Nukleare Operatoren

Morris Brooks

Contents

1	Einleitung	2
2	Kompakte Operatoren	2
3	Hilbert-Schmidt-Operatoren	3
4	Nukleare Operatoren	6
5	Eine Anwendung	11

1 Einleitung

Die hier vorgestellte Seminararbeit soll dem Leser einen Einblick in die Klasse der nuklearen Operatoren vermitteln. Wir betrachten hier grundsätzlich Abbildungen die von einem Hilbertraum H_1 in einen weiteren Hilbertraum H_2 abbilden. Zunächst Wiederholen wir einige Resultate über kompakte Operatoren, und führen die Hilbert-Schmidt-Operatoren ein. Es wird uns im Weiteren gelingen viele Eigenschaften von nuklearen Operatoren auf Resultate über Hilbert-Schmidt-Operatoren zurückzuführen.

2 Kompakte Operatoren

Wir werden uns des Öfteren auf das Folgende aus der Funktionalanalysis bekannte Resultat berufen.

Lemma 2.1. Sind H_1, H_2 Hilberträume, und ist $T \in L_b(H_1, H_2)$, so existiert ein positiver, selbstadjungierter Operator $A: H_1 \to H_1$ und ein unitärer Operator $U: range(A) \to H_2$, sodass

$$T = U \circ A$$
.

Definition 2.2. Wir nennen einen Operator $T \in L_b(H_1, H_2)$ kompakt, falls jede beschränkte Menge auf eine präkompakte Menge abgebildet wird, oder äquivalent, falls die Menge $\overline{T(B_1(0))}$ kompakt ist. Die Menge aller kompakten Operatoren bezeichnen wir mit $K(H_1, H_2)$.

Korollar 2.3. Ist $T: H_1 \to H_2$ ein kompakter Operator, so existieren Orthonormalsysteme $\{v_k : k \in I\} \subset H_1$, $\{b_k : k \in I\} \subset H_2$ und $\lambda_k \in \mathbb{R}$, $k \in I$ mit $I = \{1, ..., n\}$ oder $I = \mathbb{N}$, sodass¹

$$T(x) = \sum_{k \in I} \lambda_k \langle v_k | x \rangle b_k \text{ für alle } x \in H_1.$$

Des Weiteren gilt $\lambda_k > 0$, $\lambda_m \ge \lambda_n$ für $n \ge m$ und $\lim_{k \to \infty} \lambda_k = 0$, falls I nicht endlich ist.

Beweis. Betrachten wir einen beliebigen kompakten Operator T, so können wir ihn gemäß 2.3 polar zerlegen mit $T = U \circ A$, wobei $A = \sqrt{T^*T}$. Mit T ist auch $B := T^*T$

 $[\]overline{\ }^{1}$ Wir benützen hier die Konvention, dass $\langle .|. \rangle$ semilinear im ersten und linear im zweiten Argument ist.

kompakt. Da B selbstadjungiert ist, folgt aus dem Spektralsatz für kompakte selbstadjungierte Operatoren $B(x) = \sum_{k \in I} \mu_k \langle v_k | x \rangle v_k$ mit einer Indexmenge $I = \{1, ..., n\}$ oder $I = \mathbb{N}$. Wegen der Positivität von B ist $\mu_k > 0$. Ohne Beschränkung der Allgemeinheit können wir die μ_n so wählen, dass $\mu_m \geq \mu_n$ für $n \geq m$ ist. Wenn I nicht endlich ist, gilt außerdem $\lim_{k \to \infty} \mu_k = 0$. Für $\lambda_k := \sqrt{\mu_k}$ folgt

$$A(x) = \sqrt{B}(x) = \sum_{k \in I} \lambda_k \langle v_k | x \rangle v_k.$$

Der Operator T lässt sich folgendermaßen schreiben

$$T(x) = U(\sum_{k \in I} \lambda_k \langle v_k | x \rangle v_k) = \sum_{k \in I} \lambda_k \langle v_k | x \rangle U(v_k) = \sum_{k \in I} \lambda_k \langle v_k | x \rangle b_k,$$

wobei $b_k := U(v_k)$ auf Grund der Isometrie von U wieder ein Orthonormalsystem ist. Falls I nicht endlich ist, gilt auch $\lim_{k\to\infty} \lambda_k = 0$.

Bemerkung 2.4. Ein stetiger Operator mit endlichdimesionalem Bilde ist kompakt. In der Tat gilt

$$K(H_1, H_2) = \overline{\{T \in L_b(H_1, H_2) : dim(T(H_1)) < \infty\}} \|.\|_{L_b(H_1, H_2)}.$$

3 Hilbert-Schmidt-Operatoren

Definition 3.1. Wir nennen einen kompakten Operator $T \in L_b(H_1, H_2)$ Hilbert-Schmidt-Operator, falls für die λ_k aus der Darstellung in Korollar 2.3 gilt $\sum_k \lambda_k^2 < +\infty$.

Lemma 3.2. Sei $T \in L_b(H_1, H_2)$ und $\{f_k : k \in I\}, \{g_k : k \in I\}$ Orthonormalbasen von H_1 . Dann gilt

$$\sum_{k} ||T(g_k)||^2 = \sum_{k} ||T(f_k)||^2 \in [0, +\infty].$$

Insbesondere ist $\sum_{k} ||T(g_k)||^2$ endlich, genau dann wenn es $\sum_{k} ||T(f_k)||^2$ ist.

Beweis. Ist $\{h_j: j \in J\}$ eine Orthonormalbasis von H_2 , so gilt

$$\sum_{k} ||T(f_{k})||^{2} = \sum_{k} \sum_{j} |\langle h_{j}|T(f_{k})\rangle_{H_{2}}|^{2} = \sum_{j} \sum_{k} |\langle T^{*}h_{j}|f_{k}\rangle_{H_{1}}|^{2} = \sum_{j} ||T^{*}h_{j}||^{2}$$
$$= \sum_{j} \sum_{k} |\langle T^{*}h_{j}|g_{k}\rangle_{H_{1}}|^{2} = \sum_{k} \sum_{j} |\langle h_{j}|T(g_{k})\rangle_{H_{2}}|^{2} = \sum_{k} ||T(g_{k})||^{2}.$$

Da alle Summanden positiv sind, dürfen wir die Summationsreihenfolge vertauschen.

Wegen Lemma 3.2 macht folgende Definition Sinn.

Definition 3.3. Es seien H_1, H_2 Hilberträume und $\{f_k : k \in I\}$ eine Orthonormalbasis von H_1 . Dann definieren wir

$$S_2(H_1, H_2) := \{ T \in L_b(H_1, H_2) : \sum_k ||T(f_k)||^2 < +\infty \}.$$

Für alle $T \in S_2(H_1, H_2)$ sei $||T||_2 := \sqrt{\sum_k ||T(f_k)||^2}$.

Bemerkung 3.4. Wie man aus dem Beweis von Lemma 3.2 erkennt, ist $\sum_j ||T(f_j)||^2 = \sum_j ||T^*(h_j)||^2$, wobei $\{f_k : k \in I\}$ eine Orthonormalbasis von H_1 und $\{h_j : j \in J\}$ eine von H_2 ist. Damit gilt $T \in \mathcal{S}_2(H_1, H_2)$ genau dann, wenn $T^* \in \mathcal{S}_2(H_2, H_1)$.

Satz 3.5. Für Hilberträume H_1, H_2 sei $\{f_k : k \in I\}$ eine Orthonormalbasis von H_1 , $\{g_k : k \in J\}$ eine solche von H_2 und bezeichne ξ das Zählma β auf $I \times J$. Dann ist

$$\Phi: \begin{cases} \mathcal{S}_2(H_1, H_2) \to L^2(I \times J, \xi) \\ T \mapsto (\langle g_j | T(f_i) \rangle)_{(i,j) \in I \times J} \end{cases}$$

ein isometrischer Isomorphismus. Des Weiteren gilt $||T||_{L_b(H_1,H_2)} \leq ||T||_{\mathcal{S}_2(H_1,H_2)}$ für ein $T \in \mathcal{S}_2(H_1,H_2)$.

Beweis. Für ein $T \in \mathcal{S}_2(H_1, H_2)$ gilt

$$\|\Phi(T)\|_{L^2}^2 = \sum_i \sum_j |\langle g_j | T(f_i) \rangle|^2 = \sum_i \|T(f_i)\|^2 = \|T\|_2^2.$$
 (1)

Die Abbildung Φ ist also eine isometrische und damit auch injektive Abbildung nach $L^2(I \times J, \xi)$. Für $\phi \in L^2(I \times J, \xi)$ definieren wir

$$T(x) := \sum_{(i,j)\in I\times J} \phi(i,j) \langle f_i|x\rangle g_j.$$

Es gilt

$$||T(x)||^2 = \sum_{j} |\sum_{i} \phi(i,j) \langle f_i | x \rangle|^2 \le \sum_{j} (\sum_{i} |\phi(i,j)|^2) (\sum_{i} |\langle f_i | x \rangle|^2) = ||x||^2 ||\phi||_{L^2}.$$

Daraus folgt $||T||_{L_b(H_1,H_2)} \leq ||\phi||_{L^2} < +\infty$, also $T \in L_b(H_1,H_2)$. Gemäß unserer Konstruktion gilt $\langle g_j|T(f_i)\rangle = \phi(i,j)$ und damit $\sum_i ||T(f_i)||^2 < +\infty$. Es folgt $T \in \mathcal{S}_2(H_1,H_2)$ und $\Phi(T) = \phi$. Damit gilt wegen (1) auch $||T||_{L_b(H_1,H_2)} \leq ||\Phi(T)||_{L^2} = ||T||_{\mathcal{S}_2(H_1,H_2)}$.

Korollar 3.6. $S_2(H_1, H_2)$ ist ein Banachraum.

Lemma 3.7. Die Elemente aus $S_2(H_1, H_2)$ sind kompakte Operatoren. Außerdem gilt

$$S_2(H_1, H_2) = \overline{\{T \in L_b(H_1, H_2) : dim(T(H_1)) < \infty\}}^{\|.\|_2}.$$

Beweis. Für ein $f \in L^2(I \times J, \xi \otimes \xi)$ können nur abzählbar viele Einträge ungleich Null sein. Die Menge $M := \{(i,j) \in I \times J : f_{(i,j)} \neq 0\}$ ist also abzählbar. Wir wählen eine endliche aufsteigende Mengenfolge $M_N \subset I \times J$, $N \in \mathbb{N}$, mit $M = \bigcup_{N \in \mathbb{N}} M_N$. Bezeichnen wir mit $\mathbb{1}_B$ die Indikator-Funktion einer Menge B, so folgt

$$f = \mathbb{1}_M f = \lim_{N \to \infty} \mathbb{1}_{M_N} f,$$

wobei die Konvergenz in $L^2(I \times J, \xi)$ bezüglich $\|.\|_2$ gilt. Ist Φ wie in Satz 3.5 und $f = \Phi(T)$ für ein $T \in \mathcal{S}_2(H_1, H_2)$, und setzen wir $T_N := \Phi^{-1}(\mathbb{1}_{M_N}\Phi(T))$, so folgt $T = \lim_{N \to \infty} T_N$. Aus Satz 3.5 folgt, dass die $\|.\|_2$ -Norm stärker als die Operator-Norm ist. Es gilt also der Limes auch im Sinne der Operator-Norm. Wir können T_N folgendermaßen darstellen

$$T_N = \sum_{(i,j)\in I\times J} \Phi(T_N)(i,j) \langle f_i|x\rangle g_j = \sum_{(i,j)\in M_N} \Phi(T)(i,j) \langle f_i|x\rangle g_j.$$

Da M_N endlich ist, hat T_N endlichdimensionales Bild. Damit ist T als Grenzwert von Operatoren mit endlichdimensionalem Bild kompakt. Wegen $\lim_{N\in\mathbb{N}} \|T-T_N\|_2 = 0$ gilt

$$S_2(H_1, H_2) \subset \overline{\{T \in L_b(H_1, H_2) : dim(T(H_1)) < \infty\}}^{\|.\|_2}$$

Betrachten wir einen Operator $T \in L_b(H_1, H_2)$ mit endlichdimensionalem Bild. Wir wählen zunächst eine orthonormale Basis $\{g_1, ..., g_n\} \subset H_2$ von $T(H_1)$. Es folgt

$$T(x) = \sum_{k=1}^{n} \langle g_k | T(x) \rangle g_k = \sum_{k=1}^{n} \langle T^*(g_k) | x \rangle g_k.$$

Im nächsten Schritt wählen wir eine Orthonormalbasis $\{f_1, ..., f_m\}$ von $span\{T^*(g_k): k=1..n\}$ und erweitern diese zu einer Orthonormalbasis F von H_1 . Wir erhalten

$$||T||_2^2 = \sum_{f \in F} ||T(f)||^2 = \sum_{k=1}^m ||T(f_k)||^2 < +\infty$$

Damit sind Operatoren mit endlichdimensionalem Bild auch in $S_2(H_1, H_2)$. Da der Raum der Hilbert-Schmidt-Operatoren vollständig ist, gilt sogar

$$\overline{\{T \in L_b(H_1, H_2) : dim(T(H_1)) < \infty\}}^{\|.\|_2} \subset \mathcal{S}_2(H_1, H_2).$$

Satz 3.8. Seien H_1, H_2 Hilberträume. Die Elemente aus $S_2(H_1, H_2)$ sind genau die Hilbert-Schmidt-Operatoren zwischen H_1 und H_2 .

 $Beweis. \$ Ist Tein Hilbert-Schmidt-Operator, so lässt er sich gemäß Korollar 2.3 schreiben als

$$T(x) = \sum_{k \in I} \lambda_k \langle v_k | x \rangle b_k,$$

wobei $\{v_k : k \in I\}$, $\{b_k : k \in I\}$ Orthonormalsysteme der jeweiligen Räume sind. Des Weiteren gilt $\sum_k \lambda_k^2 < +\infty$ mit $\lambda_k > 0$. Wir können $\{v_k : k \in I\}$ zu einer Orthonormalbasis E erweitern. Damit gilt

$$\sum_{v \in E} \|T(v)\|^2 = \sum_{j \in I} \|T(v_j)\|^2 = \sum_j \sum_k |\lambda_k \left\langle v_k | v_j \right\rangle|^2 = \sum_j \lambda_j^2 < +\infty,$$

also $T \in S_2(H_1, H_2)$. Gehen wir umgekehrt davon aus, dass $T \in S_2(H_1, H_2)$ ist, so muss T nach Lemma 3.7 bereits kompakt sein. Wir können es also gemäß Korollar 2.3 schreiben als $T(x) = \sum_k \lambda_k \langle v_k | x \rangle b_k$. Wegen $\sum_j \lambda_j^2 = \sum_j \|T(v_j)\|^2 < +\infty$ ist T ein Hilbert-Schmidt-Operator.

Satz 3.9. Es seien H_1, H_2, H_3 Hilberträume. Für Operatoren $B_1 \in L_b(H_2, H_3)$, $B_2 \in L_b(H_1, H_2)$, $S_1 \in \mathcal{S}_2(H_1, H_2)$ und $S_2 \in \mathcal{S}_2(H_2, H_3)$ gilt

$$B_1 \circ S_1 \in \mathcal{S}_2(H_1, H_3),$$

 $S_2 \circ B_2 \in \mathcal{S}_2(H_1, H_3).$

Beweis. Aus

$$\sum_{k} \|B_1(S_1(f_k))\|^2 \le \|B_1\| \sum_{k} \|S_1(f_k)\|^2 < +\infty$$

folgt $B_1 \circ S_1 \in \mathcal{S}_2(H_1, H_3)$.

Aus $B_2^* \in B(H_2, H_1)$ und $S_2^* \in S_2(H_3, H_2)$, folgt $(S_2 \circ B_2)^* = B_2^* \circ S_2^* \in \mathcal{S}_2(H_3, H_1)$. Damit ist auch

$$S_2 \circ B_2 = ((S_2 \circ B_2)^*)^* \in \mathcal{S}_2(H_1, H_3).$$

4 Nukleare Operatoren

Definition 4.1. Es seien H_1, H_2 Hilberträume und $T: H_1 \to H_2$ ein kompakter Operator. Wir schreiben T wie in Korollar 2.3, und nennen T nuklear, falls $\sum_k \lambda_k < +\infty$.

Lemma 4.2. Nukleare Operatoren sind Hilbert-Schmidt-Operatoren.

Beweis. Da aus $\sum_k \lambda_k < +\infty$ sofort $\sum_k \lambda_k^2 < +\infty$ folgt, ist jeder nukleare Operator auch ein Hilbert-Schmidt-Operator.

Lemma 4.3. Ein beschränkter Operator ist genau dann nuklear, wenn er die Hintereinanderausführung von zwei Hilbert-Schmidt-Operatoren ist.

Beweis. Ist Tnuklear und sei $T=U\circ A$ die Polarzerlegung gemäß Lemma 2.1, so gilt für die Eigenwerte λ_k von A

$$\sum_{k} \lambda_k < +\infty.$$

Damit erhalten wir für die Eigenwerte μ_k von \sqrt{A} , dass $\sum_k \mu_k^2 = \sum_k \lambda_k < +\infty$. Also ist \sqrt{A} und wegen Satz 3.9 auch $U \circ \sqrt{A}$ ein Hilbert-Schmidt-Operatoren. Schließlich gilt $T = (U \circ \sqrt{A}) \circ \sqrt{A}$.

Gilt umgekehrt $T = A \circ B$ mit $A \in \mathcal{S}_2(H_2, H_3)$ und $B \in \mathcal{S}_2(H_1, H_2)$, wobei $A = \sum_k \mu_k \langle w_k | . \rangle d_k$ und $T = \sum_k \lambda_k \langle v_k | . \rangle b_k$ die jeweiligen Darstellungen gemäß Korollar 2.3 sind, so erhalten wir

$$\sum_{n} \lambda_{n} = \sum_{n} \langle b_{n} | AB(v_{n}) \rangle = \sum_{n} \sum_{k} \mu_{k} \langle w_{k} | Bv_{n} \rangle \langle b_{n} | d_{k} \rangle$$

$$= \sum_{n} \sum_{k} \langle w_{k} | Bv_{n} \rangle \langle b_{n} | Aw_{k} \rangle \leq \frac{1}{2} \sum_{n} \sum_{k} 2 |\langle w_{k} | Bv_{n} \rangle| |\langle b_{n} | Aw_{k} \rangle|$$

$$\leq \frac{1}{2} \sum_{k,n} \left(|\langle w_{k} | Bv_{n} \rangle|^{2} + |\langle b_{n} | Aw_{k} \rangle|^{2} \right) = \frac{1}{2} (\|A\|_{2} + \|B\|_{2}) < +\infty.$$

Man beachte, dass man beim Summieren von positiven Summanden nicht auf die Reihenfolge achten muss. T ist also nuklear.

Definition 4.4. Bezeichnen wir die Menge aller Orthonormalsysteme auf einem Hilbertraum H mit $\mathfrak{O}(H)$. Für Hilberträume H_1, H_2 und Operatoren $A \in L_b(H_1, H_2)$ definieren wir

$$||A||_1 := \sup\{\sum_{k \in I} |\langle g_k | Af_k \rangle| : (g_k)_k \in \mathfrak{O}(H_2) \ und \ (f_k)_k \in \mathfrak{O}(H_1)\}$$

und $S_1(H_1, H_2) := \{ A \in L_b(H_1, H_2) : ||A||_1 < +\infty \}.$

Lemma 4.5. $\|.\|_1$ ist eine Norm auf $S_1(H_1, H_2)$.

Beweis. Offensichtlich gilt $0 \le \|.\|_1 < +\infty$ und $\|\lambda A\|_1 = |\lambda| \|A\|_1$.

Wir betrachten einen Operator, für den $||A||_1=0$ gilt. Für alle $f\in H_1\setminus\{0\}$ und $g\in H_2\setminus\{0\}$ sind $\{\frac{f}{||f||}\}$ und $\{\frac{g}{||g||}\}$ orthonormal Systeme. Es gilt also

 $\langle \frac{g}{\|g\|} | A(\frac{f}{\|f\|}) \rangle \leq \|A\|_1 = 0$, woraus $\langle g | Af \rangle = 0$ für alle $f \in H_1$ und $g \in H_2$, und somit A = 0 folgt.

Die Dreiecksungleichung gilt wegen

$$||A + B||_1 = \sup \sum_k |\langle g_k | A f_k \rangle + \langle g_k | B f_k \rangle|$$

$$\leq \sup \sum_k |\langle g_k | A f_k \rangle| + \sup \sum_k |\langle g_k | B f_k \rangle| \leq ||A||_1 + ||B||_1.$$

Lemma 4.6. Für einen kompakten Operator $T = \sum_k \lambda_k \langle v_k | . \rangle b_k$ gilt $\sum_k \lambda_k = ||T||_1$. Insbesondere ist jeder nuklearer Operator auch ein Element von $S_1(H_1, H_2)$.

Beweis. Man sieht sofort, dass $\sum_k \lambda_k = \sum_k \langle b_k | T v_k \rangle \leq ||T||_1$. Für die andere Ungleichung betrachte man

$$\sum_{n} |\langle g_{n}|Tf_{n}\rangle| \leq \sum_{n} \sum_{k} \lambda_{k} |\langle v_{k}|f_{n}\rangle \langle g_{n}|b_{k}\rangle|$$

$$\leq \sum_{k} \lambda_{k} \frac{1}{2} \sum_{n} (|\langle v_{k}|f_{n}\rangle|^{2} + |\langle g_{n}|b_{k}\rangle|^{2}) \leq \sum_{k} \lambda_{k}.$$

Damit folgt $||T||_1 \leq \sum_k \lambda_k$.

Lemma 4.7. Die Operatoren $T \in S_1(H_1, H_2)$ sind kompakt.

Beweis. Es sei $T \in \mathcal{S}_1(H_1, H_2)$. Wir zeigen zunächst, dass A aus der Polarzerlegung $T = U \circ A$ ein diskretes Spektrum hat. Dies gilt sicher, wenn wir nachweisen können, dass für alle $\alpha > 0$: $\sigma(A) \cap [\alpha, +\infty)$ endlich ist.

Gibt es in der Menge $\sigma(A) \cap (\alpha, +\infty)$ zumindest k verschiedene Punkte $\lambda_1, ..., \lambda_k$, so sind die Mengen $\Delta_i := (\lambda_i - \delta, \lambda_i + \delta)$ paarweise disjunkt, wenn nur δ klein genug ist. Wir wählen es auch derart, dass $\lambda_i - \delta > \alpha$. Nehmen wir nun an, dass $E(\lambda_i - \delta, \lambda_i + \delta) = 0$ ist, so folgt

$$I = E((\lambda_i - \delta, \lambda_i + \delta)^c) = \int_{\mathbb{R} \setminus (\lambda_i - \delta, \lambda_i + \delta)} \frac{t - \lambda_i}{t - \lambda_i} dE(t)$$

$$= (A - \lambda_i I) \int_{\mathbb{R} \setminus (\lambda_i - \delta, \lambda_i + \delta)} \frac{1}{t - \lambda_i} dE(t) = \int_{\mathbb{R} \setminus (\lambda_i - \delta, \lambda_i + \delta)} \frac{1}{t - \lambda_i} dE(t) (A - \lambda_i I).$$

Damit ist $A - \lambda_i I$ invertierbar, was im Widerspruch zu $\lambda_i \in \sigma(A) \cap [\alpha, +\infty)$ steht. Wir finden also für i = 1, ..., k ein normiertes f_i im Bild von $E(\lambda_i - \delta, \lambda_i + \delta)$. Wegen

$$A(\int_{(\lambda_i - \delta_i) + \delta_i} \frac{1}{t} dE(t) f_i) = E(\lambda_i - \delta_i, \lambda_i + \delta_i) f_i = f_i,$$

liegen alle f_i im Bild von A. Wir definieren $g_i := U(f_i)$. Da auf Grund der Disjunktheit der Intervalle $(\lambda_i - \delta, \lambda_i + \delta)$ die f_i und infolge g_i ein Orthonormalsystem bilden, gilt

$$||T||_1 \ge \sum_{i=1}^k \langle g_i | T(f_i) \rangle = \sum_{i=1}^k \langle f_i | A(f_i) \rangle \ge k\alpha.$$

Es folgt $k \leq \frac{\|T\|_1}{\alpha}$. Damit kann $\sigma(A) \cap (\alpha, +\infty)$ höchstens endlich sein, das heißt $\sigma(A) = \{\lambda_k : k \in J\}$ mit J höchstens abzählbar. Wir erhalten

$$A = \int_{\{\lambda_k : k \in J\}} t \, dE = \sum_{k \in J} \lambda_k E(\{\lambda_k\}).$$

Können wir noch nachweisen, dass das Bild von $E(\{\lambda_k\})$ endliche Dimension hat, so ist A und damit auch T kompakt. Wir wählen ein orthonormal System $(f_k)_{k=1,...,n}$ von $ran(E(\{\lambda_m\}))$. Auch hier gilt wieder $f_k \in ran(A)$. Definieren wir $g_k := U(f_k)$, so folgt

$$n\lambda_m = \sum_{j=1}^n \langle f_j | A(f_j) \rangle = \sum_{j=1}^n \langle g_j | T(f_j) \rangle \le ||T||_1,$$

also $n \leq \frac{\|T_1\|}{\lambda_m}$. Die Menge $ran(E(\{\lambda_m\}))$ ist somit von endlicher Dimension.

Korollar 4.8. Die Menge $S_1(H_1, H_2)$ besteht genau aus den nuklearen Operatoren, die von H_1 nach H_2 abbilden. Dabei gilt $||T||_1 = \sum_k \lambda_k$.

Beweis. Wie in Lemma 4.6 gezeigt wurde, stimmen für kompakte Operatoren T die Begriffe Hilbert-Schmidt-Operator und $S_1(H_1, H_2)$ überein, und es gilt $||T||_1 = \sum_k \lambda_k$. Da ein Hilbert-Schmidt-Operatoren T per Definition kompakt ist, folgt $T \in S_1(H_1, H_2)$. Umgekehrt haben wir in Lemma 4.7 gesehen, dass ein Operator $S \in S_1(H_1, H_2)$ kompakt ist, womit S ein Hilbert-Schmidt-Operator ist und die Gleichheit $||T||_1 = \sum_k \lambda_k$ erfüllt.

Bemerkung 4.9. Für Hilberträume H_1, H_2 gilt

$$S_1(H_1, H_2) \subset S_2(H_1, H_2) \subset K(H_1, H_2).$$

Lemma 4.10. Es seien H_1, H_2 Hilberträume, $(T_j)_{j\in J}$ ein Netz in $\mathcal{S}_1(H_1, H_2)$ und $T \in \mathcal{S}_1(H_1, H_2)$ mit $T = \lim_j T_j$ bezüglich $\|.\|_1$. Unter diesen Voraussetzungen folgt $T = \lim_j T_j$ bezüglich $\|.\|_2$.

Beweis. Sei also $T, T_j \in \mathcal{S}_1$ mit $\lim_j \|T - T_j\|_1 = 0$. Dann gibt es einen Index $j_0 \in J$, sodass $\|T - T_j\|_1 < 1$ für alle $j \geq j_0$. Schreiben wir $T - T_j = \sum_k \lambda_k \langle v_k|_{\cdot} \rangle b_k$ gemäß Korollar 2.3, so folgt $\lambda_k \leq \sum_n \lambda_n < 1$. Damit erhalten wir $\sum_k \lambda_k^2 \leq \sum_k \lambda_k = \|T - T_j\|_1$, beziehungsweise $\|T - T_j\|_2^2 \leq \|T - T_j\|_1$. Also konvergiert das Netz T_j auch bezüglich der Hilbert-Schmidt-Norm gegen T.

Satz 4.11. $S_1(H_1, H_2)$ ist vollständig, und es gilt

$$S_1(H_1, H_2) = \overline{\{T \in L_b(H_1, H_2) : dim(T) < \infty\}}^{\|.\|_1}$$

Beweis. Sei T_j eine Cauchy-Folge in $(S_1(H_1, H_2), ||.||_1)$, dann gilt $\lim_{(i,j)\in\mathbb{N}^2} ||T_j - T_i||_1 = 0$. Nach Lemma 4.10 gilt dann auch $\lim_{(i,j)\in\mathbb{N}^2} ||T_j - T_i||_2 = 0$. Soweit ist T_j eine Cauchy-Folge in $(S_2, ||.||_2)$. In Satz 3.5 wurde gezeigt, dass $||.|| \le ||.||_2$. Folglich konvergiert T_j auch bezüglich der Operatornorm gegen T. Damit gilt $|\langle g_k|Tf_k\rangle| = \lim_j |\langle g_k|T_j(f_k)\rangle|$. Betrachten wir nun zwei Orthonormalsysteme $(f_k)_{k\in J} \in \mathfrak{O}(H_1)$ und $(g_k)_{k\in J} \in \mathfrak{O}(H_2)$, so folgt

$$\sum_{k \in J} |\langle g_k | (T - T_i) f_k \rangle| = \sum_{k \in J} \liminf_{j \to \infty} |\langle g_k | (T_j - T_i) f_k \rangle|$$

$$\leq \liminf_{j \to \infty} \sum_{k \in J} |\langle g_k | (T_j - T_i) f_k \rangle| \underset{i \to \infty}{\to} 0.$$

Für alle $\epsilon > 0$ existiert also ein Index $n((f_k)_{k \in J}, (g_k)_{k \in J})$, sodass für alle $i \geq n((f_k)_{k \in J}, (g_k)_{k \in J})$ gilt $\sum_{k \in J} |\langle g_k|(T-T_i)f_k\rangle| < \frac{\epsilon}{2}$. Des Weiteren existiert ein $n_0 \in \mathbb{N}$, sodass für alle $i, j \geq n_0$ gilt $||T_i - T_j||_1 < \frac{\epsilon}{2}$. Definieren wir $m := \max\{n_0, n((f_k)_{k \in J}, (g_k)_{k \in J})\}$, so folgt für alle $n \geq n_0$

$$\sum_{k \in J} |\langle g_k | (T - T_n) f_k \rangle| \le \sum_{k \in J} |\langle g_k | (T - T_m) f_k \rangle| + \sum_{k \in J} |\langle g_k | (T_m - T_n) f_k \rangle|$$

$$\le \frac{\epsilon}{2} + ||T_n - T_m||_1 < \epsilon.$$

Damit ist die Vollständigkeit bewiesen. Wegen $T = \lim_N \sum_{k=1}^N \lambda_k \langle v_k|.\rangle b_k$ gilt $||T - T_N||_1 = \sum_{k>N} \lambda_k$. Wir können also jeden nuklearen Operator durch eine Folge von Abbildungen mit endlichdimensionalem Bild approximieren.

Betrachten wir nun eine stetige Abbildung $T: H_1 \to V \subset H_2$, wobei V endlichdimensional ist. Weil sowohl die Identität $I_V: V \to V$ wie auch T endlichdimensionales Bild haben, sind sie beide Hilbert-Schmidt-Operatoren. Damit ist $T = I_V \circ T$ als Zusammensetzung von Hilbert-Schmidt-Operatoren gemäß Lemma 4.3 nuklear.

Satz 4.12. Es seien H_1, H_2, H_3 Hilberträume. Für Operatoren $B_1 \in L_b(H_2, H_3), B_2 \in L_b(H_1, H_2), S_1 \in S_1(H_1, H_2)$ und $S_2 \in S_1(H_2, H_3)$ gilt:

$$B_1 \circ S_1 \in \mathcal{S}_1(H_1, H_3),$$

 $S_2 \circ B_2 \in \mathcal{S}_1(H_1, H_3).$

Beweis. Wenn S_i ein nuklearer Operator ist, können wir ihn gemäß Lemma 4.3 in zwei Hilbert-Schmidt-Operatoren $S_i = T_i \circ R_i$ zerlegen. Da das Produkt von einem Hilbert-Schmidt-Operator und einem beschränkten Operator gemäß Satz 3.9 wieder Hilbert-Schmidt ist, sind für einen beschränkten Operator B_i die Ausdrücke $B_1 \circ S_1 = (B_1 \circ T_1) \circ R_1$ und $S_2 \circ B_2 = T_2 \circ (R_2 \circ B_2)$ wieder Produkte von Hilbert-Schmidt-Operatoren, und damit gemäß Lemma 4.3 nuklear.

5 Eine Anwendung

Voraussetzung 5.1. Es sei $(H, \langle .|.\rangle)$ ein Hilbertraum mit² $H \subset L^2(\Omega, \mu)$. Des Weiteren soll die Einbettungsabbildung

$$\iota_H: (H, \langle .|.\rangle) \to L^2(\Omega, \mu)$$

eine nukleare Abbildung sein.

Definition 5.2. Wir stellen ι_H gemäß Korollar 2.3 durch $\iota_H(x) = \sum_k \lambda_k \langle v_k | x \rangle b_k$ dar. Da ι_H nuklear ist, gilt $\sum_k \lambda_k < +\infty$. Für jede Äquivalenzklasse $b_k \in L^2(\Omega, \mu)$ wählen wir einen Repräsentanten h_k . Für alle $\omega \in \Omega$ mit $\sum_k \lambda_k |h_k(w)| < +\infty$, definieren wir die Abbildung $T_w: X \to \mathbb{C}$ folgendermaßen

$$T_w(x) := \sum_k \lambda_k \langle v_k | x \rangle h_k(w).$$

Für alle anderen $\omega \in \Omega$ setzen wir $T_w := 0$.

Lemma 5.3. T_{ω} ist wohldefiniert, linear und beschränkt.

Beweis. Offensichtlich ist T_w linear. Für ein $\omega \in \Omega$ mit $\sum_k \lambda_k |h_k(w)| = +\infty$ ist $T_\omega = 0$ und damit sowohl wohldefiniert wie auch beschränkt. Für den anderen Fall $\sum_k \lambda_k |h_k(w)| < +\infty$ gilt

$$\sum_{k} |\lambda_k \langle v_k | x \rangle h_k(w)| \le \sum_{k} \lambda_k ||x||_H ||v_k||_H |h_k(w)| =$$

$$= ||x||_H \sum_{k} \lambda_k |h_k(w)| < +\infty,$$

 T_{ω} ist also wohldefiniert. Wegen

$$|T_{\omega}(x)| \le \sum_{k} |\lambda_k \langle v_k | x \rangle h_k(w)| \le ||x||_H \sum_{k} \lambda_k |h_k(w)|$$

ist die Abbildung beschränkt.

Lemma 5.4. Es gilt $T_w(.) = \sum_k \lambda_k \langle v_k | . \rangle h_k(w)$ fast überall.

Beweis. Wegen

$$\sum_k \lambda_k |h_k(w)| = \sum_k \sqrt{\lambda_k} (\sqrt{\lambda_k} |h_k(w)|) \le \sqrt{\sum_k \lambda_k} \sqrt{\sum_k \lambda_k |h_k(w)|^2}$$

²Man beachte, dass $\langle .|. \rangle$ nicht mit dem Skalarprodukt von $L^2(\Omega, \mu)$ übereinstimmen muss.

gilt

$$\int (\sum_{k} \lambda_{k} |h_{k}(w)|)^{2} d\mu \leq (\sum_{j} \lambda_{j}) \int \sum_{k} \lambda_{k} |h_{k}(w)|^{2} d\mu =$$

$$= (\sum_{j} \lambda_{j}) \sum_{k} \lambda_{k} \int |h_{k}(w)|^{2} d\mu = (\sum_{k} \lambda_{k})^{2} < +\infty.$$

Weil der zu integrierende Ausdruck positiv ist, konnten wir hier den Satz von Fubini bezüglich dem Produktmaß von μ mit dem Zählmaß anwenden. Daraus folgt $\sum_k \lambda_k |h_k(w)| < +\infty$ fast überall. Gemäß Definition 5.2 gilt daher $T_w(.) := \sum_k \lambda_k \langle v_k | . \rangle h_k(w)$ fast überall.

Bemerkung 5.5. Da $f \in L^2$ eine Äquivalenzklasse von Funktionen ist, ist der Ausdruck f(x) nicht wohldefiniert. Der folgende Satz liefert allerdings eine Möglichkeit, solche Elemente f aus Teilräumen, welche die Voraussetzung 5.1 erfüllen, fast überall stetig auszuwerten.

Satz 5.6. Für alle $f \in H$ gilt

$$f(\omega) = T_{\omega}(f) \ \mu$$
-fü.

Beweis. Aus $\lim_{N} \|\iota_{H}(f) - \sum_{k=1}^{N} \lambda_{j} \langle v_{k} | f \rangle b_{k} \| = 0$ folgt

$$\mu - \lim_{N} \sum_{k=1}^{N} \lambda_{j} \langle v_{k} | f \rangle b_{k} = \iota_{H}(f),$$

und gemäß [1] Satz 7.88 folgt daraus, dass es natürliche Zahlen N(1), N(2), ... gibt mit

$$\iota_H(f)(\omega) = \lim_j \sum_{k=1}^{N(j)} \lambda_j \langle v_k | f \rangle \, b_k(\omega) = \lim_j \sum_{k=1}^{N(j)} \lambda_j \, \langle v_k | f \rangle \, h_k(\omega) \, \, \mu\text{-f\"{u}}.$$

Wegen Lemma 5.4 gilt auch

$$\lim_{j} \sum_{k=1}^{N(j)} \lambda_{j} \left\langle v_{k} | f \right\rangle h_{k}(\omega) = T_{\omega}(f) \mu$$
-fü.

Es folgt $f(\omega) = \iota_H(f)(\omega) = T_{\omega}(f)$ fast überall.

References

[1] N. Kusolitsch. Maß-und Wahrscheinlichkeitstheorie. Springer, 2011.