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1 Introduction and notation

In the present note we will firstly introduce the notion of Laplace-Transforms of Borel
measures on the Borel measurable subsets of [0,+∞). The aim of the note will be the
formulation and proof of the Theorem of Bernstein on completely monotone functions stat-
ing that these functions can be written as a Laplace-Transform of a unique Borel measure.
This result will strongly rely on the Theorem of Riesz-Markov and the Theorem of Banach-
Alaoglu.

The following results are taken from [Kal21, Chapter 12, 14, 15, 18].

Definition 1.0.1. Let (Ω, T ) be a locally-compact Hausdorff Space. By C0(Ω,R) we
denote all real valued continuous functions on Ω satisfying:

∀ϵ > 0 ∃K ⊆ Ω compact : |f(x)| ≤ ϵ ∀x ∈ Ω \K.

Definition 1.0.2. Let (Ω, T ) be a locally-compact Hausdorff Space. Let µ be a complex
(real) valued measure on A := A(T ). We call µ regular, if its variation |µ| is regular, i.e.
if for every A ∈ A

|µ|(A) = sup{|µ|(K) : K ⊆ A, K compact} = inf{|µ|(O) : A ⊆ O, O ∈ T }.

By Mreg(Ω,A,C(R)) we will denote the set of all regular complex (real) measures on A.

Lemma 1.0.3. Let (Ω,A, µ) be a measure space, I ⊆ R an Interval, s ∈ I and f : I×Ω → R
a function such that

1. x 7→ f(t, x) is µ-integrable for all t ∈ I,

2. t 7→ f(t, x) is differentiable at the point s for almost all x ∈ Ω,

3. there exists a δ > 0 and a µ-integrable function g : Ω → R such that for all t ∈
(s− δ, s+ δ) ∩ I the inequality ∣∣∣∣f(t, .)− f(s, .)

t− s

∣∣∣∣ ≤ g

holds true µ-almost everywhere.

Then the function F (t) :=
∫
Ω f(t, .) dµ is differentiable at the point s ∈ I and

F ′(s) =

∫
Ω

∂f

∂t
(s, .) dµ.
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1 Introduction and notation

Theorem 1.0.4. (Riesz-Markov) Let (Ω, T ) be a locally-compact Hausdorff Space and
µ ∈ Mreg(Ω,A(T ),C(R)). Defining Φ(µ) : C0(Ω,C(R)) → C(R) by

Φ(µ)(f) :=

∫
Ω
f dµ

we have Φ(µ) ∈ C0(Ω,C(R))′. Indeed, Φ := (µ 7→ Φ(µ)) constitutes a linear, isometric and
bijective mapping from Mreg(Ω,A,C(R)) onto C0(Ω,C(R))′.

We need a few results from functional analysis, which are taken from [MK23, Chapter
5].

Definition 1.0.5. We denote by σ(X ′, X) := σ(X ′, ι(X)) the weak-topology on X ′ with
respect to the subspace ι(X) ≤ X ′′ and will call it w∗-topology.

Theorem 1.0.6. (Banach-Alaoglu) Let (X, ||.||) be a normed space and X ′ be its dualspace.
Then the closed unit ball in X ′ with respect to the operatornorm, i.e.

KX′
1 (0) = {f ∈ X ′ : ||f || ≤ 1}

is w∗-compact.

Definition 1.0.7. Let (Ω, T ) be a locally-compact Hausdorff space. We say that a net
(µi)i∈I of positive measures defined on A(T ) converges vaguely to a positive measure µ if
and only if

lim
i∈I

∫
Ω
f d(µi) =

∫
Ω
f dµ

for every f ∈ C0(Ω,R).

Corollary 1.0.8. Let (Ω, T ) be a locally-compact Hausdorff space and (µn)n∈N be a se-
quence of probability measures on A(T ). Then there exists a subnet (µn(i))i∈I that converges
vaguely to a finite positive measure on A(T ).

Proof. By Φ : Mreg(Ω,R) −→ C0(Ω,R)′ we denote the isometric isomorphism from

the Riesz-Markov Theorem 1.0.4. ||µn|| = µn(Ω) = 1 implies Φ(µn) ∈ K
C0(Ω,R)′
1 (0) for

every n ∈ N. Since (C0(Ω,R), ||.||∞) is a normed space, the Banach-Alaoglu Theorem 1.0.6

implies the compactness of K
C0(Ω,R)′
1 (0) with respect to the w∗ topology. Hence, there

exists a subnet and a functional ϕ ∈ K
C0(Ω,R)′
1 (0) such that Φ(µn(i))

i∈I−−→ ϕ in the w∗ sense.
Hence,

lim
i∈I

∫
Ω
f d(µn(i)) = lim

i∈I
Φ(µn(i))(f) = ϕ(f) =

∫
Ω
f dµ

for every f ∈ C0(Ω,R) and where µ := Φ−1(ϕ). The fact that µ is a positive measure
follows directly from the fact that all µn are positive since∫

Ω
f dµ = lim

i∈I

∫
Ω
f dµn(i) ≥ 0

for every f ∈ C0(Ω,R) that are non-negative.
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2 Laplace-Transforms of measures

In the present chapter we will introduce the notion of Laplace-Transforms of positive mea-
sures. All Definition und results are based on [SSV12].

Remark 2.0.1. All measures in the forthcoming considerations will be defined on
(A(T ) |[0,+∞)), where T denotes the topology on R induced by the euclidian norm and the
set [0,+∞) will only be equipped with this sigma-algebra. The set [0,+∞)× [0,+∞) will
be equiped with (A(T 2) |[0,+∞)2). By λ1 we will denote the Lebesgue measure, restricted
to (A(T ) |[0,+∞)).

Definition 2.0.2. Let µ be a positive Borel measure on [0,+∞). We define the Laplace-
Transform L(µ) : (ρ0,+∞) −→ R of µ by

L(µ)(x) =
∫
[0,+∞)

e−xt dµ(t),

where ρ0 = inf{x ∈ R :
∫
[0,+∞) e

−xt dµ < +∞}. Here we set ρ0 = +∞ if the corresponding
set is empty.

Lemma 2.0.3. A positive Borel measure µ is finite if and only if ρ0 ≤ 0 and
limx→0+ L(µ)(x) < +∞.

Proof. By monotone convergence

lim
x→ρ+

L(µ)(x) =
∫
[0,+∞)

e−ρt dµ(t)

as an element of [0,+∞] for any ρ ≥ ρ0. In particular, µ is finite if and only if ρ0 ≤ 0 and
limx→0+ L(µ)(x) < +∞.

Proposition 2.0.4. If µ is a positive Borel measure on [0,+∞) and ρ0 is defined as in
Def. 2.0.2, then L(µ) ∈ C∞((ρ0,+∞),R) and for every n ∈ N, λ ∈ (ρ0,+∞) we have

(−1)nL(µ)(n)(λ) ≥ 0.

Proof. We define h : (ρ0,+∞)× (0,+∞) → R by

h(λ, t) := e−λt.

Given λ > ρ0 we choose ϵ > 0 such that λ− 2ϵ > ρ0. For every s ∈ (λ− ϵ, λ+ ϵ) we have∣∣∣∣∂nh

∂sn
(s, t)

∣∣∣∣ = |(−t)ne−st| = tne−st ≤ n!

ϵn
eϵte−st ≤ n!

ϵn
eϵte−(λ−ϵ)t =

n!

ϵn
e−(λ−2ϵ)t.
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2 Laplace-Transforms of measures

Because of ∫
[0,+∞)

n!

ϵn
e−(λ−2ϵ)t dµ(t) =

n!

ϵn
L(µ)(λ− 2ϵ) < +∞

we can apply Lemma 1.0.3 and obtain

(−1)nL(µ)(n)(λ) = (−1)n
∫
[0,+∞)

dn

dλn
(e−λt) dµ(t) =

∫
[0,+∞)

tne−λt dµ(t) ≥ 0.

The following lemma will be imported without proof. The proof can be found in propo-
sition 1.2 in [SSV12, Chapter 1].

Lemma 2.0.5. If µ, ν are positive Borel measures on [0,+∞) such that Lµ = Lν, then
µ = ν.
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3 Completely monotone functions

The following chapter is mainly based on [SSV12, Chapter 1]. Other sources will be stated
explicitly.

Definition 3.0.1. We say that f ∈ C∞((0,+∞),R) is completely monotone if

(−1)nf (n) ≥ 0 for all n ∈ N0.

By CM we denote the set of all completely monotone functions.

Lemma 3.0.2. Let f ∈ CM and assume that f(+∞) := limt→+∞ f(t) = 0. Then for
every n ∈ N and λ > 0 we have

f(λ) =

∫ +∞

λ

(−1)nf (n)(s)

(n− 1)!
(s− λ)n−1 ds.

Proof. For any a, λ > 0 and n ∈ N by a version of Taylors Theorem

f(λ) =
n−1∑
k=0

f (k)(a)

k!
(λ− a)k +

∫ λ

a

f (n)(s)

(n− 1)!
(λ− s)n−1 ds

=

n−1∑
k=0

(−1)kf (k)(a)

k!
(a− λ)k +

∫ a

λ

(−1)nf (n)(s)

(n− 1)!
(s− λ)n−1 ds.

(3.1)

Because of f ∈ CM for a ≥ λ all terms in (3.1) are non-negative. In particular the integral
on the right hand side is bounded by f(λ) for any a ≥ λ. Hence, the limit

lim
a→+∞

∫ a

λ

(−1)nf (n)(s)

(n− 1)!
(s− λ)n−1 ds =

∫ +∞

λ

(−1)nf (n)(s)

(n− 1)!
(s− λ)n−1 ds

exists and is smaller or equal to f(λ). With the same argument we see that the sum in
(3.1) converges to a non-negative limit for a −→ +∞. Since this is true for all n ∈ N, the
same is true for every addend in the sum. For k ∈ N0 we set

ρk(λ) = lim
a→+∞

(−1)kf (k)(a)

k!
(a− λ)k.

Since for x, y > 0 we have

ρk(x) = lim
a→+∞

(−1)kf (k)(a)

k!
(a− x)k = lim

a→+∞

(−1)kf (k)(a)

k!
(a− y)k

(a− x)k

(a− y)k
= ρk(y) · 1,
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3 Completely monotone functions

ρk is constant. Defining cn =
∑n−1

k=0 ρk(x) we have

f(λ) = cn +

∫ +∞

λ

(−1)nf (n)(s)

(n− 1)!
(s− λ)n−1 ds.

Since the integral vanishes for λ → +∞ and by assumption f(+∞) = 0, we derive cn = 0
for all n ∈ N.
The following Theorem 3.0.3 constitutes the main result of the present work. Its proof

is split up into several steps and will primarly be based on Corollary 1.0.8.

Theorem 3.0.3. Every f ∈ CM can be written as the Laplace-Transform of a unique
positive Borel measure on [0,+∞).

Proof. The desired uniqueness follows from Lemma 2.0.5.
Assume first that limλ→0+ f(λ) =: f(0+) = 1 and f(+∞) = 0. Applying Lemma 3.0.2
yields

f(λ) =

∫ +∞

λ

(−1)nf (n)(s)

(n− 1)!
(s− λ)n−1 ds

=

∫
(0,+∞)

(−1)nf (n)(s)

(n− 1)!
(s− λ)n−1

1[λ,+∞) dλ1(s), λ ∈ (0,+∞).

By monotone convergence

1 = f(0+) = lim
k→∞

f

(
1

k

)
=

∫
(0,+∞)

(−1)nf (n)(s)

(n− 1)!
sn−1 dλ1(s), n ∈ N. (3.2)

Setting

fn(s) :=
(−1)n

n!
f (n)

(n
s

)(n
s

)n+1
, s ∈ (0,+∞)

and substituting s = n/t in (3.2) yields
∫ +∞
0 fn(t) dt = 1. Hence, fn is a probability density

function on (0,+∞) for every n ∈ N.
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3 Completely monotone functions

In the following we employ the notation a+ := max(0, a). Also note that for
s, λ ∈ (0,+∞) we have s > λ if and only if (1− λ/s) > 0. For fixed λ > 0 we obtain

f(λ) =

∫ +∞

λ

(−1)nf (n)(s)

(n− 1)!
(s− λ)n−1 ds

=

∫ +∞

λ

(−1)nf (n)(s)

(n− 1)!
sn−1(1− λ

s
)n−1 ds

=

∫ +∞

λ

(−1)nf (n)(s)

(n− 1)!
sn−1((1− λ

s
)+)

n−1 ds+

∫ λ

0

(−1)nf (n)(s)

(n− 1)!
((1− λ

s
)+)

n−1 ds

=

∫ +∞

0

(−1)nf (n)(s)

(n− 1)!
sn−1((1− λ

s
)+)

n−1 ds

=

∫ +∞

0

(−1)nf (n)(nt )

n!
(
n

t
)n+1((1− λt

n
)+)

n−1 ds

=

∫ +∞

0
((1− λt

n
)+)

n−1fn(t) dt.

If we set fn(0) := 0, fn also constitutes a probability density function on [0,+∞). We can
rewrite f(λ) as

f(λ) =

∫
[0,+∞)

((1− λt

n
)+)

n−1fn(t) dλ1(t)

for every n ∈ N. Defining hn(t) := (1− λt/n)n−1
+ we have

∣∣∣∣f(λ)−∫
[0,+∞)

e−λtfn(t) dλ1(t)

∣∣∣∣ ≤ ∫
[0,+∞)

∣∣∣∣hn(t)−e−λt

∣∣∣∣fn(t) dλ1(t) ≤ ||hn−e−λ·||∞ (3.3)

One can show that (hn)n∈N converges uniformly to (t 7→ e−λt) on [0,+∞). Therefore,
the left hand side converges to 0 for n → ∞. We apply Corollary 1.0.8 with Ω = [0,+∞)
and µn = fn ·λ1 and obtain a subnet (fn(i) ·λ1)i∈I that converges vaguely to a finite positive

Borel measure µ on [0,+∞). As (t 7→ e−λt) ∈ C0([0,+∞),R)

lim
i∈I

∫
[0,+∞)

e−λtfn(i)(t) dλ1(t) = lim
i∈I

∫
[0,+∞)

e−λt d(fn(i) · λ1)(t) =

∫
[0,+∞)

e−λt dµ(t).

Taking (3.3) into account we obtain∫
[0,+∞)

e−λt dµ(t) = lim
i∈I

∫
[0,+∞)

e−λtfn(i)(t) dλ1(t) = lim
n→∞

∫
[0,+∞)

e−λtfn(t) dλ1(t) = f(λ)

for every λ ∈ (0,+∞).
In the case 0 < f(0+) < +∞ and f(+∞) = 0 we define g : (0,+∞) → R by g(λ) =
f(λ)/f(0+). Because of g(0+) = 1, by the first part of the proof exists a positive Borel
measure µ′ satisfying

g(λ) =

∫
[0,+∞)

e−λt µ′(t)
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3 Completely monotone functions

for all λ > 0. Defining µ := f(0+) · µ we obtain L(µ)(λ) = f(λ), λ > 0. If f(0+) = 0,
then f must be identically zero, due to the fact that it is monotonically decreasing and
non-negative. Hence, L(µ) = f for µ = 0.
For a function f ∈ CM, which only satisfies f(+∞) = 0, and a > 0 we set fa(λ) := f(a+λ).
Clearly, fa(0+) = f(a) < +∞ and f(+∞) = 0. From the previous considerations for any
a > 0 we obtain a finite positive Borel measure µa satisfying L(µa) = fa. For b, a > 0 and
λ > 0 we have

L(µb)(λ) = f(a+ (λ+ b− a)) =

∫
[0,+∞)

e−(λ+b−a)t dµa =

∫
[0,+∞)

e−λtet(a−b) dµa

From Lemma 2.0.5 we derive µb = e·(a−b) · µa and in turn ea· · µa = eb· · µb. Consequently,
the definition µ := ea· · µa of a positive Borel measure does not depend on a > 0. For
λ ∈ (0,+∞) we conclude

f(λ) = fλ/2(λ/2) =

∫
[0,+∞)

e−
λ
2
t dµλ/2(t) =

∫
[0,+∞)

e−λte
λ
2
t dµλ/2(t) =

∫
[0,+∞)

e−λt dµ(t).

Finally, in the case f(+∞) = c > 0 we define g : (0,+∞) → R by g(λ) := f(λ) − c. The
function g belongs to CM and satisfies g(+∞) = 0. Hence, g = L(µg) for a positive Borel
measure µg. From

f(λ) = g(λ) + c =

∫
[0,+∞)

e−λt dµg(t) + c =

∫
[0,+∞)

e−λt dµg(t) +

∫
[0,+∞)

e−λt d(c · δ0)(t)

we conclude L(µ) = f , where µ =:= µg + c · δ0.

Remark 3.0.4. From the previous theorem and Proposition 2.0.4 we nearly obtain an
equivalence of Laplace-Transforms of positive Borel measures and the notion of completely
monotone functions introduced in Definition 2.0.2. Note that we demanded a CM function
to be defined on all positive real numbers. If one starts with a positive Borel measure,
its Laplace-Transform will be of class C∞((ρ0,+∞),R), but might not be defined for all
positive numbers and, in turn, might not be a completely monotone function.

Example 3.0.5. The following examples are taken from [Mer14].

1. Clearly, all constant non-negative functions f = c belong to CM. From

f(λ) =

∫
[0,+∞)

e−λt d(c · δ0)(t) = e0c = c

we conclude f = L(c · δ0).

2. The function f : (0,+∞) → R defined by

f(x) =
1

x
, x > 0

belongs to f ∈ CM. By

f(x) =

∫ +∞

0
e−xt dt =

∫
[0,+∞)

e−xt dλ1(t), x > 0,

we see that f = L(λ1

∣∣
[0+∞)

).
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3 Completely monotone functions

Corollary 3.0.6. If f ∈ CM is a non-constant function, then f (n)(λ) ̸= 0 for all n ∈ N
and all λ > 0.

Proof. By Theorem 3.0.3 we have f = L(µ) for some positive Borel measure µ. By
assumption and Lemma 2.0.5 µ can not be of the form c · δ0. Applying Proposition 2.0.4
gives

(−1)nf (n)(λ) = (−1)n
∫
[0,+∞)

dn

dλn
e−λt dµ(t) =

∫
[0,+∞)

tne−λt dµ(t) > 0

for all n ∈ N and all λ > 0.
The following result is taken from [Mer14, Chapter 1].

Definition 3.0.7. Let µ, ν be positive measures on [0,+∞). We define the convolution of
µ and ν as

(µ ⋆ ν)(B) :=

∫
[0,+∞)

∫
[0,+∞)

1B(x+ y) dµ(x)dν(y)

for all Borel measurable B ⊆ [0,+∞).

Remark 3.0.8. Note that we can write the convolution of two positive measures µ and ν
in the form

(µ ⋆ ν)(B) =

∫
[0,+∞)2

1B(x+ y) d(µ× ν)(x, t) =

∫
[0,+∞)2

1B(T (x, t)) d(µ× ν)(x, t),

where T : [0,+∞)2 −→ [0,+∞) is defined by (x, t) 7→ x+ t. Recall that T is continuous
and therefore measurable. Therefore,

µ ⋆ ν = (µ× ν) ◦ T−1.

Corollary 3.0.9. The set CM is closed under pointwise multiplication, i.e. fg ∈ CM for
f, g ∈ CM.

Proof. By Theorem 3.0.3, there exist positive Borel measures µ and ν such that f = L(µ)
and g = L(ν). For λ > 0 we derive

(fg)(λ) = (L(µ)L(ν))(λ) =
∫
[0,+∞)

∫
[0,+∞)

e−λ(t1+t2) dµ(t1)dν(t2)

=

∫
[0,+∞)

e−λt d((µ× ν) ◦ T−1)(t)

=

∫
[0,+∞)

e−λt d(µ ⋆ ν)(t)

as elements of [0,+∞]. As f(λ)g(λ) < +∞ the right hand side is finite for all λ > 0. Hence,
inf{λ ∈ R :

∫
[0,+∞) e

−λt d(µ ⋆ ν)(t) < +∞)} is smaller or equal to zero and by Proposition
2.0.4 we have fg ∈ CM.

Corollary 3.0.10. If (fn)n∈N is a sequence of completely monotone functions satisfying
supn∈N fn(0+) < +∞. Then there exists a subnet

(
fn(k)

)
k∈I and a completely monotone

function f , such that limk∈I fn(k)(λ) = f(λ) for all λ > 0.
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3 Completely monotone functions

Proof. Applying Theorem 3.0.3 for every n ∈ N gives a sequence of representing positive
measures (µn)n∈N, for which fn = L(µn) and

µn([0,+∞)) = fn(0+) ≤ c := sup
n∈N

fn(0+) < +∞.

Employing the same arguments as in Corollary 1.0.8 there exists a subnet (µn(k))k∈I that
converges vaguely to a finite positive Borel measure µ. In consequence

lim
k∈I

fn(k)(λ) = lim
k∈I

∫
[0,+∞)

e−λt dµn(k)(t) =

∫
[0,+∞)

e−λt dµ(t) = L(µ)(λ) =: f(λ)

for every λ > 0. By Proposition 2.0.4, we conclude f ∈ CM.
The following result will be presented without proof. Its proof can be found in [SSV12,

Chapter 1].

Corollary 3.0.11. Let (fn)n∈N be a sequence of completely monotone functions such
that the limit limn→∞ fn(λ) = f(λ) exists for all λ ∈ (0,+∞). Then f ∈ CM and

limn→∞ f
(k)
n (λ) = f (k)(λ) for all k ∈ N0 locally uniformly in λ ∈ (0,+∞).

10



Bibliography
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