (x, 0) ∈ U . If, on the other
hand, x ∈ X \ π1[D], then F (x, λ) = (x, f(x)λ) /∈ D. Therefore, F (x, λ) ∈ U ′ ⊆ U .

Theorem 4.3.7 (Borsuk Homotopy Extension Theorem). If A is a closed subspace of
a metrizable space (X, T ), if the topological space (Y,O) is an absolute neighborhood
retract for Met and F ∈ Hom ((A× [0, 1], T |A × E([0, 1])), (Y,O)) is a homotopy such that
f ∈ Hom ((A, T |A), (Y,O)) defined by f(x) := F (x, 0) can be extended to a function
g ∈ Hom ((X, T ), (Y,O)), then there exists a homotopy

G ∈ Hom ((X × [0, 1], T × E([0, 1])), (Y,O))

such that for all x ∈ X the equlaity G(x, 0) = g(x) is satisfied and for all (x, λ) ∈ A× [0, 1]
we have G(x, λ) = F (x, λ).

Proof. We define B := (X × {0}) ∪ (A× [0, 1]) and, in accordance with Lemma 2.3.2,

H ∈ Hom ((B, T × E([0, 1])), (Y,O))

by

H(x, λ) :=

{
F (x, λ) , if (x, λ) ∈ A× [0, 1],

g(x) , if (x, λ) ∈ X × {0}.

Since (Y,O) is an absolute neighborhood retract for Met and B is a closed subspace of
X × [0, 1], we can apply Theorem 4.1.4 and obtain a neighborhood V of B in

(X × [0, 1], T × E([0, 1]))

and an extension H ′ ∈ Hom ((V, (T × E([0, 1]))|V ), (Y,O)) of H. By Lemma 4.3.6 there
exists F̃ ∈ Hom ((X × [0, 1], T × E([0, 1])), (V, (T × E([0, 1]))|V )) such that F̃ |B = idB. We
define the function G ∈ Hom ((X × [0, 1], T × E([0, 1])), (Y,O)) by

G(x, λ) := H ′
(
F̃ (x, λ)

)
.

Given x ∈ X we have

G(x, 0) = H ′
(
F̃ (x, 0)

)
= H ′(x, 0) = g(x)

and for (x, λ) ∈ A× [0, 1]

G(x, λ) = H ′
(
F̃ (x, λ)

)
= H ′(x, λ) = F (x, λ).
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