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1 Introduction

As stated in the title, the aim of this bachelor thesis is to introduce absolute neighbor-
hood retracts, find some examples of them and find out some of their properties. Basic
knowledge about topological spaces is required in order to understand this bachelor thesis.
All important theorems, which the author does not count as basic knowledge in topology,
are either proofed in this bachelor thesis or at least stated with a reference to a place
where the proof can be found. What is assumed to be known is strongly related to what is
taught during the bachelor study at TU Wien. The introduction to absolute neighborhood
retract theory should also enable the reader to easily continue studying absolute neighbor-
hood retracts in [Hu65] or [Mil01]. The book [Hu65|, while being rather old, comprises a
very comprehensive study of absolute neighborhood retracts. The book [Mil01] introduces
absolute neighborhood retracts rather as a tool that is used to proof other theorems.

The bachelor thesis starts with a chapter about topological spaces, where a lot of pre-
liminary work for the following chapters is done. Chapter two is concerned with absolute
neighborhood extensors because they are strongly related to absolute neighborhood re-
tracts. The third chapter immediately starts with an investigation of this relation, which
enables us to state many results from the second chapter for absolute neighborhood retracts.
After this, the relation between special homotopies and absolute neighborhood retracts is
investigated.



2 Topological spaces

Topological spaces are the most important mathematical structures in this bachelor thesis.
Many properties of topological spaces, which are assumed to be known when reading this
paper, can be found in [Kall4]. Throughout this paper, we employ the notation N :=
{0,1,2,...}, Z* :={1,2,3,...} and R := (0, +00).

2.1 Basic properties

Lemma 2.1.1. If A is a closed subset of a topological space (X,7T), U is an open subset
of (X,7) and V is an open subset of (A, 7 |4) such that V' C U, then V U (U \ A) is open
in (X,7).

Proof. By definition of the subspace topology, there exists an open subset W of (X,7)
such that W N A = V. Hence,

VUU\A) = (WNAUU\NA) =WNANT)U U\ A)
=WUU\NA)NAUUNA)NUUU\A)
—(WUU\A)NUUANU=WUU\A)NU.

Since W, as well as U \ A and U are open in (X,7), sois (WU (U \ A)) and therefore,
VU (U\A). O

Definition 2.1.2. Let X beaset and d: X x X — R a metric on X. Given z € X and
e € RT, we define the open ball

Bi(z,e) :={y € X | d(z,y) < e}
Furthermore, we define the distance between two non-empty sets A, B C X by
dist (A, B) :=inf {d (a,b) |a € A,b € B}
and dist (z, A) := dist ({z}, 4).

Lemma 2.1.3. If (X,7) is a metrizable space and A € RT, then there exists a metric
d: X x X — [0, ] that induces 7.

Proof. Let (X, T) be a metrizable space, A\ € RT and d a metric that induces 7. We define

a function d : X x X — [0,\] by d(z,y) := min {d(m,y),)\}. For arbitrary z,y,z € X
clearly d (z,y) > 0. Furthermore,

d(z,y) =0 d(z,y) =0z =y.
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The symmetry property of d is obviously transferred to d and

d(z,2z) = min {El(x, 2), )\} < min {El(x, y) +d(y, 2), )\}
< min {El(a:, Y), )\} + min {El(y, z), /\} =d(z,y) +d(y,2).
Therefore, d is a metric.

It remains to show that d induces 7. In order to do this, consider an arbitrary x € X
and € € RT. Defining p := min {&, A}, for arbitrary y € Bq(x, p) we have

d(w,y) < min {d(@,y), A} = d(2,y) <=,
Hence, Bq(z, p) € Bj(z,¢). For z € B5(x, p) we obtain
d(z,2z) = min {a(x, z), )\} =d(z,z) <,

which shows B3(x, p) € Bq(z,¢). Therefore, d and d induce the same topology 7. O

Definition 2.1.4. Let (X,7) be a topological space.

Two subsets A, B C X are said to be separated in (X,7T), if each is disjoint from the
others closure in (X,7). Two points z,y € X are said to be separated in (X,7), if the
sets {z} and {y} can be separated in (X, 7).

A subset U of X is called a neighborhood of a subset A of X in (X,T) if there exists
aset O € T with A C O CU. The neighborhoods of a point z € X in (X,7) are the
neighborhoods of the set {z} in (X, 7).

Two subsets A and B of X are said to be separated by neighborhoods in (X, T), if there
are disjoint neighbourhoods of the two sets.

Definition 2.1.5. We define the following separation axioms for a topological space (X, T).
(Th) Any two distinct points can be separated in (X, 7).
(T2) Any two distinct points can be separated by neighbourhoods in (X, 7).

(T5) Any closed subset A of (X,7T) and any point z € X \ A can be separated by neigh-
bourhoods in (X, 7).

(T4) Any two disjoint closed subsets of (X, 7) can be separated by neighbourhoods.
Remark 2.1.6. A topological space that satisfies|(75)|is also called a Hausdorff space.

Lemma 2.1.7. Let A and X’ be closed subsets of a topological space (X, 7T) that satisfies
and A" := X'N A. If B’ is a closed neighborhood of A" in (X', T|x/), then there exists
a closed neighborhood B of A in (X,7T) such that B’ = X' N B.

Proof. Since B’ is a neighborhood of A’ in (X', T|x), there exists an open subset O’ of
(X', T|x’) such that A’ C O" C B’. There exists an open subset O of (X,7T) such that
ONX = 0. Weobtain X'\ 0 = X"\ (ONnX’') = X"\ O. Therefore, X"\ O’ is
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closed in (X, 7). Since X'\ O’ and A are two disjoint and closed subsets of (X,7T), a
space that satisfies there exists a closed neighborhood C' of A in (X,7) such that
CN(X'"\O')=0. Hence, X' NC C O’ C B

Since B’ and C are closed subsets of (X, T), sois B := B'UC. Since C is a neighborhood
of Ain (X,T), so is B. We have

X'NB=X'n(Bul)=X'nB)u(X'nC)=B'U(X'nC) =78
O

Definition 2.1.8. Let K € {R,C}. The tuple (L7 +, (WA) xek> (9) is said to be a topological
vector space over K, if and only if (L, +, (w)\))\eK) is a vector space over K with the scalar
multiplication - : K x X — X defined by -(\, ) = wx(x), and (L, Q) is a topological space
such that + and - are continuous functions, when K is furnished with the standard toplogy
and products of sets with the product toplogy.

The topological vector space is called locally convez, if and only if for every neighborhood
U of 0in (L, O) there exists a convex neighborhood V of 0 in (L, O) such that V C U.

Remark 2.1.9. Whenever we deal with a subset A of some R" or a set with an obvious
bijection to a subset of some R", then we denote with (A4,&£(A)) the topological space
endowed with the topology induced by the euclidean norm ||-[|, : A — [0, 00) defined by

n 3
el = (z) |
=1

2.2 The category of topological spaces

We want to use the notion of a class in this bachelor thesis. Since the whole bachelor
thesis is based on the ZFC-axioms, we can not define classes as objects, because they do
not exist in this axiomatic system. We can think of a class as a property, written down
as a mathematical formula. An object, which is always a set in our axiomatic system, is
said to be in the class C, if and only if it has the property that characterizes C. We will for
example talk about the class of all metrizable spaces.

Definition 2.2.1. A category € is given by the following.
1. A class Ob (€) of objects.

2. For any two objects A, B of € there is a set Home (A4, B) of morphisms. All these
sets have to be pairwise disjoint. For every object A there is the identity morphism
ida € Homg (A, A)

3. For all A, B,C in Ob (€) there is a function
Homg (B, C') x Homg (A, B) — Homg (A, C)

given by (g, f) — g o f which is called composition. For all A, B,C, D in Ob(€) and
for all f € Home(A, B), g € Home(B,C) and h € Home(C, D) we have ho (go f) =
(hog)o fandidgof = f as well as goidp = g.
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Definition 2.2.2. A full subcategory of a category € consists of a subclass of objects of €
together with all the morphisms between sets of this subclass and the composition of €.

Example 2.2.3. Examples for categories are the following.

1. The category Get of all sets with the functions between sets as the morphisms and
the usual composition of functions as the composition.

2. The categroy Top of all topological spaces with the continuous functions as morphisms
and the usual composition of functions as the composition.

3. The category TUGk of all topological vector spaces over a given topological field K
with the continuous and K-linear functions as morphisms and the usual composition
of functions as the composition.

4. The full subcategory L£ETVGk of TYGSK containing all locally convex topological
vector spaces over a given topological field K.

Definition 2.2.4. A full subcategory € of Top is said to be weakly hereditary, if and only
if for all objects (X,7T) of € and all closed subspaces A of (X,7), the topological space
(A, T|a) is also an object of €.

Example 2.2.5. Examples for weakly hereditary categories of topological spaces are the
following.

1. The full subcategory $Haus of Top containing all topological spaces that satisfy the
axiom |(75)]
2. The full subcategory ¥4 of Top containing all topological spaces that satisfy the axiom

(T4)

3. The full subcategory et of Top containing all metrizable spaces.

4. The full subcategory sepfiet of Top containing all separable and metrizable spaces.
Some properties of categories can be found in [Rei20].

Remark 2.2.6. Instead of introducing categories, it would be possible to solely work with
classes, but this would not make much difference for our purposes. Since we will only
deal with the category of topological spaces in this bachelor thesis, we are going to write
Hom ((X,T),(Y,0)) for the set Homg,, ((X,7T),(Y,0)) of all continuous function from
(X,T) to (Y,0).

Lemma 2.2.7. If (X, 7) be a topological space and (K,Q) a compact topological space,
then the projection m; € Hom ((X x K, T x 0),(X,T)) defined by mi((x,k)) := z is a
closed function.

Proof. Let A be a closed subset of (X x K, T x O) and (71((z;, k:)));c; a net in 71 [A] that
converges in (X,7T) to some z € X. Since K is compact, there exists a subnet (kij)j cJ of
(ki);e; that converges in (K, O) to some k € K. Given any neighborhoods U of = in (X, T)
and V of k in (K, O) there exists jo € J such that for all j > jo we have (xz']., kij) eUxV.
Hence, (mij,k:ij)jeJ converges in (X x K,T x O) to (x,k). Since A is closed, we have

(x,k) € Aand x = m1((x, k)) € m1[A]. This shows that 71[A] is closed in (X, 7). O
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The following Lemma is a well known result in topology, which can for example be
found in [Kall4, p. 445].

Lemma 2.2.8 (Urysohn’s Lemma). If A and B are two closed and disjoint subsets of a
topological space (X,7T) that satisfies then there exists an

f € Hom ((X,T), ([0,1],£((0, 1])))

such that f[A] C {0} and f[B] C {1}.

2.3 Covers of topological spaces

Definition 2.3.1. Let (X,7) be a topological space. A set U of subsets of X is called
locally finite if for every x € X there exists a neighborhood W of z in (X, 7) such that the
set {U €U |UNW #} is finite. Another set V of subsets of X is called a refinement of
U if for every V € V there exists a U € U such that V C U. The set U is called a cover of
X if YU = X. The set U is said to be an open (closed) cover of (X, T) if U is a cover of
XandU CTHX\U|UecU}CT).

Lemma 2.3.2. Let (X,7) and (Y, O) be two topological spaces and A a locally finite,
closed cover of (X, 7). If for all A € A there exists a function f4 € Hom ((A,Ta), (Y, 0))
such that for all A, B € A the equality fa|an = fBlanp is satisfied, then the function
f: X =Y defined by f(z) := fa(z), x € A, satisfies f € Hom (X, T),(Y,0)).

Proof. Let x € X be a given point. Since A is a locally finite cover of (X,7), there
exists an open neighborhood U, of z in (X,T), such that A, :={A€ A|U,NA# D} is
finite. Consequently, the set A’ :={A € A |z € A} is finite as well. Consider an arbitrary
neighborhood W of f(z) in (Y,0). For every A € A’ there exists an open neighborhood
Vi of x in (A, T|a) such that fa [VA} C W. Clearly, Vi = Van A for some V4 € T.

Consequently

V= (U0 (N{valae 4)\ (U (A 4))

is an open neighborhood of z in (X, 7).

Let z € V be a given point. Since A is a cover of X, there exists A € A such that z € A.
Hence, z € U, N A and consequently, we have A € A,. Since z ¢ |J (A \ A,), we even
obtain A € A/,. Hence, by definition of V' we have z € V4 and in turn z € VAN A = Va.
Consequently, f(z) € W. O

Remark 2.3.3. We denote by cly(A) the closure of a subset A of a topological space
(X, T). For a subset A of B(X) we define clr[A] := {clr(A) | A € A}.

Lemma 2.3.4. Let (X,7) be a topological space. If A C PB(X) is locally finite, then

clr (U .A) = U clr[A].
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Proof. For any A € A we have A C |JA and hence, clr(A) C cly(|JA). Thus, Jclr[A] C
dr(UA).

For the converse inclusion we take = € cly(|J.A). There exists a neighborhood U of x in
(X, T) such that the set A, :={A € A| ANU # 0} is finite. Since UN (Y (A\ Az)) =0,
we have ¢ clr(|J(A\ Az)). From

x € CIT<U .A) = ClT(U (AN Ax)> U CIT<U Ax>

we conclude

T € CIT(U Ax> = UCIT[AJ;] - UCIT[.A].
O

Lemma 2.3.5. If A is a locally finite, closed cover of a topological space (X,7), then
every point z € X has an open neighborhood U in (X, 7)) such that {A€ A| ANU # 0}
is finite and coincides with {A € A |z € A}.

Proof. Let x € X be a given point. Since A is locally finite, there exists an open neigh-
borhood V of z in (X,T) such that the set Ay := {A€ A| ANV # 0} is finite. Let
Ay :={Ae Az e A} and A" := Ay \ A,. Since all sets contained in the finite set Ay
are closed in (X, 7)), so are all sets contained in A" and therefore also | J.A’. Hence, the set
U:=V\ (UA) is an open neighborhood of z in (X, T).

If Ae Aisagiven set and ANU # (), then ANV # () implies A € Ay. Furthermore,
A ¢ A" and therefore A € A, which implies z € A. O

Lemma 2.3.6. Let A be a subset of a topological space (X, 7) and let B be a locally finite,
closed cover of (X, T). If for all B € B the set Up is a neighborhood of BN A in (B, T|g),
then U := |J{Up | B € B} is a neighborhood of A in (X, 7).

Proof. Let x be a given element of A. By Lemma there exists an open neighborhood
N, of z in (X,T) such that the set B, := {B€B|N,NB#0} = {BeB|xe€B}is
finite. For a given B € B, we have z € B, which implies x € BN A C Ug. Hence, Up is a
neighborhood of = in (B, 7T |p). Therefore, there exists an open subset Wpg of (X, 7T) such
that t € W N B C Upg.

Since B, is finite, W, := N, N (" {Wg | B € B,}) is open in (X,T). Let z € W, be
given. Since B is a cover of (X, 7)), there exists a B € B such that z € B. The fact that
z € N, implies BN N, # 0. Hence, B € B, and therefore z € BN Wz CUg CU. We
conclude that W, C U.

The set W := |J{W, | x € A} is clearly open in (X, T) satisfying A C W C U. Therefore
U is a neighborhood of A in (X, 7). O

Definition 2.3.7. Let < be a well order on a set S and 0 := minS. An element b € S is
called successor of a € S, if a < b and there exists no V' € S, such that a < V' < b. All
elements of S which are neither 0 nor the successor of another element of S are called limit
points.
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The proof of the following theorem is from [Bra03] and uses transfinite induction. We
will make use of the well-ordering theorem, a proof of which can be found in [GGH20, p.
126].

Lemma 2.3.8. Let U be a locally finite, open cover of a topological space (X,7) that
satisfies [(T4)l Then there exists an open cover V = {Viy | U € U} of (X,T) such for all
U € U the inclusion cly (Vi) € U holds true.

Proof. By the well-ordering theorem, there exists a well order < on the set U. Define
0 := min¥/ and for every W € U the set Uy = {U e U | U > W}. We claim that for all
W € U there exists a function fyy : U \ Uy — T, such that the set fy[U \ Uw] U Uy is
a cover of X and for all W < W the function Jw is an extension of f};, and the inclusion

ol ( . (W)) C W holds true. The definition Viy := fy(U) for all U € U will then finish

proof.

We proof our claim with transfinite induction and start with the base case defining the
open subset A := X \ (UUp) of (X,T) that clearly satisfies A C 0. Since (X, T ) satisfies
there exists Vy € T such that A C Vj C cly(Vp) C 0. Defining f(0) := Vp finishes the
the treatment of the base case.

We need to proof that our claim is true for a successor W’ of an element W € U
for which the claim is true. In order to do this, define Vi := fiy[U \Uy] and A =
X\ (UWw Uly)). The set A is clearly closed in (X,7) and | (Vyw UW' Uly) =
U Ww Ul ) = X implies A C W’. Since (X, T) satisfies there exists an open subset
Viyr of (X, T) such that A C Vi C clr (Vi) € W. Defining fyr := fw U{(W', Viy)} the
claim is true for W'.

It remains to proof the claim for a limit point W under the assumption that for all

W < W the claim is true. Define Vy = {fvi/ (W) | W< W} and the closed subset
A:=X\UWwUlw)) of (X,T). In the case A # () let x € A be given. There exists

W € U such that z € W and the definition of A guarantees W < W. Supposing W < W
and recalling that U, := {U €U | x € U} is finite, we find W such that U < W < W
for all U € U,. By assumption fy, [U \L{W] U Uy, covers X and Uy, NU, = ) implies
z € fi[U\Uy]. This clearly contradicts = ¢ JVw 2 fii-[U \ Uy | showing z € W.
Hence, in any case A C W. Just like in the previous steps we find Viyr € T such that
A C Viy C cly(Viy) € W. With the definition fy := {(W, Virr)} U (U { Fir | W < W})

O

we are finished.

Lemma 2.3.9. Let A be a closed subspace of a topological space (X,7T) that satisfies
If U is a locally finite, open cover of (4,7 |4) and V := {Viy | U € U} is a locally
finite, open cover of (X, 7) such that for all U € U the inclusion Viy N A C U is satisfied,
then there exists a closed neighborhood B of A in (X, T) and a locally finite, closed cover
W ={Wy |U €U} of (B, T|g) such that for all U € U the inclusion Wiy N A C U holds
true and for all finite subsets U’ # () of U we have

U =0={Wv|UecU'} =0

Proof. Since V is a locally finite cover of a topological space satisfying |(7}), by Lemma
there exists an open, locally finite cover V' = {V/; | U € U} of (X, T) such that for
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all U € U the inclusion cly(V/;) € Vi holds true. Clearly, cl[V'] is a closed, locally finite
cover of (X, 7). Hence, by Lemma for every x € X we find a neighborhood N, of z
in (X, 7), such that for all U € U with clr(V;) N N, # () we have x € clr(V})).

For every z € X we define U, := {U €U | z € cl7(V}})} and claim that the set O :=
{r € X | U, # 0} is open in (X, T). In order to show this, let z € O and consider z € N,.
For any given U € U, we have z € N, N cly(V};), hence clr(V;) N N, # 0. This implies
z € cly(VY;), which means U € U, showing U, C U,. Therefore, (U, # 0 yields U, # 0
and in turn z € O. Since z was arbitrary in N,, we have N, C O showing that O is open
in (X,7).

We also claim that A C O. Given any x € A for every U € U, we have U D Vy N A D
clr(V;) N A and z € cly(V};). Hence,

(e 2 (V{VwNAIUelhy} 2({dr (V) NA|U €Uy} 2 {a} #0)

verifying x € O and in turn A C O.

Since (X, T) satisfies there exists a closed neighborhood B of A in (X, 7)) such that
A C B CO. For every U € U we define Wy := Bnclr(V);) and W := {Wy | U € U}.
Since V = {cl7(V{;) | U € U} is a locally finite, closed cover of (X, T), W is a locally finite,
closed cover of (B, T|g). Furthermore, Wy N A C VyNACU for every U € U.

It remains to show the second property of W. In order to do this, consider a finite,
non-vanishing U’ C Y with \{Wy |U eU'} # 0. For x € N\{Wy |U €U’} C B and a
given U € U’ we have z € Wy = B Ncly(V];) implying U € U,. Hence, U’ C U, and the
fact that « € B C O finally implies () # U, C U O

2.4 Paracompact and fully T}, spaces

Definition 2.4.1. Let X # () be a set. For M C X and A C P(X) we define the star of
M with respect to A by

St (M, A):==|J{Ae A| AN M # 0},

A set B C P(X) is called a star refinement of A if the set {St (B, B) | B € B} is a refinement
of A.

Definition 2.4.2. A topological space (X, T) is called paracompact if every open cover of
(X, T) has a locally finite, open refinement that covers (X, 7). It is said to be fully T} if
every open cover of (X,7) has an open star refinement that covers (X, 7). We denote by
§%4 the full subcategory of Top that consists of all fully Ty spaces.

Lemma 2.4.3. The full subcategory §%4 of Top is a weakly hereditary subcategory of %4.

Proof. Let (X,T) be a topological space that is fully 7. First, we want to show that
(X, T) satisfies In order to do this, consider two closed and disjoint subsets A, B
of (X,T). The set U := {X \ A, X \ B} is clearly an open cover of (X, 7). Since (X,T)
is fully T}, there exists an open cover V of (X,7T), such that V is a star refinement of
U. The set Wy := J{V €V |V NA#D} is an open neighborhood of A in (X,7) and
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Wpg :=J{V € V|V N B # 0} is an open neighborhood of B in (X, T). If z € W is given,
then there exists V' € V such that z € V and VN A # (). Since V is a star refinement of
U, we obtain St (V,V) C X \ B. Therefore, VN B = () for all V' € ¥V with V' NV # 0.
Consequently, W4 N Wg = 0.

It remains to show that ¥4 is weakly hereditary. Let A be a given closed subset of
(X,T) and U an open cover of (A, T|4). Clearly, U = {U NA|U e Z]} for some U C T.
Obviously, the cover U = U U {X \ A} is an open cover of (X, 7). Since (X,T) is fully
Ty, there exists an open cover V of (X, T) such that V is a star refinement of &. The
set V = {V NA|VEVAVNA# (Z)} is clearly an open cover of (A,7|4). Consider

an arbitrary VN A € V with V € V. Since V is a star refinement of I, there exists
U € U such that St (V, fi) C U. The fact, that V¢ X \ A, implies U € U. Finally,

ADSt(VNA,YV)CSt (V, f/) C U shows that V is a star refinement of /. O

The proof of the following Theorem can be found in [BT19| p. 66].
Theorem 2.4.4. Every metrizable space is paracompact.

Lemma 2.4.5. If A is a closed subspace of a fully T4 topological space (X,7) and U
is a locally finite, open cover of (A, 7T |4), then there exists a locally finite open cover
V={Vy | U eU} of (X,T), such that Viy N A = U for every U € U.

Proof. For every = € A there exists an open subset W, of (A, 7T|4) that contains z and
for which the set U, := {U euUliun W, #+ @} is finite. We write W, N A = W, for some

W, € T. Since W := {W, | & € A} U{X \ A} is clearly an open cover of the fully T} space
(X,T), it has a star refinement )V that is an open cover of (X, 7).

Fix some U € U and define Vj; = U U (X \ A), which is clearly open in (X, 7). For
all U e U\ {U}, the set Viy := U U (St (U, W)\ A) is open in (X,7T) by Lemma [2.1.1
Therefore, V := {Viy | U € U} is an open cover of (X,7). For all U € U we clearly have
VonA=U.

It remains to show that V is locally finite. In order to show this, let x € X be a given
point. Since W is a cover of X, there exists W € W such that x € W. For any U € U\ {ﬁ}
the inclusion U C St (U, W) is satisfied. Therefore, if Viy NW # ), then W NSt (U, W) # 0.
Equivalently, we can say that there exists W/ € W such that WNW' #£ () and W/ NU # 0,
which we can write as U N St (W, W) # (. By definition of W there exists W € W such
that St (W, W) C W. We obtain UNW 2 U NSt (W,W) # 0. Since U N (X \ A) = 0,
there exists z € A such that W = W,. Hence, U € U, which concludes the proof, because
{VU eV|Uel,u {U}} is clearly finite. 0

Lemma 2.4.6. Let (X, 7T) be a paracompact topological space and A and B two closed
subsets of (X, 7). If

Vee BIU,VoeT :(ACU Nz eV AU NV, =10),

then A and B are separated by neighbourhoods.

10
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Proof. Let A and B be closed subsets of a paracompact topological space (X,7) and
for all x € B the sets U, and V, as in the statement of the Lemma. Since (X,7) is
paracompact and V := {V; |z € B} U (X \ B) is an open cover of (X, T), there exists a
locally finite, open cover W of (X, T) which is a refinement of V. We define the set W :=
{W cEW|W ¢ X\B}. For every W € W there exists x € B such that W C V.. Since
Ve,NU,; =0 and U, € T, we obtain cly(W) C X \ U, C X \ A. Therefore cl(W)n A = 0.
Since W_was arbitrary, we have AN (Jclr[W]) = 0. Defining V' := [JW and applying
Lemma we obtain A Ncly(V) = 0, and hence, A C X \ cly(V) =: U. Since W is a
cover of X, we clearly have B C V. Therefore, U and V separate A and B. O

Corollary 2.4.7. Every paracompact Hausdorff space satisfies

Proof. We start the proof by showing that (X, 7)) satisfies In order to do this, we
consider an arbitrary closed subset B of (X,7) and z € X \ B. Since (X, 7T) is Hausdorff,
we find for every x € B a neighborhood V, of z and a neighborhood U, of z such that
Ve NU, = (. We apply Lemma with A := {2z} and obtain immediately that (X,7)
satisfies

Let A and B be two given disjoint and closed subsets of (X, T). Since we already know
that (X, 7)) satisfies we can easily convince ourselves that all preconditions of Lemma
are met, hence we obtain that A and B are separated by neighborhoods. Therefore,

(X, T) satisfies O

A proof of the following theorem can be found in [BT19, p. 77].

Theorem 2.4.8 (Stone’s coincidence thoerem). If (X, 7) is an object of Top that fulfills
(7' )], then the following statements are equivalent.

1. The topological space (X, T) satisfies (13)| and is paracompact.
2. The topological space (X,T) is fully Ty.

Our next goal is to extend Theorem by one more equivalence. This will be achieved
by Corollary

Definition 2.4.9. Let (X,7) be a topological space. A set

§ C Hom ((X,7),([0,1],£([0,1]))) is called a partition of unity, if and only if for every
x € X the sum ) regf (z) converges unconditionally to 1. This partition of unity § is
said to be subordinate to a cover U of X if for every f € § there is a U € U such that
f71((0,1]) € U. The partition of unity § is called locally finite if for every € X there
exists a neighborhood V' of x such that {f € F |V N f71((0,1]) # 0} is finite.

Lemma 2.4.10. If § is a locally finite partition of unity of a topological space (X,7T),
then U := {f~1((0,1]) | f € §} is a locally finite, open cover of (X, T).

Proof. Since (0, 1] is an open set in ([0,1],£([0,1])) and f € Hom ((X, T), ([0, 1], £([0, 1]))),
§ clearly consists of open sets.

In order to show that U is a cover of X, consider an arbitrary x € X. By > ez f(z) =1
there exists g € § such that g(x) > 0. Therefore, x € ¢g~1((0,1]) and by definition we have
g 1((0,1]) € U. Since § is a locally finite partition of unity, there is a neighborhood V' of
z, such that {f € |V N f71((0,1]) # 0} is finite. This shows that ¢/ is locally finite. [

11
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Lemma 2.4.11. Let (X,7) be a topological space that satisfies [(7})| and let U be an
open, locally finite cover of (X, 7). Then there exists a locally finite partition of unity
3 = {fu | U €U}, such that for all U € U the inclusion f;;'((0,1]) C U is satisfied.

Proof. By Lemma there exists an open cover V = {Viy | U € U} of (X, T), such that
for all U € U the inclusion cly(Vyy) € U holds true. In accordance with Lemma m
there exists for every U € U a function gy € Hom ((X,7),([0,1],£([0,1]))) such that
gulelr(Vy)] € {1} and g;;'((0,1]) € U. For every W € U we set

fw = gw (Z gu> 71-

veld

Given z € X there exists U, € U, such that x € U,. Furthermore, there exists a neighbor-
hood N, of z in (X,7T) such that U, :={U e U | N, N U # 0} is finite. Consequently,

0<gu,(x) <> gu(z)= ) gulz) < +oo.

veu Uvel,

Hence, for every W € U, the function fyy is well defined. Since fyy restricted to N, consists
of sums and quotients of finitely many non-zero, continuous functions,

-1
fwln, =gw<z gu> ,

Ueldy

it is itself continuous. As continuity is a local property we obtain
fw € Hom ((X,T), ([0,1], £([0,1}))).

For all z € X we clearly have } ;o fu(z) = 1 and f71((0,1]) C U for all U € U. From
the fact that § := {fw | W € U} is subordinate to U, we immediately obtain that § is a
locally finite partition of unity. O

Corollary 2.4.12. A topological space (X,7) that satisfies |(15)| is paracompact if and
only if every open cover U of (X,7T) admits a locally finite partition of unity which is
subordinate to U.

Proof. Let (X,T) be a paracompact topological space that satisfies and let U be an
arbitrary open cover of (X, 7). Choose a locally finite, open cover V of (X, T), such that
V is a refinement of U. By Corollary the space (X, 7T) satisfies Hence, we can

apply Lemma
For the converse, consider an open cover U of a given topological space (X, 7). Assume
that there exists a locally finite partition of unity § which is subordinate to ¢/. By Lemma

the set V:={f71((0,1]) | f € §} is a locally finite, open cover of (X, T). Since § is

subordinate to U, we conclude that V is a refinement of U. O

12
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2.5 Abstract simplicial complexes

Definition 2.5.1. A set A is said to be an abstract simplex if #A € ZT. A set K is said
to be an abstract simplicial complex if it contains only abstract simplices and satisfies that
with A € K all non-vanishing B C A belong to K. The set I := | JK is called the vertex set
of K and the elements of I are called vertices of K. The elements A € K are called faces
of K and the abstract dimension of a face is defined by adim A := #A — 1. The abstract
star of a face is defined as aSt A := {B € K | A C B}. Although the abstract star of a face
clearly depends on the abstract simplicial complex under consideration, we do not include
this in the notation since it should always be clear which abstract simplicial complex is
meant. An abstract simplicial complex K’ C K is called an abstract subcomplex of K. The
abstract closure of L C K is defined as acl £ := [ {K' | K" is subcomplex of L A L C K'}.

Definition 2.5.2. Let K be an abstract simplicial complex and I := |J K the vertex set of
KC. Define

Y = {()‘i)iel € [0,1]1 | {2 el ‘ i >0} EIC/\Z)\Z': 1}
el

and for every A € K the set Sa = {(Xi);e; €Y | {i €| X >0} C A}. If O is the finest
topology on Y such that for all A € K we have 14 € Hom ((S4,E(S4)),(Y,0)), where ¢4 is
the inclusion map, then (Y, Q) is said to be the geometric realization of K. For arbitrary
J € K the set gStJ := {(Xi);c; €Y | Vj € J : A; > 0} is called the geometric star of J.

The set S4 considered as a subset of R#4 can be endowed with the euclidean metric.
Accordingly, we denote a ball with radius e € R™ around a point (Xi)jer € Sa by

1/2
BSA(()‘i)ieIaE) = q (1i)ier € Sa | (Z (fta — >\a)2) <e€

a€A

Lemma 2.5.3. If K is an abstract simplicial complex with vertex set I and the geomet-
ric realization (Y,0) of K, then for every A € K the function f4 : ¥ — R defined by

fa((M)ier) == D aca Aa belongs to Hom ((Y, 0), (R, E(R))).
Proof. Let A, B € K be given and define tp : Sg — Y as the inclusion function. Consider
arbitrary (X\;);c; € Sp, € € RT and (1), € Bs, (()\i)iel, ﬁ) We obtain

[fa(es((1i)ier)) = Fa(es((N)ics))| = Z (Ha = Aa)| < Z |Ha = Al

acA acA
= > =Nl <D =Nl
bEANB beB

< #Bmax {|uy — \o| | b€ B}

1/2
< #B (Z (1 — W) <#B— - =c.

beB #B
Therefore, f4 otp € Hom ((SB,£(SB)), (R,E(R))). Since B € K was arbitrary and O is
the final topology of all ¢, we obtain f4 € Hom ((Y,0), (R,E(R))). O
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Remark 2.5.4. As a consequence of Lemma gSt{i} = f{_l}l(R*) is open in (Y, 0)
for every i € 1.

Definition 2.5.5. If X is a set and & C PB(X), then we call
K= {u’guyﬂu’¢@A#u’eZ+}

the abstract nerve of U.

Remark 2.5.6. The abstract nerve of i from Definition is an abstract simplicial
complex with vertex set ¢. In order to show this, consider U’ € K and () # U"” CU'. We
clearly have U” C U, #U" € ZT as well as U" 2 U’ # 0. Therefore, U" € K.

Lemma 2.5.7. Let (X, 7) is a topological space that satisfies and let U be an open,
locally finite cover of (X, 7) with abstract nerve K of U. If (Y, O) is the geometric realization
of K, then there exists f € Hom ((X,T), (Y,0)) such that for all U € U the inclusion
f1(gSt {U}) C U is satisfied.

Proof. By Lemma there exists a partition of unity
F={fv|U €U} € Hom ((X,T),([0,1],£([0,1]))), (2.1)

such that for every U € U we have f;;'((0,1]) C U. Local finiteness of U in (X, 7)) allows
us to define a function f: X =Y by f(z) := (fu(=))yey-

By::Y — [0, 1}“ we denote the embedding and for every V € U by my : [0, 1]” — [0, 1]
we denote the projection map defined by 7y (()‘U)Ueu) := Ay. Furthermore, let V € K and
e € RT be given. Recall

Sv = {0y €Y [{U €U | Ay > 0} CV}

and the embedding ¢y : Sy — Y. Consider an arbitrary (uy)yey € Sy and W € U. For
arbitrary (v)yey € Bsy, ((110) ey €) we obtain

1/2
(o (0)0))) — 7 (e (0] = v — ] < (Z oy - qu) <

vey

Therefore, my orowy € Hom ((Sy, E(Sy)), ([0,1],£([0,1]))). Since W and V were arbitrary,
we obtain ¢ € Hom ((Y, 0), ([o, 1Y Ty ey £(00, 1]))).

In order to show the continuity of f, consider x € X. Since U is a locally finite cover of
(X, T), there exists a neighborhood N of z in (X, T), such that U, :== {U e U | UN N # 0}
is finite. For every V € K the topological space (Sy, £(Sy)) is compact. Hence, Sy = 1y(Sy)
is compact in (Y,0). Consequently, Z := [J{Sy |V €K,V CU,} is a finite union of
compact sets and therefore a compact subset of (Y, O).

Let /' : Z — Y be the embedding and idyz : Z — Z the identity map. From 10/ oidy €

Hom ((Z, Ol|z), ([O, 1, [veu E([O, 1]))) we conclude

id; € Hom ((z, Oly), (z, <H (o, 1])) yz>>.
veld
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(x.7) (10,11, £([0, 1))
f %U
(Sv,E(8)) ————— (¥,0) ———— (10,11, [Tyers £((0,1)))
(Z70|Z)

Figure 2.1: Diagram for V € K.

Since (Z, O|7) is a compact space, idy is a bijection from Z to Z and (Z, ([T, £([0,1]))]2)
is a Hausdorff space, by a Corollary in [Kall4, p.452] id is a homeomorphism and therefore,
Olz = (Iye £([0, 1)) 2.

For y € N we have V, := {U el |y e U} C U, which implies f(y) € Z. Since for
arbitrary W € U we have my o f = fi and because of (2.1)) we obtain

f € Hom ((N7 T‘N)v <Zv (H 5([0, 1])) Z)) = HOIH((N, T|N)7 (Z7O‘Z))'

veu

Therefore, we also have f € Hom ((NV, T |n), (Y, 7T)). Since continuity is a local property,
we obtain f € Hom ((X,7), (Y,0)).

It remains to show that for a given U € U we have f~1(gSt{U}) C U. Consider an
arbitrary z € f~(gSt{U}). By definition of f we have fy(z) > 0 and in turn z €
f71((0,1]) C U. Since = was arbitrary, we obtain f~1(gSt {U}) C U. O

Definition 2.5.8. A subset K’ of an abstract simplicial complex is said to be finite di-
mensional if there exists n € N such that for all A € K’ the inequality adim A < n is
satisfied.

The following two lemmas are taken from [Dow47, p. 207-209].

Lemma 2.5.9. Let K be an abstract simplicial complex with vertex set I and (Y,O) be
its geometric realization. Then U := {gSt {i} | i € I} is an open cover of (Y, Q) that has a
refinement VW with abstract nerve £, such that for all j € |J £ the subset aSt {j} of £ is
finite dimensional.

Proof. By Lemma|2.5.3} for every A € K the function f4 : ¥ — R defined by fa((Ai);c;) ==
Y aca Aa belongs to Hom ((Y,0), (R,E(R))). We define for every A € K and every a €
[0, +00] the following subsets of Y

Ga(A) = fg1<<1 - Zj:;Q—(#A“), —i—oo)), GoolA) = 7t ((1 _ o (#A+]) —|—oo>)

Ga(A) = ! ( [1 - Z‘;;Z*#AH), —|—oo>>, Goo(A) = f;l([1 _ o—(#A+D) —I—oo)).
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Clearly, Go(A) and G (A) are open and Gy (A), Goo(A) are closed subsets of (Y, 0). For
every subcomplex K’ of K we set

= J{Ga(4) | A€ K}, = J{G(4) | A€ K}

= J{Ga(4) | A€ K'Y}, = J{Gux(4) | Ak}
Go(K') and GOO(IC') are open subsets of (Y, 0). We claim that G, (K’) is a closed subset
of (Y,0). In order to show this, let (X\;),c; € Y \ Ga(K') be given and define 4 :=
{i e I'| X\ >0} € K. Furthermore we set K := K' N (acl{A}) and U := G, (A) \ Gq <l€)

Since A is a finite set and acl { A} consists of all nonempty subsets of A, the set K is finite.
Therefore, G (l@) is closed and hence, U is open in (Y,0). G, (l%) C G.(K') yields

(Mier # Ga(K). By Loeaha = 1 we have (e € GalA) implying (A)ye; € U.

Suppose there exists a point (1;);c; € U N Ga(K'). Then (u;);e; € Ga(B) for some
B e K"\ K. In the case C := AN B # () we have C' € acl{A} and C' € K'. Therefore,
C € K and hence, (1;);c; ¢ Ga(C). Since B ¢ K, we have #C < #B and A ¢ K’ implies
#C < #A. We obtain

Z o >1— LHQ*(#AJA) >1— LHQ*(#CJ&)

= a—+2 - a—+2
S>1-2 atlogay 5 ot oo
oy + 2 o+ 2
a+1
<1— ——o~(#CHD),

ceC

Adding the first two lines and subtracting the third line gives .., ppi > 1, which
contradicts Y ;4 g < 1. If AN B = (), then we obtain the same contradiction just by
adding the first inequalities of the first two lines without introducing C and the third line.
Therefore, U C Y\ Go(K'). Since (\;);c; was arbitrarily chosen, Go(K') is closed in (Y, O).
By a similar reasoning G (K') is closed in (Y, O).

For every i € I we set

K;:==acl(aSt {i}) \ aSt {i} and V;:=gSt{i}\ Goo(K;).

Let A € K; and () # B C A be given. Since A is an element of the abstract subcomplex
acl (aSt {i}) of IC, so is B. From ¢ ¢ A and B C A we conclude ¢ ¢ B and B ¢ aSt {i}.
Since we just showed that B € K;, IC; is an abstract subcomplex of K. Therefore, the set
V; is well defined and, in accordance with Remark [2.5.4] open.

We claim that V := {V; | i € I} is a cover of Y. In order to show this, consider (););c; €
Y. Define A:={i €|\ >0} and let j € A be such that \; = max{); | i € I'}. Suppose
(Mi)ier € Vi From (X\;),c; € gSt{j}, we obtain the existence of a B € K; such that
(M)ies € Goo(B). Therefore, Y. p Ap > 1 — 27 #B+1) and hence,

1 1 @B 2 20T =1 )
5= g 3 Mz g (1= 2 ) = S > 2 (4
beB
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B € K; implies j ¢ B. We obtain

Sa=3 Nt 3 > (1o 2 ) oD o

iel beB i€I\B

in contradiction to ), ; A; = 1. Hence, (\;),c; € V}.

We already know that V is an open cover of (Y, Q). In order to show that V is also locally
finite let (Ai);c; € Y be given and set A := {i € I | \; > 0}. The set G (A) is clearly a
neighborhood of (););c; in (Y, O). Suppose there exists j € I'\ A such that V;NG(A) # 0.
We find (1;);c; € Vj N Goo(A) and define B := {i € I | u; > 0}. In the case AN B # ()
we define C' := AN B. From B € aSt{j} and j ¢ A we conclude C € K; implying
(11i);er ¢ Goo(Kj) 2 Goo(C). Therefore, we have

D tta = pre<1—27FTD <o #ATY, (2.2)
acA ceC

which clearly contradicts (p1;);c; € Goo(A). In the case ANB = (), we have the contradiction
0=> scakta>1— 2-(#A+1) Hence, such a j € I\ A can not exist. The fact that A is a
finite set implies local finiteness of V.

For every n € N we define the abstract subcomplex K™ := {4 € K | adim A < n} of K.
Based on these sets we define Hy := Gy (IC(O)) as well as Hy := G4 (IC(I)) and for alln € N
with n > 1 the set H,, :== G, (IC(")) \Gpn_o (IC(”_Q)). H :={H, | n € N} clearly consists of
open sets. We claim that # is also a locally finite cover of (Y, Q). In order to show this,
define A := {i € I | \; > 0} for a given point (\;);c; € Y. Clearly, (\;);c; € @#A(IC(#A)).
Defining m :=min {n € N| (X;),c; € Gn (IC(”))} there exists B € K™ such that (MNi)jer €
Gm(B). From

SNl L“Q #B+1) 5 1 _ M H 20 #B+1)

beB m+2 m+3

we derive (Ai);c; € Gmy1(B) € Gy (IC(m“)). For m = 0 we have (X\;),c; € Hy. If m >0,
(Ni)jer & Gm—1 (IC(m_l)) by definition of m and therefore (\;);.; € Hpq1. Consider [ € N
with [ < m. For (u;);c; € Gi(C) with C € K® we have

[+1 m
1— o= #C+D) 5 o=(#C+1),
ZMC o 1+2 - m+1

Hence, G} (IC(l)) C Gm-1 (K(m_l)) and we obtain HiNH,,+1 = 0. If Il > m+2, then we have
Gma1 (IC(m“)) C Gj_a (IC(Z_2)) and consequently, H,,.1 N H; = (). Since we just showed
that H,, 1 is a neighborhood of (););.; that meets at most three sets of H, namely H,,,
H,, 11 and H,, 49, the cover H is locally finite.

For i € I and n € N we define W;,, := V; N H,. Since V and H are locally finite,
open covers of (Y,0), sois W :={W,;, |ieI,neN}. By W;,, CV; C gSt{i}, Wisa
refinement of U.

Denote by £ := {M CIxN|#M € Z* A{Win | (i,n) € M} #0} a set that will
represent the abstract nerve of W and consider (j,p) € I x N and M € aSt{(j,p)} with
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respect to £. There exists (Xi);c; € (NAWim | (I,m) € M}. In particular, (A\;);c; € Hp N
(N{Vi | (I, m) € M}). By definition of H,, there exists A € K such that

(e € Gp(A) 0 (VAW | (1,m) € M}) (2.3)

Let (k,q) € M be given. Suppose k € I\ A and consider an arbitrary (u;);c.; € Vi =
gSt{k} \ Goo(Kg). We define B := {i € I | u; > 0} and observe that uj > 0 yields B €
aSt {k}. Therefore, if C := AN B # (), then it satisfies C' € acl (aSt {k}). Furthermore,
k ¢ C and in turn C € K. Hence, (11;);c; € Goo(Ki) 2 Goo(C). Because of we derive
(1i)ier & Goo(A) 2 Gp(A). f ANB =0, then >, 4 fta = 0 < 1 — 27#A+D and hence,
(1i)ier & Goo(A) 2 Gp(A) as well. Therefore, Vi, N G,(A) = 0, which clearly contradicts

(2.3). Thus, k € A.
H,NH, # 0 yields ¢ € {p — 1,p,p+ 1} and further

#M < #(Ax{p—1,p,p+1}) = 3#A < 3p.
This shows that aSt {(j,p)} is finite dimensional. O

Lemma 2.5.10. If U/ is an open, locally finite cover of a topological space (X,7) that
satisfies then there exists a refinement V of U, such that V is an open, locally finite
cover of (X,7) and the abstract star of each vertex of the abstract nerve of V is finite
dimensional.

Proof. Let K be the abstract nerve of & and (Y, Q) the geometric realization of K. By
Lemma there exists a function f € Hom ((X,7), (Y, 0)), such that for all U € U we
have f~1(gSt {U}) C U. By Lemma the set H := {gSt{U} | U € U} is an open cover
of (Y, O) and there exists an open cover W of (Y, O), such that W is a refinement of  and
the abstract star of each vertex of the abstract nerve of W is finite dimensional. Define
V := f~1W)]. For any given W € W there exists U € U such that W C gSt {U}. Hence,
f7YW) C f~Y(gSt {U}) C U. Therefore, V is a refinement of . Since W is a locally finite
open cover of (Y, 0), we conclude that V is a locally finite, open cover of (X, T).

It remains to show that the abstract star of each vertex of the abstract nerve of V is finite
dimensional. In order to do this, let a vertex V' € V be given and consider an arbitrary
V' € aSt{V}. Let Wy € W, such that f~Y(Wy) = V and for every V' € V' \ {V} let
Wy € W such that f=1(Wy) = V'. There exists x € V' = f~ L {Wy: | V' € V'}),
which implies f(x) € {Wy | V' € V'} # 0. Hence, we have {Wy, | V! € V'} € aSt {Wy }.
Since #V' = #{Wy | V' € V'} and aSt {Wy } is finite dimensional, so is aSt {V'}. O
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3 Absolute extensors and absolute
neighborhood extensors

Definition 3.0.1. A topological space (Y, Q) is called absolute extensor for a full sub-
category € of Top if for every closed set A of an object (X,7T) of € and every f €
Hom ((A, T |4), (Y, O)) there exists an extension f € Hom ((X,T),(Y,0)) of f.

Definition 3.0.2. A topological space (Y, Q) is called absolute neighborhood extensor for
a full subcategory € of Top if for every closed subset A of an object (X, 7T) of € and every
f € Hom ((A,T]a), (Y,O)) there exists a neighborhood U of A in (X,7) and an extension
f€Hom (U, T|p), (Y,0)) of f.

In this chapter we will study absolute extensors and absolute neighborhood extensors, be-
cause they are strongly connected to absolute retracts and absolute neighborhood retracts.
The connection is stated in Theorem [4.1.1] and Theorem [4.1.4l

3.1 Basic properties

The following two Propositions obviously hold true.

Proposition 3.1.1. Every absolute extensor for a full subcategory € of Top is an absolute
neighborhood extensor for €.

Proposition 3.1.2. Every absolute extensor (respectively absolute neighborhood exten-
sor) for a full subcategory € of Top is also an absolute extensor (respectively absolute
neighborhood extensor) for every full subcategory C of €.

Requiring that topological spaces are not empty, we obtain the following Proposition.

Proposition 3.1.3. If a subcategory € of Top contains an object which does not fulfill
then every absolute neighborhood extensor for €, which satisfies consists of a
single point.

Proof. Suppose there exists a Hausdorff space (Y, Q) which is an absolute neighborhood
extensor for € that contains two distinct points y1,y2 € Y. Let (X,7) be an object of €
which is does not satisfy Hence, we find two disjoint closed sets B and C of (X, T)
which can not be separated by neighborhoods. The set A := BUC is closed in (X, 7). We
define a function f: A — Y by

y1 ,if x € B,
fla) =<7
yo Lifx e,
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3 Absolute extensors and absolute neighborhood extensors

which by Lemma belongs to Hom ((4,74),(Y,0)). Since (Y,0) is an absolute
neighborhood extensor for the class €, there exists a neighborhood U of A in (X,7) and
an extension f € Hom (U, T|y), (Y,0)) of f. Since (Y, ) is Hausdorff, we find a neigh-
borhood V of y; and a neighborhood W of y, such that VN W = (). Therefore, ?_I(V)
is a neighborhood of B in (U, T|y), the set f_l(W) is a neighborhood of C' in (U, T|y)
and ?71(‘/) N ?71(W) = (). Thus we separated B and C by neighborhoods, which is a
contradiction to our assumptions. O

Proposition 3.1.4. The product space of absolute extensors for a full subcategory € of
Top is an absolute extensor for €.

Proof. Let (Y, O) be the product space of a family ((Y;, O;)),; of absolute extensors for €.
Consider a closed set A of any arbitrary object (X, 7)) of € and f € Hom ((A,T14), (Y, 0O)).
For any ¢ € I we define f; := m; o f, where m; : Y — Y; denotes the projection. Since
fi € Hom ((A,T1a),(Y;,0;)) and (Y,Oly) is an absolute extensor for €, there exists an

extension f; € Hom ((X,T),(Vi,0;)) of fi. This allows us to define an extension f €
Hom (X, T), (Y, 0)) of f by 7(x) = (F,(x)) ;. =

Proposition 3.1.5. Every product space of finitely many absolute neighborhood extensors
for a full subcategory € of Top is an absolute neighborhood extensor for €.

Proof. Given n € N set I := {1,...,n} and let ((¥;,0;));c; be absolute neighborhood
extensors for € and (Y,O) be the corresponding product space. Consider any closed set
A of an object (X,T) of € and f € Hom ((A,T|a),(Y,0)). For every i € I we define
fi: A=Y, by fi(z) = m(f(z)) satisfying f; € Hom ((A,Ta), (Yi, 0;)). Since (Y;,0;) is
an absolute neighborhood extensor for €, there exists a neighborhood U; of A in (X,T)
and an extension f; € Hom ((U;, Tly,), (Yi, O;)) of f;. We define U := ({U; | i € I} and

f:U =Y by f(z) := (fi(x))iel. Clearly, U is a neighborhood of A in (X,7) and
f € Hom (U, T|v), (Y, O)) is an extension of f. O

Proposition 3.1.6. Every open subspace of an absolute neighborhood extensor for a full
subcategory € of Top is an absolute neighborhood extensor for €.

Proof. Let (Y,0) be a given absolute neighborhood extensor for € and V an arbitrary
open subset of (Y, ). Consider any closed subset A of a given object (X,7) of € and a
function f € Hom ((A4,T1a),(V,0Oly)). We clearly also have f € Hom ((A,T|a),(Y,0)).
Since (Y, O) is an absolute neighborhood extensor for €, there exists a neighborhood U of
(A, T|a) in (X, 7T) and an extension g € Hom ((U, T|r), (Y, O)) of f. The set g='(V) is an
open neighborhood of A in (X, 7). The function f € Hom ((¢~'(V), T|,~1v), (V,Olv))
defined by f(z) := g(z) is an extension of f and hence, (V, Oly/) is an absolute neighborhood
extensor for €. U

Definition 3.1.7. Let (X, 7)) be a topological space. A set A C X is said to be a retract of
(X, T) if there exists » € Hom ((X,T), (4, 7T]a)) such that for all a € A we have r(a) = a.
The function r is called retraction. The set A is called a neighborhood retract of (X, T) if
there exists a neighborhood U of A in (X, 7)) such that A is a retract of (U, T |v).
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3 Absolute extensors and absolute neighborhood extensors

Proposition 3.1.8. Every neighborhood retract of an absolute neighborhood extensor for
a full subcategory € of Top is an absolute neighborhood extensor for €.

Proof. Let (Y, O) be an absolute neighborhood extensor for € and A a neighborhood retract
of (Y,0). Therefore, there exists a neighborhood U of A in (Y,0) and a retraction r €
Hom ((U,O|y), (A, 0|4)). Let B be a given closed subset of some object (X,7T) of €
and f € Hom ((B,T|g),(4,0]4)). Clearly, we have g € Hom ((B,T|g), (Y,0)). Since
(Y, O) is an absolute neighborhood extensor, there exists a neighborhood V of B in (X, T)
and an extension g € Hom ((V,T|v),(Y,0)) of g. We define W := g }(U) and f €
Hom (W, T|w), (A, O|4)) by f(x) := r(g(x)). Since for z € B we have f(x) = r(g(x)) =
g(z), f is an extension of f. O

3.2 Examples of absolute extensors and absolute neighborhood
extensors

Example 3.2.1. The Tietze extension Theorem, a proof of which can be found in [Kall4,
p.446] states that all intervals of the form [—\, A], where A € RT, as well as R are absolute
extensors for T4. As a homeomorphic copy of one of the sets before, every interval [u, ],
where u, v € R and p < v, is an absolute extensor for 4. By Proposition [3.1.4] all product
spaces of these spaces, in particular every R" is an absolute extensor for T4. In accordance
with Proposition and Proposition every open subspace of R" is an absolute
neighborhood extensor for %4.

The following theorem provides us with an even greater number of examples for absolute
extensors.

Theorem 3.2.2 (Dugundji extension theorem). Every convex subset of a locally convex
topological vector space is an absolute extensor for 9tet.

Proof. Let C' be a convex subset of an object (L,—i—, (wA)AeK,O) of LETYGSK and let
(X,T) be an object of Met with a metric d that induces 7. Consider an arbitrary
closed subset A of (X,7) and a function f € Hom ((4,7a),(C,0O|c)). The set U :=
{Ba(x,47 dist (z, A)) | # € X \ A} is an open cover of (X \ A, T|x\4)-

The metrizable space (X \ A, Tlx\ A) is paracompact, see Theorem Hence, there
exists a locally finite, open refinement V of U which covers X \ A. By Lemma
for every V € V we find a function gy € Hom ((X \ A, T|x\4). ([0,1],£([0,1]))) such
that g‘}l((O, 1]) € V and & = {gy |V €V} is a locally finite partition of unity of
(X\A,T’X\A).

Since V is a refinement of U, for a given V € V there exists x € X \ A such that V C
Ba(z,47 ! dist (2, A)). Furthermore, there exists ay € A such that d (z,ay) < 2 dist (z, A).
As for arbitrary y € V and a € A

dist (2, A) < d (2,0) < d (2,y) +d (y,a) < ~ dist (, A) + d (y, a)

W |
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3 Absolute extensors and absolute neighborhood extensors

we have dist (z, 4) < %dist (y, A). Consequently,
1
d(y,ay) <d(y,z) +d(z,ay) < 1 dist (z, A) + g dist (z, A) = %dist (z,A)
4
ggg&m@¢®:2mﬁ@¢ﬁ

Hence, for every V € V we find a point ay € A such that for all y € V we have
d(y,ay) <2d(y,A). We define a function f: X — C by

f@y:{ﬂ@ Jif 7 € A,
. ZVGV gv(x)flay) ,ifz e X\ A,

and show that f € Hom ((X,T), (C,O|¢)). In order to prove this, consider some z € X \ A.
Since (L, O) is locally convex, there exists a neighborhood W of z in (X \ A, T|x\4) that
only meets the elements of a finite subset V' of V. Hence, for an arbitrary y € W

Fo) = avwflav)= > gvy)flav).

vey vey’

Since the last sum is a convex combination, we verified f(y) € C. Furthermore, we see that
f restricted to W is continuous, because it can be written as a finite sum of continuous
functions. Therefore, f is continuous at any point in X \ A.

It remains to show continuity at any point x € A. In order to prove this, let W be a given
neighborhood of f(z) in (C,O|¢). Since (L, O) is locally convex, we can assume without
loss of generality that W is convex. Since f is continuous, there exists § € RT such that
f[Ba(z,0) N A CW.

Consider any y € By (a:, 3_15). For y € A we obviously have f(y) = f(y) € W. Let us
assume from now on that y ¢ A. Since & is locally finite, the set V' :={V eV |y eV} is

finite. From d (y, 4) < d(y,z) < 37! we conclude for any V € V'
d(flﬁ',av) < d(.%',y) +d(yaaV) < d($7y) +2d(y7‘4) < 0.
Therefore, ay € Bq(x,d) N A, which yields f(ay) € W. We finally obtain

Fw) =Y aovflav) = > gv)flav) €W,

Vey vey

because the last sum is a convex combination. O

3.3 Local absolute neighborhood extensors

Definition 3.3.1. A topological space (Y, Q) is said to be a local absolute neighborhood
extensor for a full subcategory € of Top if for all y € Y there exists a neighborhood U of
y in (Y, O0), such that (U, O|y) is an absolute neighborhood extensor for €.

Theorem 3.3.2. If all objects of a weakly hereditary, full subcategory € of Top are fully
Ty and satisfy |(71)| then every local absolute neighborhood extensor for € is an absolute
neighborhood extensor for €.
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Proof. Let (Y, O) be a given local absolute neighborhood extensor for €, let A be a closed
subset of an object (X,7) of € and f € Hom ((4,7T14),(Y,0)). Since (Y,0) is a local
absolute neighborhood extensor, there exists an open cover U of (Y, Q) that only consists
of absolute neighborhood extensors for €. In accordance with Lemma (A, Tla) is
fully T4 and satisfies Since (A, T|4) also satisfies we can apply Theorem [2.4.§]
and obtain that (A, T|4) is paracompact. Since f~1[U] is a cover of (A, T|4), there exists
an open, locally finite cover V of (A, T|4) that is a refinement of f~'[{]. By Lemma
we may assume that the abstract star of each vertex of the abstract nerve of V is finite
dimensional. For every V € V we choose U;; € U such that

VS i (Up). (3.1)

In accordance with Lemma|[2.4.5|there exists a locally finite open cover W = {WV | Ve f/}

of (X, T) such that for all V €V the equality WyNA= V is satisfied. Applying Lemma
we obtain a closed neighborhood F' of A in (X,7) and a locally finite closed cover

F= {F‘; Ve 9} of (F,T|r) such that for all V € V we have

FoNACV (3.2)
and for all V' C V with #V’ € ZT the implication

OV =0={F17ev}=0 (3.3)

holds true.

We choose a subset V C V such that for all V € V there exists exactly one V € V such
that Fy = Fy,. Hence, V 5 V = Fy € F constitutes a bijection. Let K be the abstract
nerve of F and consider an arbitrary V € V and F’ € K, such that ' € aSt {Fy }. Due to
our choice of V, there is a unique V' C V, such that 7' = {Fy» | V' € V'}. The fact that by
(3-3) we have (V' # 0 together with #V' = #F' € Z" implies V' € aSt {V'}. Since aSt {V'}
is finite dimensional, so is aSt {Fy/}. Therefore, recalling that F € aSt F/ < F' C F, we
can define p : K — N by

p(]—"’) = sup{#]:"— #F | Fek,F C .7:"}
For every F' € K, we define

Dy i— (ﬂ;f) \ (U (]—“\.F’)), Daser = {D]i- | Fe aSt]-"}

and Az := Dz N A as well as A5y 7 := Dasi 7 N A. Define D := {Dx | F/ € K} and
Dast := {Dast 7 | F € K}. For a given x € F, there exists a neighborhood N, of z in
(F,T|F), such that

Fo={Fy e F|VEVAFyNN,#0} and F,:={FyeF|VeVAzekFy}

are finite. We claim that D covers F' by mutually disjoint sets. We clearly have F, € K
and & € Dz and hence, we conclude that D is a cover of F. Let F' € IC\ {F,} be given.
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In case there exists F’ € F' such that x ¢ F’, we clearly have © ¢ Dz . Otherwise, there
exists F' € F \ F’ such that x € F, which implies = ¢ Dz . Hence, we showed that the
arbitrary x € F' is contained in exactly one element of D, namely D .

If 7/ € K and € (| F/, then F, € aSt 7', which implies © € Dz C D,g; 7. If, on the
other hand, x € D,g; 7/, then we obtain x € (| F'. Therefore, D,s; 7 = (| F', showing that
Dast is a closed cover of (F,T|r). We claim that D,g; is also locally finite. Given z € F
we conclude from N, N D,g; 7 # 0 that there exists F O F’ such that N, N D4 # 0. This
implies that for all F € F we have N, N F # () and therefore, F' C F C F,. Since F,
contains only finitely many subsets, we conclude that D,gt is locally finite.

For 7' € K we define Urr := ({Uy |V € VA Fy € F'}. As a finite intersection of
open sets Uz is open in (Uy,O|y,, ) for every V € V with Fy € F'. Since (Uy,Oly, ) is
an absolute neighborhood extensor for €, in accordance with Proposition also Uz is
an absolute neighborhood extensor for €. For Fi, Fo € K with F; C F5 we clearly have
Ur, C Ugr,. Due to (3.1) and for arbitrary F' € K we obtain

flazslC f{FvnA|vev R e FY| cf[N{veV|F eF} (3.4)
CN{fVIIVeVAFy e F'} CUs.

Now we start with the main part of the proof. It consists of a long induction, showing
the following claim for all n € N:
If 7/ € K and p(F’) < n, then there exists By C F, a function

grr € Hom ((B]‘—Iv T|Bf/)7 (}/’ O))7

a set B,si 7 and another function g,si € Hom ((Bagt 75T 1B, f,), (Y, O)) such that
B.sir =U {Bﬁ | F € aSt f’}, gast 7' is an extension of gz for all F € aSt F as well as

Ar € By C Dy, (3.5)

9Flay = flag, (3.6)

9 [Br] C Urr, (3.7)

Bagt 7 is a neighborhood of Aus¢ 7 in (Dase 77, Tl g, 1) (3.8)
Bist 7 is closed in (F, T|F). (3.9)

We start with the base case n = 0 and /' € K with p(F’) = 0. This implies aSt 7' = {F'}
and consequently, D,s; 7 = Dz as well as A,st 77 = Axr. Since D,s; 7 is a closed subset
of (F,T|r) and F is a closed subset of (X, 7)), D,st# is a closed subset of (X, 7). Since
¢ is weakly hereditary, (DaSt 75T |D,g, F/) is an object of €. Hence, it satisfies |(Ty), see
Lemma Since (Y, O) is an absolute neighborhood extensor for €, and A,gi 7 = Az
is a closed subset of (DaSt 7, T D,s, F,), there exists a closed neighborhood Bz of Az
in (DaStf’vT‘Dasm/) and an extension gz € Hom((B;/,T|BF,), (U]:/,O]UF/)) of f €
Hom ((Az,T|a,.), (Ur,Olu,,)) defined by f(z) = f(x), which is well defined because
of . The properties , and are obviously satisfied. With the definition
B.si 7 := Br and gasi 77 := gF it is clear that and are satisfied as well. This
finishes the base case.
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3 Absolute extensors and absolute neighborhood extensors

It remains to prove the induction step. Assume that our claim is true for some n € N
and consider F' € K with p(F') =n+ 1. As p(ﬁ) < p(F') for any F 2 F', we can define

Ap=J{as 1 FerFeFy=U{ A | FeLF CFL (310)
By = U{Bﬁ | Fek,F gﬁ} - U{BaStﬁ | Fek,F gﬁ}, (3.11)
D=\ J{ps1FerF )= {Dss | FeLFCF} (312

The first equality from (3.10) together with (3.5)) and the fact that D consists of mutually
disjoint sets assures that Bz U Ap/ is a union of mutually disjoint sets as well. The
inclusions (3.4) and (3.7) allow us to define gz : B U Ax — Uz by

~ f(x) s if x € A]:/7
gr (@) = , R
gﬁ(x) , if v € By for 7' C F e K.

Property (3.5) assures A,s 7 € Bx U Ax. Using (3.6), we observe jz| A 7 = FlAg 2
and gr/|p , . = g,q 7 for all F 2 F'. Recall that 9.5 7 18 continuous for F 2 F'. Since

Dast is locally finite, the second equality of (3.11)) is a representation of Bz as a union

of a locally finite set consisting of closed subsets of ([) 7, T| DJ-") Therefore, we can apply

for

Lemma [2.3.4] showing that Bz is closed in (D]:/,T| DF,>' Furthermore, all B o #

F D F' together with A,y 7 form a locally finite, closed cover of (B]:/ U Az, T|B}—/UA]_-/>‘
Thus, we can apply Lemma [2.3.2] and obtain

g7 € Hom ((B]:/ U Az, T|B]—"UA]-‘/)’ (Up, O|Uf,)>.

Recall that D,g; is locally finite and {DaSt 7 | Fe K,F ¢ F } C Dgst only consists of

closed subsets of (f);/,T] Df/)' The second equality from (3.12)) and an application of

Lemma assert that Dz is a closed subset of (F,7T|r). By (3.8) and Lemma we
obtain that B]_‘/ is a neighborhood of fl]:/ in (D].‘/, T|DF’> . As a closed subspace of (F, T |r),

the space (DaSt 75 Tp,g, F,) satisfies |(Ty)} Since we clearly have Dz C D,st 7/, we obtain
that Dz is a closed subset of (DaSt 7, T D, F,). By definition A,g; 7 is a closed subset
of (DaSt 7, T|D,g, f,) and it satisfies Az = Dz N Aug 7. Therefore, in accordance with
Lemma for X = Dygi 7/, X' = ﬁ]:/7 A=A 7, A = A]:/ and B/~: B}-/,Nwe obtain
a closed neighborhood Ex of A,gt 7 in (DaSt]-‘/,T|DaSt]__,) such that Br = Dx N Eg.
Deﬁning B;_—, = E]:/ \ D]:/ we have B]:/ U B;_—, = E]:/ and B;_—, - DaSt]—" \D]:/.

Since Ez is a closed subset of (X,7), we conclude that (E]:/,T| E]-") is an object of
€. Since Br U Ar = Br U Aug 7 is a closed subset of (E]:/,T]Ef,) and (U]:I,O\UF/)
is an absolute neighborhood extensor for €, there exists a closed neighborhood E’, of
Br UAz in (E}-/,’T]Ef,) and an extension g%, € Hom ((E’F/,T|E},>, (U]:/,(9|UF,)> of

gr. We define Br := E, \ Bz and Bugi 7 = U {B]:. | F € aSt }"’}. Finally, we define
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3 Absolute extensors and absolute neighborhood extensors

gF € HOHI((B]—‘/,T‘B]__,),(Y, O)) by gr/(x) := ¢%(x) and, in accordance with Lemma
the function g,gi 7 € Hom((BaStp,T]BaStf,),(Y, (9)) by gastF(7) = gz(x) for
F' C F e K with z € B]:-. Since B]:/ UAr C B]:/ U Br and B]:/ NAr = 0, we
obtain Ax» € B C B%, C Dz. Hence, holds true. Property is clearly

satisfied as well. We have gz [Br/] C ¢’ [EIF] C Uz and hence, is satisfied. Since
B.si 7 is a neighborhood of A,g; 7 in (B]:/ U B%, T|E?FIUB;,> and B U By = Er is a
neighborhood of A,g¢ 7 in (DaSt 75 T|Dg, f,), we obtain . Lastly, since we can write
Bast 7 = By U E".,, the property is satisfied. This finishes the induction.

The set B := {Bz | F' € K} consists of mutually disjoint sets. Hence, for B := |JB
the function g : B — Y is well defined by g(z) := gz (x) if x € Br. By Lemma [2.3.6
B is a neighborhood of A in (F,T). Since Bast := {Bast# | F' € K} is a locally finite,
closed cover of (B,T|p) and g|B g, ., = gast7’, We obtain from Lemma that g €
Hom ((B,T|g),(Y,0)). Since A := {Az | F' € K} is a cover of A and gla,, = f|a,,, we
have gl = /| 0

Example 3.3.3. It follows from Theorem together with Example that every
manifold is an absolute neighborhood extensor for %4.
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4 Absolute retracts and absolute
neighborhood retracts

Definition 4.0.1. A topological space (X, 7)) is called an absolute retract for a full sub-
category € of Top if (X, 7)) is itself an object of € and every closed subset A of an object
(Y,0) of €, where (A, O|4) is homeomorphic to (X, T), is a retract of (Y, QO).

Definition 4.0.2. A topological space (X, T) is called an absolute neighborhood retract for
a full subcategory € of Top if (X,7) is an object of € itself and every closed set A of an
object (Y,0) of €, where (A, O|4) is homeomorphic to (X,7T), is a neighborhood retract
of (Y, 0).

4.1 Relation to absolute extensors and absolute neighborhood
extensors

Theorem 4.1.1. Every object of a full subcategory € of Top that is an absolute neighbor-
hood extensor (respectively absolute extensor) for € is an absolute neighborhood retract
(respectively absolute retract) for €.

Proof. We will proof the Theorem only for absolute neighborhood extensors and abso-
lute neighborhood retracts. The proof for absolute extensors and absolute retracts is
similar. Let (X,7) be an absolute neighborhood extensor for € and let A be some
closed subset of an object (Y,0) of €, such that (A,O|4) is homeomorphic to (X, 7).
Let f € Hom ((X,7),(A,O|4)) be a homeomorphism and g € Hom ((A,O|4),(X,T))
its inverse. Since (X,7) is an absolute neighborhood extensor there exists a neighbor-
hood U of A in (Y,0) and an extension g € Hom ((U,O|y), (X, T)) of g. The function
fog e Hom ((U,O|y), (A,0O|4)) is a retraction, since for a € A we have g(a) = g(a) and
in tumn £((a)) = f(g(a)) = a. 0

Remark 4.1.2. Theorem [{.1.1] asserts that all examples of absolute extensors and absolute
neighborhood extensors for a full subcategory € of Top that are objects of € themselves
are also examples of absolute retracts and absolute neighborhood retracts for €.

Theorem 4.1.3. For every metrizable space (X,7) there exists convex subset C' of a
topological vector space (L, +, (wx)yer, @), a norm |- on (L, +, (wr)\eg) that induces O
and makes (L, +, (wx),cg, []|) @ Banach space and a closed subset Y of (C, O|¢) such that
(X,T) and (Y, O|y) are homeomorphic. If (X, 7) is separable, so is (C, O|¢).

Proof. Given any metrizable topological space (X, 7"), we consider the set of all continuous
and bounded real valued functions

L:={f € Hom ((X,7), (R,E(R))) : [|f]l. < +oc}.
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It is a well known fact, which one can find for example in [Kall4] that (L, +, (w)er: I/l o)
is a Banach space. Let O be the topology induced by |-||,,. In accordance with Lemma
we find a bounded metric d : X x X — R that induces 7. We define a function
¢ € Hom ((X,T), (L,0)) by v(z1)(z2) := d (21, z2).

According to the triangle inequality, for arbitrary x1, z2,z € X we obtain

(1) () — e(22)(@)] = [d (21, 2) — d (22, 2)| < d (21, 22)
and therefore, ||t(z1) — t(x2)]|, < d(21,22). Since we also have
(1) (x2) — vw2)(22)| = |d (21, 22) — d (22, 22)[ = d (21, 22),

we even obtain |¢(z1) — ¢(z2)]|,, = d (21, 22), which means that ¢ is an isometry.

The set C' := co (¢[X]) is clearly a convex subset of L. We define Y := ([X] and claim
that it is a closed subset of (C,O|c). In order to show this, let f € C'\'Y be a given
function. By definition of C' there exists a finite set I and there are (\;);c; € [0,1]7 and
(2i);e; € X' such that

D=1 and f=> Xi(z).
el el

As f ¢ Y we have || f — ¢(%)]|, > 0 for all i € I. Hence, we can choose § € R, such that
for all ¢ € I the inequality 26 < ||f — ¢(2;)||, is satisfied.

We claim that C'N By _(f,d) € C\'Y. In order to show this, assume there exists
geln BH'Hoo(f’ 0) such that g € Y. By the triangle inequality for any ¢ € I we have

1f = z)lloe < I = 9lloe + [lg = ¢(2i) | o-

Therefore

lg = ezl 2 1f = (zi)lloo = IIf = 9lloc > 20 =6 = 0.

Since g € Y, there exists z € X such that «(z) = g. We saw above that ¢ is an isometry.
Hence

w(z)(x) = d(zi,2) = [[e(2i) = e(2)[|oo = [le(2i) = gllos > 0.

From this we obtain

If = 9l 2 |f(@) = (@) (@) = | f(2) = d(@,2)| = [ ()| = D Nel=i)(2) > Y Nid = .

el i€l

This clearly contradicts g € By_(f,0).

Assume that (X, 7)) is separable. Since (Y, O|y) is homeomorphic to (X, 7)), there exists
a countable, dense subset D of (Y,Oly). The set A := {coM | M C DAN#M € Z*} is
countable and consists of compact subsets of (L,0). By a Corollary in |[Kall4] p. 457],
all elements of A, endowed with the subspace topology of O, are separable. Therefore,
coD = [J A is, as a countable union of separable sets, itself separable. Hence, there exists
a countable, dense subset E of (co D, O|¢p).
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We claim that F is dense in (C,O|¢). In order to show this, let y € C and § € RT be
given. By definition of C, there exist a finite set I, for every ¢ € I a point y; € Y and a
number A; € [0,1], such that y = > ..; \jy; and Y .. Ay = 1. Since D is dense in (Y, O),
for every i € I we find z; € D, such that ||z; — yil|,, < 0/2. The point z := ), .; \iz; is
obviously an element of co D and satisfies

Z iz — yi)

el

1) )
< Z)\zHZz - yiHOO < 5 Z)\Z = 5

o i€l icl

1z =yl =

As z € co D there exists u € F, such that ||u — z||, < §/2. Therefore, we obtain
ly —ulloe < lly = 2l + Iz —ullo <0
Thus, E is dense in (C, O|¢) and (C, O|¢) is separable. O

The following Theorem is from [Hu65, p. 84]. It also holds true for other categories of
topological spaces than the ones for which it is stated here.

Theorem 4.1.4. If € is one of the categories Met or sepiet, then every absolute neigh-
borhood retract (respectively absolute retract) for € is an absolute neighborhood extensor
(respectively absolute extensor) for €.

Proof. We will only proof the theorem for absolute neighborhood retracts and absolute
neighborhood extensors. The proof for absolute retracts and absolute extensors is similar.
According to Theorem it suffices to show this Theorem for an absolute neighborhood
retract (Y,Oly) for €, where (L,+,(wx),cp, []|) is a Banach space, O is the induced
topology of [|-||, the set C is a convex subset of L and Y is a closed subset of (C,O|¢).
Since Theorem asserts that (C, O|¢) is an object of €, there exists a neighborhood V'
of Y in (C, O|¢) and a retraction r € Hom ((V, O|y), (Y, Oly)).

Let A be a closed subset of a given object (X, 7)) of € and f € Hom ((4,T|4), (Y,Oly)),
which implies f € Hom ((A,7]a),(C,0O|c)). Hence, by Theorem there exists an
extension f € Hom ((X,T),(C,O|¢)) of f. Obviously, U := f~1(V) is a neighborhood of
Ain (X,T). The function f € Hom (U, T|v), (Y, Oly)) defined by f := r o f|ir satisfies
flz) = r(f(a:)) =r(f(z)) = f(z) for all z € A. Thus, f is an extension of f and (Y, Oly)
is an absolute neighborhood extensor. O

4.2 Properties of absolute neighborhood retracts

The following two propositions are obviously true.

Proposition 4.2.1. Every absolute retract for a full subcategory € of Top is an absolute
neighborhood retract for €.

Proposition 4.2.2. Let € be a full subcategory of Top and B a full subcategory of €. If
a topological space (X, 7T) is an object of B and an absolute neighborhood retract (respec-
tively absolute retract) for €, then it is also an absolute neighborhood retract (respectively
absolute retract) for 8.
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4 Absolute retracts and absolute neighborhood retracts

An application of Theorem [4.1.4] Proposition [3.1.4] and Theorem [.1.1] yields

Proposition 4.2.3. If the product space of absolute retracts for et is metrizable, then
it is an absolute retract for Met.

Since the product space of finitely many metrizable spaces is itself metrizable, we can

apply Theorem Proposition and Theorem and obtain

Proposition 4.2.4. The product space of finitely many absolute neighborhood retracts
for Mtet is an absolute neighborhood retract for Met.

An application of Theorem [.1.4] Proposition [3.1.6] and Theorem [£.1.7] yields

Proposition 4.2.5. Every open subspace of an absolute neighborhood retract for et is
an absolute neighborhood retract for 9Met.

An application of Theorem [.1.4] Proposition [3.1.8] and Theorem [£.1.7] yields

Proposition 4.2.6. Every neighborhood retract of an absolute neighborhood retract for
Miet is an absolute neighborhood retract for Miet.

Definition 4.2.7. A topological space (X,T) is said to be a local absolute neighborhood
retract for a full subcategory € of Top if for every point & € X there exists a neighborhood
U of z in (X, T), such that (U, T|y) is an absolute neighborhood retract for €.

An application of Theorem [£.1.4] Theorem [3.3.2] and Theorem yields

Theorem 4.2.8. If a metrizable space is a local absolute neighborhood retract for 9tet,
then it also is an absolute neighborhood retract for 2et.

Example 4.2.9. Let d € Z" and K, := {z € R?: ||z[|, < 1} be the closed unit ball in R?
and Sy := {z € R?: ||z||, = 1} the unit sphere in R%. Since Sy is a metrizable manifold, it
is by Remark [£.1.2] Proposition and Theorem [£.2.8] an absolute neighborhood retract
for Met. On the other hand, by a Corollary in [WKB20, p.103], the set Sy is not a retract
of K4. Thus, S, is definitely not an absolute retract for 9tet.

4.3 Homotopies

Definition 4.3.1. Let (X,7) and (Y, O) be topological spaces and U an open cover of
(Y,0). Two functions f,g € Hom ((X,7),(Y,0)) are called U-close if for every z € X
there exists a U € U such that {f(x),g(x)} C U A homotopy

H € Hom (X x [0,1], T x £([0,1])), (Y, 0)) (4.1)

is said to be limited by U if for every « € X there exists U € U such that H[{z} x [0,1]] C U.
The functions f and g are called U-homotopic if there exists a homotopy (4.1]) that is limited
by U, such that H(-,0) = f and H(-,1) = g.
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4 Absolute retracts and absolute neighborhood retracts

Lemma 4.3.2. Let C be a convex subset of a locally convex, metrizable topological vector
space (L, =+, (wx) er, ©) and Y a closed subspace of (C,O|¢). If U is an open cover of
(Y,Oly) and (Y, Oly) an absolute neighborhood retract for Mtet, then there exists an open
neighborhood N of Y in (C, O|¢) and a retraction r € Hom ((N, O|n), (Y, Oly)), such that
for every y € N there exists an open and convex neighborhood Cy of y in (C, O|¢) and that
V={YNCy|ye N} is an open cover of (Y,0|y) and a refinement of &. Furthermore,
for every y € N there exists U, € U, such that C, C r~1(U,).

Proof. Since (Y,Oly) is an absolute neighborhood retract for 9tet, there exists an open
neighborhood N of Y in (C, O|¢) and a retraction » € Hom ((N, O|n), (Y, Oly)). The set
{r=}(U) | U € U} is obviously an open cover of (N, O|y). Hence, for a given y € N we find
a set Uy, € U such that y € r~1(U,). Since N is an open subset of (C,O|¢), so is r~H(U,).
Therefore there exists an open subset Oy of (L,0), such that r~*(U,) = O, N C. Since
L is locally convex, there exists a convex, open neighborhood C’ of y in (L, O) such that
C C Oy. As an intersection of two convex sets, Cy := C’ N C' is convex, where

c,=C,NCCO,NC=r"'U,) CN.

Furthermore, Cy is an open subset of (C, O|¢). Since r is a retraction, we have Y N C, C
Y Nnr=Y(U,) C U,. Thus, theset V:={Y NC, | y € N} is clearly an open cover of (Y, O|y)
and a refinement of /. O

Theorem 4.3.3. For every open cover U of a metrizable space (Y, S) which is an absolute
neighborhood retract for 9tet there exists an open cover V of (Y,S) such that V is a
refinement of U and for every topological space (X, 7T) the following holds true. Any two
V-close functions f, g € Hom ((X,7T), (Y,S)) are U-homotopic.

Proof. By Theorem [4.1.3] we can assume without loss of generality that there exists a
convex subset C' of a Banach space (L, +, (wx) e, ||-|), where ||-|| induces the topology O
and such that Y is a closed subset of (C,O|¢) with S = Oly. Let U be an open cover
of (Y,Oly). In accordance with Lemma we obtain an open neighborhood N of Y in
(C,0]¢) and a retraction r € Hom ((N, O|n), (Y, Oly)), such that for every y € N there
exists an open and convex neighborhood Cy, of y in (C, O|¢), where V ={Y NC, |y € N}
is an open cover of (Y,O|y) and a refinement of &. Furthermore, for every y € W, there
exists U, € U, such that C, C r=1(U,).

Given a topological space (X, 7) and two V-close functions f,¢g € Hom ((X,7), (Y,0))
we define the homotopy H € Hom ((X x [0,1],7 x £([0,1])), (N, O|y)) by H(z,)\) :=
Ag(z) + (1 — A)f(x). The function H € Hom ((X x [0,1],7 x £([0,1])), (Y, O)) defined
by H :=r o H is clearly also a homotopy.

It remains to show that H is limited by &/ and that ran <f~I ) C N. In order to do this,

let x € X be a given point. Since f and g are V-close, there exists y € N, such that
{f(z),g9(z)} €Y NCy. Since Cy is convex, we clearly have H[{z} x [0,1]] C C,. There
exists Uy € U, such that Cyy C r~1(U,) C N and therefore, ran (ﬁ) C N. Furthermore,

H[{z} x [0,1]] = r[ﬁ[{m} % [0, 1]]} crlc,) Crlri,)] C U,
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4 Absolute retracts and absolute neighborhood retracts

Theorem 4.3.4. Let (Y,S) be an absolute neighborhood retract for Mtet and A a closed
subset of a metrizable topological space (X, 7). If i is an open cover of (Y,S), then there
exists a refinement V of U that is still an open cover of (Y, S) and such that for any two
V-close functions f,¢g € Hom ((X,7), (Y,S)) and any homotopy

H € Hom ((A x [0,1], T |4 x £([0,1])), (Y, S))

that is limited by V and satisfies H(-,0) = f|4 and H(-,1) = g| 4, there exists a homotopy
H € Hom ((X x [0,1], 7 x £(]0,1])), (Y,S)) that is limited by & and satisfies H(-,0) = f,

H(-,1) = g and H|x o1 = H.

Proof. By Theorem we can assume without loss of generality that there exists a
convex subset C' of a Banach space (L, +, (wx)cg, ||*]|), where |-|| induces the topology O
and such that Y is a closed subset of (C,O|¢) with & = Oly. Let U be an open cover
of (Y,Oly). In accordance with Lemma we obtain an open neighborhood N of Y in
(C,0|¢) and a retraction r € Hom ((N, O|n), (Y, Oly)), such that for every y € N there
exists an open and convex neighborhood Cy of y in (C,0|¢), and V = {Y NCy |y € W}
is an open cover of (Y, Oly) and a refinement of &. Furthermore, for every y € N, there
exists Uy € U, such that Cy, C r~1(U,).

Let (X,7) be a metrizable topological space and f,g € Hom ((X,7T),(Y,O|y)) be two
V-close functions. Furthermore, let H € Hom ((A x [0,1], 7|4 x £([0,1])), (Y, S)) be a
homotopy that is limited by V and satisfies H(-,0) = f|4 and H(-,1) = g|a. Define the
function H' € Hom ((X x [0,1], T x £([0,1])), (N,O|n)) by H'(z, X) := Ag(x)+(1—\) f(x).
For an arbitrary « € X there exists y € N, such that f(z),g(z) € Y NCy and U, € U, such
that C, C r~1(U,) C N. Since Cy, is convex, we have

H'[{z} x [0,1]] € C, Cr Y (U,) T N. (4.2)
The set
Q= (X x {0} U (A x[0,1]) U(X x {1})

is clearly a closed subset of (X x [0,1],7 x £([0,1])). By Lemma we have F €
Hom (@, (7" x £([0,1]))]@), (Y, Oly)), where

flz) L ifA=0
F(z,\) =< H(z,\) ,ifxreA
g(x) , ifA=1.

Since (Y, Oly) is an absolute neighborhood retract for Mtet, we can apply Theorem m
Hence, we obtain that there exists an open neighborhood W of @ in (X x [0,1], 7 x £([0,1]))
and an extension

F € Hom (W, (T x £([0,1]))lw). (Y, Oly))

of F.
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Let x € A be a given point and V,, € V such that for all A € [0,1] we have F(x,)\) =
H(z,\) € V,. By continuity for a given A € [0,1] there exists an open neighborhood
W of in (X, T) and an €y € R*, such that W{ x B 1j(A,ex) € W and for all (z,u) €
W{xBig1(A, €x) we have F(z, p) € V. Since ([0,1],£([0, 1])) is a compact topological space
and {Bjy1j(A,ex) | A € [0,1]} constitutes an open cover of ([0,1],£([0,1])), there exists a
finite subset E, of [0,1], such that {Bpy1j(A,ex) | A € E, } still covers [0,1]. Define W, :=
N{W{ | A€ E,} and consider (z,u) € W, x [0,1]. There exists v € E,, such that p €
Bio,1j(¥,€v). Therefore (2, ) € W x By 1j(v,€,) € W showing W, x [0,1] € W. The set
M = |J{W, | z € A} is clearly an open neighborhood of A in (X, T) satisfying A x [0,1] C
M x[0,1] CW.

We claim that the homotopy F’ := F|M><[O,1] is limited by V. For a given z € M there
exists z € A, such that x € W, = N{W5 | A€ E.}. Let V, € V as before, satisfying in
particular F(z,\) = H(z,A\) € V, for all X € [0,1] we have . For an arbitrary u € [0,1]
there exists v € E., such that u € Bjg (v, €,). Therefore, (x, ) € W7 x Byg 1)(v,&,) and
consequently, F'(x, ) = F(x,u) € V, showing that F' is limited by V.

As a metrizable space, (X,7T) satisfies There exists an open subset R of (X,7),
such that A C R C cly(R) € M. In accordance with Lemma there exists a function
s € Hom ((X,T), ([0,1],£([0,1]))), such that s[X \ R] C {0} and s[A] C {1}. We define a
homotopy G € Hom ((X x [0,1],7 x £([0,1])), (N, O|n)) by

s(x)F'(z,\) + (1 — s(x))H' (z,\) ,ifxeM
H'(x,\) Jfx e X\ R.

We claim that the homotopy H € Hom ((X x [0,1],7 x £([0,1])), (Y, O)) defined by
H(xz,\) :=r(G(z,\))

is limited by Y. In order to show this, consider an arbitrary x € X. According to ,
in case s(xr) = 0 there exists U, € U, such that H'[{zx} x [0,1]] € r~}(U,) and further
H[{z} x [0, 1)) = r[H'[{z} x [0, 1]]] € r [+ (V)] € U

Consider the case that s(z) € R*. Since we showed above that F’ is limited by V), there
exists y € N, such that F'[{z} x [0,1]] C Y NC,. In particular, we have F'(z,0) = f(z) €
Y NC, and F'(z,1) = g(x) € Y NC,. Cy being convex together with H'[{z} x [0,1]] C C,
implies G[{z} x [0,1]] C C} as well. Since there exists U, € U, such that C;, C r~(U,),
we obtain that H[{z} x [0,1]] = r[G[{z} x [0,1]] C r[r~1(U,)] C U,

Finally, we have H(-,0) = roG(-,0) = rof = f,aswellas H(-, 1) = roG(, 1) =rog =g
and H|gx(0,1) = 7 © Glaxpo, =7 ° F'laxjo,) = Flaxjoa) = Hlaxo,1)- O

G(z, ) == {

Theorem 4.3.5. A metrizable space (Y, Q) is an absolute neighborhood retract for 9tet,
if and only if there exists an open cover V of (Y, O), such that for every metrizable space
(X, T), every closed subspace A of (X, T), every two V-close functions

f,g € Hom ((X,7),(Y,0))

and every homotopy H € ((A x [0,1],7|a x £([0,1])),(Y,O)) that is limited by V with
H(-,0) = f|a and H(-,1) = g|4 there exists a homotopy

1)
H € Hom (X x [0,1], T x £(0,1])), (Y, 0)),
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4 Absolute retracts and absolute neighborhood retracts

such that F‘Ax[o,l} = H as well as H(-,0) = f and H(-,1) = g.

Proof. In order to proof sufficiency, let (Y, O) be an absolute neighborhood retract for tet.
The set U := {Y'} is obviously an open cover of (Y, Q). Therefore, we can apply Theorem
[4.3.4 and are finished.

It remains to show necessity. Let V be an open cover of the metrizable space (Y, O)
that is as required in the statement of the Theorem. Consider an arbitrary y € Y. Since
V is a cover of Y, there exists V € V such that y € V. Define the functions fi,g91 €
Hom ((V, Oly), (Y, 0)) and the homotopy

H; € Hom (({y} X [O, 1],O|{y} X 5([0, 1])), (Y, O))

by fi(v) :=y, gi(v) := v and Hi(y,A) := y. Since (Y, Q) is metrizable, so is (V, Oly) and
{y} is closed in (Y, Q). Furthermore, f; and g; are obviously V-close and H; is limited by
V. Therefore, there exists a homotopy H; € Hom ((V x [0,1], Oy x £([0,1])), (Y, O)) such
that Hi|gyxo1) = Hi, as well as Hi(-,0) = f1 and Hy(-,1) = g1. Since ([0,1],£([0,1])) is
a compact space and Hi(y,\) = y for all X € [0, 1] there exists an open neighborhood U of
y in (Y, 0), such that H{[U x [0,1]] C V.

Let A be an arbitrary closed subspace of a given metrizable space (X,7) and h €
Hom ((A, Ta), (U,O|y)). Define fa2, g2 € Hom ((X,T), (Y,0)) and

Hy € Hom ((A x [0,1], T]a x £([0,1])), (Y, ©))
by fo(z) := ga(z) :=y and

Hi(h(z),2X if A€ [0,1/2
HQ(ZE,)\) — 71( (x)v ) 7? [ ) / ]7

Hi(h(x),2—-2X) ,if A€ [1/2,1].
By assumption, there exists a homotopy Ha € Hom ((X,T), (Y, O)), such that Ha|axjo,1] =
Hy, as well as Ho(-,0) = fo and Hy(-,1) = go. Define h := Hy(-,1/2). We have

hla=Ha(-1/2)|a = Hi(h|a(-).1) = g1 o hla = hla.

Hence, W := h~'(U) is an open neighborhood of A in (X, 7) and h := h|y is an extension
of h over the neighborhood W of A in (U,O|y). We conclude that U is an absolute
neighborhood extensor for 9tet. By Theorem the topological space (U,O|y) is an
absolute neighborhood retract for Met and (Y, O) is a local absolute neighborhood retract
for Met. An application of Theorem finishes the proof. O

Lemma 4.3.6. Let A be a topological space (X,7T) that satisfies |(74), Then for every
neighborhood U of B := (X x {0})U (A x [0,1]) in (X x [0,1],7 x £([0,1])) there exists a
function F' € Hom ((X x [0,1],7 x £([0,1))), (U, (T x £([0,1]))|r7)) such that F|p = idp.

Proof. Since U is a neighborhood of B in (X x [0,1], 7 x £([0,1])), there exists an open
subset U’ of (X x [0,1],7 x £([0,1])) such that B C U’ C U. Since D := (X x [0,1]) \ U’
is closed in (X x [0,1],7 x £([0,1])), we can apply Lemma and obtain that 71[D] is
closed in (X, 7).
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By Lemma which requires (X, 7)) to satisfy there exists
f € Hom ((X,T), ([0,1],£([0,1])))
such that f[A] C {1} and f[m[D]] C {0}. We claim that the function
F € Hom ((X x [0,1], T x £([0,1])), (U, (T x £([0,1]))|vr))

defined by F(x,\) := (=, f(x)\) satisfies F|p = idp. In order to show this let (z,\) € B
be given. If (z,\) € X x {0}, then F(xz,\) = F(z,0) = (z,0) = (z,\). If, on the other
hand, (z,\) € A x [0, 1], then F(z,\) = (z, f(x)\) = (x, \).

It remains to show that ran F' C U. Given any (z,\) € X x [0, 1] we can distinguish two
cases. If x € m1[D], then f(z) =1 and F(z,\) = (z, f(x)\) = (x,0) € U. If, on the other
hand, € X \ m1[D], then F(z,\) = (z, f(x)\) ¢ D. Therefore, F(z,\) € U' CU. O

Theorem 4.3.7 (Borsuk Homotopy Extension Theorem). If A is a closed subspace of
a metrizable space (X,7T), if the topological space (Y,) is an absolute neighborhood
retract for Met and F' € Hom ((A x [0,1], T |a x £([0,1])), (Y, O)) is a homotopy such that
f € Hom ((A,T|a),(Y,0)) defined by f(z) := F(x,0) can be extended to a function
g € Hom ((X,T), (Y,0)), then there exists a homotopy

G € Hom ((X x [0,1], T x £([0,1])), (Y, 0))

such that for all x € X the equlaity G(z,0) = g(z) is satisfied and for all (x,\) € A x [0, 1]
we have G(z,\) = F(z, ).

Proof. We define B := (X x {0}) U (A x [0,1]) and, in accordance with Lemma [2.3.2
H € Hom (B, T x £(0, 1))), (v, 0))
by
H@J%:{M%M A (@,4) € A x [0, 1],
g(z) Jif (z,A) € X x {0}.

Since (Y, O) is an absolute neighborhood retract for Met and B is a closed subspace of
X x [0,1], we can apply Theorem and obtain a neighborhood V of B in

(X x [0,1], 7 x £(0,1)))

and an_extension H' € Hom ((V, (T x &([0, 1]))|V) (Y,0)) of H. By Lemma [4.3.6] there
exists F' € Hom ((X x [0,1], 7 x 5([0 1)), (V, (T x £([0,1]))|/)) such that F|p = idg. We
define the function G € Hom ((X X [ , ] 5([ 1)), (Y, 0)) by

)= H/ (P ).

G(z,0) = H’ (F(x,O)) = H'(x,0) = g(x)
and for (z,\) € A x [0, 1]
me=E@WAD=FwM=FmM-

Given z € X we have
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