

Seminararbeit

Laplace Tranformation von Borelmaßen und der Satz von Bernstein über vollständig Monotone Funktionen

ausgeführt am

Institut für Analysis und Scientific Computing TU Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Michael Kaltenbäck

durch

Oskar Broukal

Matrikelnummer: 12002124

Wien, Juni 2023

Contents

1	Introduction and notation	1
2	Laplace-Transforms of measures	3
3	Completely monotone functions	5
Bibliography		11

1 Introduction and notation

In the present note we will firstly introduce the notion of Laplace-Transforms of Borel measures on the Borel measurable subsets of $[0, +\infty)$. The aim of the note will be the formulation and proof of the Theorem of Bernstein on completely monotone functions stating that these functions can be written as a Laplace-Transform of a unique Borel measure. This result will strongly rely on the Theorem of Riesz-Markov and the Theorem of Banach-Alaoglu.

The following results are taken from [Kal21, Chapter 12, 14, 15, 18].

Definition 1.0.1. Let (Ω, \mathcal{T}) be a locally-compact Hausdorff Space. By $C_0(\Omega, \mathbb{R})$ we denote all real valued continuous functions on Ω satisfying:

$$\forall \epsilon > 0 \; \exists K \subseteq \Omega \; \text{compact} : |f(x)| \le \epsilon \; \forall x \in \Omega \setminus K.$$

Definition 1.0.2. Let (Ω, \mathcal{T}) be a locally-compact Hausdorff Space. Let μ be a complex (real) valued measure on $\mathcal{A} := \mathcal{A}(\mathcal{T})$. We call μ regular, if its variation $|\mu|$ is regular, i.e. if for every $A \in \mathcal{A}$

$$|\mu|(A) = \sup\{|\mu|(K) : K \subseteq A, K \text{ compact}\} = \inf\{|\mu|(O) : A \subseteq O, O \in \mathcal{T}\}.$$

By $M_{reg}(\Omega, \mathcal{A}, \mathbb{C}(\mathbb{R}))$ we will denote the set of all regular complex (real) measures on \mathcal{A} .

Lemma 1.0.3. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, $I \subseteq \mathbb{R}$ an Interval, $s \in I$ and $f : I \times \Omega \to \mathbb{R}$ a function such that

- 1. $x \mapsto f(t, x)$ is μ -integrable for all $t \in I$,
- 2. $t \mapsto f(t, x)$ is differentiable at the point s for almost all $x \in \Omega$,
- 3. there exists a $\delta > 0$ and a μ -integrable function $g : \Omega \to \mathbb{R}$ such that for all $t \in (s \delta, s + \delta) \cap I$ the inequality

$$\left|\frac{f(t,.) - f(s,.)}{t - s}\right| \le g$$

holds true μ -almost everywhere.

Then the function $F(t) := \int_{\Omega} f(t, .) d\mu$ is differentiable at the point $s \in I$ and

$$F'(s) = \int_{\Omega} \frac{\partial f}{\partial t}(s, .) \, d\mu.$$

Theorem 1.0.4. (*Riesz-Markov*) Let (Ω, \mathcal{T}) be a locally-compact Hausdorff Space and $\mu \in M_{reg}(\Omega, \mathcal{A}(\mathcal{T}), \mathbb{C}(\mathbb{R}))$. Defining $\Phi(\mu) : C_0(\Omega, \mathbb{C}(\mathbb{R})) \to \mathbb{C}(\mathbb{R})$ by

$$\Phi(\mu)(f) := \int_{\Omega} f \, d\mu$$

we have $\Phi(\mu) \in C_0(\Omega, \mathbb{C}(\mathbb{R}))'$. Indeed, $\Phi := (\mu \mapsto \Phi(\mu))$ constitutes a linear, isometric and bijective mapping from $M_{reg}(\Omega, \mathcal{A}, \mathbb{C}(\mathbb{R}))$ onto $C_0(\Omega, \mathbb{C}(\mathbb{R}))'$.

We need a few results from functional analysis, which are taken from [MK23, Chapter 5].

Definition 1.0.5. We denote by $\sigma(X', X) := \sigma(X', \iota(X))$ the weak-topology on X' with respect to the subspace $\iota(X) \leq X''$ and will call it w^* -topology.

Theorem 1.0.6. (Banach-Alaoglu) Let (X, ||.||) be a normed space and X' be its dualspace. Then the closed unit ball in X' with respect to the operatornorm, i.e.

$$K_1^{X'}(0) = \{ f \in X' : ||f|| \le 1 \}$$

is w^* -compact.

Definition 1.0.7. Let (Ω, \mathcal{T}) be a locally-compact Hausdorff space. We say that a net $(\mu_i)_{i \in I}$ of positive measures defined on $\mathcal{A}(\mathcal{T})$ converges vaguely to a positive measure μ if and only if

$$\lim_{i \in I} \int_{\Omega} f \, d(\mu_i) = \int_{\Omega} f \, d\mu$$

for every $f \in C_0(\Omega, \mathbb{R})$.

Corollary 1.0.8. Let (Ω, \mathcal{T}) be a locally-compact Hausdorff space and $(\mu_n)_{n \in \mathbb{N}}$ be a sequence of probability measures on $\mathcal{A}(\mathcal{T})$. Then there exists a subnet $(\mu_{n(i)})_{i \in I}$ that converges vaguely to a finite positive measure on $\mathcal{A}(\mathcal{T})$.

Proof. By $\Phi : M_{reg}(\Omega, \mathbb{R}) \longrightarrow C_0(\Omega, \mathbb{R})'$ we denote the isometric isomorphism from the Riesz-Markov Theorem 1.0.4. $||\mu_n|| = \mu_n(\Omega) = 1$ implies $\Phi(\mu_n) \in K_1^{C_0(\Omega, \mathbb{R})'}(0)$ for every $n \in \mathbb{N}$. Since $(C_0(\Omega, \mathbb{R}), ||.||_{\infty})$ is a normed space, the Banach-Alaoglu Theorem 1.0.6 implies the compactness of $K_1^{C_0(\Omega, \mathbb{R})'}(0)$ with respect to the w^* topology. Hence, there exists a subnet and a functional $\phi \in K_1^{C_0(\Omega, \mathbb{R})'}(0)$ such that $\Phi(\mu_{n(i)}) \xrightarrow{i \in I} \phi$ in the w^* sense. Hence,

$$\lim_{i \in I} \int_{\Omega} f \, d(\mu_{n(i)}) = \lim_{i \in I} \Phi(\mu_{n(i)})(f) = \phi(f) = \int_{\Omega} f \, d\mu$$

for every $f \in C_0(\Omega, \mathbb{R})$ and where $\mu := \Phi^{-1}(\phi)$. The fact that μ is a positive measure follows directly from the fact that all μ_n are positive since

$$\int_{\Omega} f \, d\mu = \lim_{i \in I} \int_{\Omega} f \, d\mu_{n(i)} \ge 0$$

for every $f \in C_0(\Omega, \mathbb{R})$ that are non-negative.

2 Laplace-Transforms of measures

In the present chapter we will introduce the notion of Laplace-Transforms of positive measures. All Definition und results are based on [SSV12].

Remark 2.0.1. All measures in the forthcoming considerations will be defined on $(\mathcal{A}(\mathcal{T})|_{[0,+\infty)})$, where \mathcal{T} denotes the topology on \mathbb{R} induced by the euclidian norm and the set $[0,+\infty)$ will only be equipped with this sigma-algebra. The set $[0,+\infty) \times [0,+\infty)$ will be equiped with $(\mathcal{A}(\mathcal{T}^2)|_{[0,+\infty)^2})$. By λ_1 we will denote the Lebesgue measure, restricted to $(\mathcal{A}(\mathcal{T})|_{[0,+\infty)})$.

Definition 2.0.2. Let μ be a positive Borel measure on $[0, +\infty)$. We define the Laplace-Transform $\mathcal{L}(\mu) : (\rho_0, +\infty) \longrightarrow \mathbb{R}$ of μ by

$$\mathcal{L}(\mu)(x) = \int_{[0,+\infty)} e^{-xt} \, d\mu(t),$$

where $\rho_0 = \inf\{x \in \mathbb{R} : \int_{[0,+\infty)} e^{-xt} d\mu < +\infty\}$. Here we set $\rho_0 = +\infty$ if the corresponding set is empty.

Lemma 2.0.3. A positive Borel measure μ is finite if and only if $\rho_0 \leq 0$ and $\lim_{x\to 0+} \mathcal{L}(\mu)(x) < +\infty$.

Proof. By monotone convergence

$$\lim_{x \to \rho+} \mathcal{L}(\mu)(x) = \int_{[0,+\infty)} e^{-\rho t} \, d\mu(t)$$

as an element of $[0, +\infty]$ for any $\rho \ge \rho_0$. In particular, μ is finite if and only if $\rho_0 \le 0$ and $\lim_{x\to 0+} \mathcal{L}(\mu)(x) < +\infty$.

Proposition 2.0.4. If μ is a positive Borel measure on $[0, +\infty)$ and ρ_0 is defined as in Def. 2.0.2, then $\mathcal{L}(\mu) \in C^{\infty}((\rho_0, +\infty), \mathbb{R})$ and for every $n \in \mathbb{N}$, $\lambda \in (\rho_0, +\infty)$ we have

$$(-1)^n \mathcal{L}(\mu)^{(n)}(\lambda) \ge 0.$$

Proof. We define $h: (\rho_0, +\infty) \times (0, +\infty) \to \mathbb{R}$ by

$$h(\lambda, t) := e^{-\lambda t}.$$

Given $\lambda > \rho_0$ we choose $\epsilon > 0$ such that $\lambda - 2\epsilon > \rho_0$. For every $s \in (\lambda - \epsilon, \lambda + \epsilon)$ we have

$$\left|\frac{\partial^n h}{\partial s^n}(s,t)\right| = |(-t)^n e^{-st}| = t^n e^{-st} \le \frac{n!}{\epsilon^n} e^{\epsilon t} e^{-st} \le \frac{n!}{\epsilon^n} e^{\epsilon t} e^{-(\lambda-\epsilon)t} = \frac{n!}{\epsilon^n} e^{-(\lambda-2\epsilon)t}.$$

Because of

$$\int_{[0,+\infty)} \frac{n!}{\epsilon^n} e^{-(\lambda-2\epsilon)t} \, d\mu(t) = \frac{n!}{\epsilon^n} \mathcal{L}(\mu)(\lambda-2\epsilon) < +\infty$$

we can apply Lemma 1.0.3 and obtain

$$(-1)^{n} \mathcal{L}(\mu)^{(n)}(\lambda) = (-1)^{n} \int_{[0,+\infty)} \frac{d^{n}}{d\lambda^{n}} (e^{-\lambda t}) \, d\mu(t) = \int_{[0,+\infty)} t^{n} e^{-\lambda t} \, d\mu(t) \ge 0.$$

The following lemma will be imported without proof. The proof can be found in proposition 1.2 in [SSV12, Chapter 1].

Lemma 2.0.5. If μ, ν are positive Borel measures on $[0, +\infty)$ such that $\mathcal{L}\mu = \mathcal{L}\nu$, then $\mu = \nu$.

3 Completely monotone functions

The following chapter is mainly based on [SSV12, Chapter 1]. Other sources will be stated explicitly.

Definition 3.0.1. We say that $f \in C^{\infty}((0, +\infty), \mathbb{R})$ is completely monotone if

$$(-1)^n f^{(n)} \ge 0$$
 for all $n \in \mathbb{N}_0$.

By \mathcal{CM} we denote the set of all completely monotone functions.

Lemma 3.0.2. Let $f \in CM$ and assume that $f(+\infty) := \lim_{t \to +\infty} f(t) = 0$. Then for every $n \in \mathbb{N}$ and $\lambda > 0$ we have

$$f(\lambda) = \int_{\lambda}^{+\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} \, ds.$$

Proof. For any $a, \lambda > 0$ and $n \in \mathbb{N}$ by a version of Taylors Theorem

$$f(\lambda) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (\lambda - a)^k + \int_a^\lambda \frac{f^{(n)}(s)}{(n-1)!} (\lambda - s)^{n-1} ds$$

$$= \sum_{k=0}^{n-1} \frac{(-1)^k f^{(k)}(a)}{k!} (a - \lambda)^k + \int_\lambda^a \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s - \lambda)^{n-1} ds.$$
(3.1)

Because of $f \in C\mathcal{M}$ for $a \geq \lambda$ all terms in (3.1) are non-negative. In particular the integral on the right hand side is bounded by $f(\lambda)$ for any $a \geq \lambda$. Hence, the limit

$$\lim_{a \to +\infty} \int_{\lambda}^{a} \frac{(-1)^{n} f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} \, ds = \int_{\lambda}^{+\infty} \frac{(-1)^{n} f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} \, ds$$

exists and is smaller or equal to $f(\lambda)$. With the same argument we see that the sum in (3.1) converges to a non-negative limit for $a \longrightarrow +\infty$. Since this is true for all $n \in \mathbb{N}$, the same is true for every addend in the sum. For $k \in \mathbb{N}_0$ we set

$$\rho_k(\lambda) = \lim_{a \to +\infty} \frac{(-1)^k f^{(k)}(a)}{k!} (a - \lambda)^k.$$

Since for x, y > 0 we have

$$\rho_k(x) = \lim_{a \to +\infty} \frac{(-1)^k f^{(k)}(a)}{k!} (a-x)^k = \lim_{a \to +\infty} \frac{(-1)^k f^{(k)}(a)}{k!} (a-y)^k \frac{(a-x)^k}{(a-y)^k} = \rho_k(y) \cdot 1,$$

 ρ_k is constant. Defining $c_n = \sum_{k=0}^{n-1} \rho_k(x)$ we have

$$f(\lambda) = c_n + \int_{\lambda}^{+\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} \, ds.$$

Since the integral vanishes for $\lambda \to +\infty$ and by assumption $f(+\infty) = 0$, we derive $c_n = 0$ for all $n \in \mathbb{N}$.

The following Theorem 3.0.3 constitutes the main result of the present work. Its proof is split up into several steps and will primarly be based on Corollary 1.0.8.

Theorem 3.0.3. Every $f \in C\mathcal{M}$ can be written as the Laplace-Transform of a unique positive Borel measure on $[0, +\infty)$.

Proof. The desired uniqueness follows from Lemma 2.0.5.

Assume first that $\lim_{\lambda\to 0+} f(\lambda) =: f(0+) = 1$ and $f(+\infty) = 0$. Applying Lemma 3.0.2 yields

$$f(\lambda) = \int_{\lambda}^{+\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} ds$$

=
$$\int_{(0,+\infty)} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} \mathbb{1}_{[\lambda,+\infty)} d\lambda_1(s), \, \lambda \in (0,+\infty)$$

By monotone convergence

$$1 = f(0+) = \lim_{k \to \infty} f\left(\frac{1}{k}\right) = \int_{(0,+\infty)} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} s^{n-1} d\lambda_1(s), \ n \in \mathbb{N}.$$
 (3.2)

Setting

$$f_n(s) := \frac{(-1)^n}{n!} f^{(n)}\left(\frac{n}{s}\right) \left(\frac{n}{s}\right)^{n+1}, \ s \in (0, +\infty)$$

and substituting s = n/t in (3.2) yields $\int_0^{+\infty} f_n(t) dt = 1$. Hence, f_n is a probability density function on $(0, +\infty)$ for every $n \in \mathbb{N}$.

In the following we employ the notation $a_+ := max(0, a)$. Also note that for $s, \lambda \in (0, +\infty)$ we have $s > \lambda$ if and only if $(1 - \lambda/s) > 0$. For fixed $\lambda > 0$ we obtain

$$\begin{split} f(\lambda) &= \int_{\lambda}^{+\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} \, ds \\ &= \int_{\lambda}^{+\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} s^{n-1} (1-\frac{\lambda}{s})^{n-1} \, ds \\ &= \int_{\lambda}^{+\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} s^{n-1} ((1-\frac{\lambda}{s})_+)^{n-1} \, ds + \int_{0}^{\lambda} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} ((1-\frac{\lambda}{s})_+)^{n-1} \, ds \\ &= \int_{0}^{+\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} s^{n-1} ((1-\frac{\lambda}{s})_+)^{n-1} \, ds \\ &= \int_{0}^{+\infty} \frac{(-1)^n f^{(n)}(\frac{n}{t})}{n!} (\frac{n}{t})^{n+1} ((1-\frac{\lambda t}{n})_+)^{n-1} \, ds \\ &= \int_{0}^{+\infty} ((1-\frac{\lambda t}{n})_+)^{n-1} f_n(t) \, dt. \end{split}$$

If we set $f_n(0) := 0$, f_n also constitutes a probability density function on $[0, +\infty)$. We can rewrite $f(\lambda)$ as

$$f(\lambda) = \int_{[0,+\infty)} ((1 - \frac{\lambda t}{n})_+)^{n-1} f_n(t) \, d\lambda_1(t)$$

for every $n \in \mathbb{N}$. Defining $h_n(t) := (1 - \lambda t/n)_+^{n-1}$ we have

$$\left| f(\lambda) - \int_{[0,+\infty)} e^{-\lambda t} f_n(t) \, d\lambda_1(t) \right| \le \int_{[0,+\infty)} \left| h_n(t) - e^{-\lambda t} \right| f_n(t) \, d\lambda_1(t) \le ||h_n - e^{-\lambda t}||_{\infty}$$
(3.3)

One can show that $(h_n)_{n\in\mathbb{N}}$ converges uniformly to $(t\mapsto e^{-\lambda t})$ on $[0,+\infty)$. Therefore, the left hand side converges to 0 for $n\to\infty$. We apply Corollary 1.0.8 with $\Omega = [0,+\infty)$ and $\mu_n = f_n \cdot \lambda_1$ and obtain a subnet $(f_{n(i)} \cdot \lambda_1)_{i\in I}$ that converges vaguely to a finite positive Borel measure μ on $[0,+\infty)$. As $(t\mapsto e^{-\lambda t}) \in C_0([0,+\infty),\mathbb{R})$

$$\lim_{i \in I} \int_{[0,+\infty)} e^{-\lambda t} f_{n(i)}(t) \, d\lambda_1(t) = \lim_{i \in I} \int_{[0,+\infty)} e^{-\lambda t} \, d(f_{n(i)} \cdot \lambda_1)(t) = \int_{[0,+\infty)} e^{-\lambda t} \, d\mu(t).$$

Taking (3.3) into account we obtain

$$\int_{[0,+\infty)} e^{-\lambda t} d\mu(t) = \lim_{i \in I} \int_{[0,+\infty)} e^{-\lambda t} f_{n(i)}(t) d\lambda_1(t) = \lim_{n \to \infty} \int_{[0,+\infty)} e^{-\lambda t} f_n(t) d\lambda_1(t) = f(\lambda)$$

for every $\lambda \in (0, +\infty)$.

In the case $0 < f(0+) < +\infty$ and $f(+\infty) = 0$ we define $g : (0, +\infty) \to \mathbb{R}$ by $g(\lambda) = f(\lambda)/f(0+)$. Because of g(0+) = 1, by the first part of the proof exists a positive Borel measure μ' satisfying

$$g(\lambda) = \int_{[0,+\infty)} e^{-\lambda t} \mu'(t)$$

for all $\lambda > 0$. Defining $\mu := f(0+) \cdot \mu$ we obtain $\mathcal{L}(\mu)(\lambda) = f(\lambda), \lambda > 0$. If f(0+) = 0, then f must be identically zero, due to the fact that it is monotonically decreasing and non-negative. Hence, $\mathcal{L}(\mu) = f$ for $\mu = 0$.

For a function $f \in C\mathcal{M}$, which only satisfies $f(+\infty) = 0$, and a > 0 we set $f_a(\lambda) := f(a+\lambda)$. Clearly, $f_a(0+) = f(a) < +\infty$ and $f(+\infty) = 0$. From the previous considerations for any a > 0 we obtain a finite positive Borel measure μ_a satisfying $\mathcal{L}(\mu_a) = f_a$. For b, a > 0 and $\lambda > 0$ we have

$$\mathcal{L}(\mu_b)(\lambda) = f(a + (\lambda + b - a)) = \int_{[0, +\infty)} e^{-(\lambda + b - a)t} d\mu_a = \int_{[0, +\infty)} e^{-\lambda t} e^{t(a - b)} d\mu_a$$

From Lemma 2.0.5 we derive $\mu_b = e^{\cdot (a-b)} \cdot \mu_a$ and in turn $e^{a} \cdot \mu_a = e^{b} \cdot \mu_b$. Consequently, the definition $\mu := e^{a} \cdot \mu_a$ of a positive Borel measure does not depend on a > 0. For $\lambda \in (0, +\infty)$ we conclude

$$f(\lambda) = f_{\lambda/2}(\lambda/2) = \int_{[0,+\infty)} e^{-\frac{\lambda}{2}t} d\mu_{\lambda/2}(t) = \int_{[0,+\infty)} e^{-\lambda t} e^{\frac{\lambda}{2}t} d\mu_{\lambda/2}(t) = \int_{[0,+\infty)} e^{-\lambda t} d\mu(t).$$

Finally, in the case $f(+\infty) = c > 0$ we define $g: (0, +\infty) \to \mathbb{R}$ by $g(\lambda) := f(\lambda) - c$. The function g belongs to \mathcal{CM} and satisfies $g(+\infty) = 0$. Hence, $g = \mathcal{L}(\mu_g)$ for a positive Borel measure μ_q . From

$$f(\lambda) = g(\lambda) + c = \int_{[0,+\infty)} e^{-\lambda t} d\mu_g(t) + c = \int_{[0,+\infty)} e^{-\lambda t} d\mu_g(t) + \int_{[0,+\infty)} e^{-\lambda t} d(c \cdot \delta_0)(t)$$

we conclude $\mathcal{L}(\mu) = f$, where $\mu = := \mu_g + c \cdot \delta_0$.

we conclude $\mathcal{L}(\mu) = f$, where $\mu = := \mu_g + c \cdot \delta_0$.

Remark 3.0.4. From the previous theorem and Proposition 2.0.4 we nearly obtain an equivalence of Laplace-Transforms of positive Borel measures and the notion of completely monotone functions introduced in Definition 2.0.2. Note that we demanded a \mathcal{CM} function to be defined on all positive real numbers. If one starts with a positive Borel measure, its Laplace-Transform will be of class $C^{\infty}((\rho_0, +\infty), \mathbb{R})$, but might not be defined for all positive numbers and, in turn, might not be a completely monotone function.

Example 3.0.5. The following examples are taken from [Mer14].

1. Clearly, all constant non-negative functions f = c belong to CM. From

$$f(\lambda) = \int_{[0,+\infty)} e^{-\lambda t} d(c \cdot \delta_0)(t) = e^0 c = c$$

we conclude $f = \mathcal{L}(c \cdot \delta_0)$.

2. The function $f: (0, +\infty) \to \mathbb{R}$ defined by

$$f(x)=\frac{1}{x},\ x>0$$

belongs to $f \in \mathcal{CM}$. By

$$f(x) = \int_0^{+\infty} e^{-xt} dt = \int_{[0,+\infty)} e^{-xt} d\lambda_1(t), \ x > 0,$$

we see that $f = \mathcal{L}(\lambda_1 |_{[0+\infty)}).$

Corollary 3.0.6. If $f \in CM$ is a non-constant function, then $f^{(n)}(\lambda) \neq 0$ for all $n \in \mathbb{N}$ and all $\lambda > 0$.

Proof. By Theorem 3.0.3 we have $f = \mathcal{L}(\mu)$ for some positive Borel measure μ . By assumption and Lemma 2.0.5 μ can not be of the form $c \cdot \delta_0$. Applying Proposition 2.0.4 gives

$$(-1)^n f^{(n)}(\lambda) = (-1)^n \int_{[0,+\infty)} \frac{d^n}{d\lambda^n} e^{-\lambda t} \, d\mu(t) = \int_{[0,+\infty)} t^n e^{-\lambda t} \, d\mu(t) > 0$$

for all $n \in \mathbb{N}$ and all $\lambda > 0$.

The following result is taken from [Mer14, Chapter 1].

Definition 3.0.7. Let μ, ν be positive measures on $[0, +\infty)$. We define the *convolution* of μ and ν as

$$(\mu \star \nu)(B) := \int_{[0,+\infty)} \int_{[0,+\infty)} \mathbb{1}_B(x+y) \, d\mu(x) d\nu(y)$$

for all Borel measurable $B \subseteq [0, +\infty)$.

Remark 3.0.8. Note that we can write the convolution of two positive measures μ and ν in the form

$$(\mu \star \nu)(B) = \int_{[0,+\infty)^2} \mathbb{1}_B(x+y) \, d(\mu \times \nu)(x,t) = \int_{[0,+\infty)^2} \mathbb{1}_B(T(x,t)) \, d(\mu \times \nu)(x,t),$$

where $T: [0, +\infty)^2 \longrightarrow [0, +\infty)$ is defined by $(x, t) \mapsto x + t$. Recall that T is continuous and therefore measurable. Therefore,

$$\mu \star \nu = (\mu \times \nu) \circ T^{-1}.$$

Corollary 3.0.9. The set CM is closed under pointwise multiplication, i.e. $fg \in CM$ for $f, g \in CM$.

Proof. By Theorem 3.0.3, there exist positive Borel measures μ and ν such that $f = \mathcal{L}(\mu)$ and $g = \mathcal{L}(\nu)$. For $\lambda > 0$ we derive

$$(fg)(\lambda) = (\mathcal{L}(\mu)\mathcal{L}(\nu))(\lambda) = \int_{[0,+\infty)} \int_{[0,+\infty)} e^{-\lambda(t_1+t_2)} d\mu(t_1)d\nu(t_2)$$
$$= \int_{[0,+\infty)} e^{-\lambda t} d((\mu \times \nu) \circ T^{-1})(t)$$
$$= \int_{[0,+\infty)} e^{-\lambda t} d(\mu \star \nu)(t)$$

as elements of $[0, +\infty]$. As $f(\lambda)g(\lambda) < +\infty$ the right hand side is finite for all $\lambda > 0$. Hence, inf $\{\lambda \in \mathbb{R} : \int_{[0,+\infty)} e^{-\lambda t} d(\mu \star \nu)(t) < +\infty)\}$ is smaller or equal to zero and by Proposition 2.0.4 we have $fg \in \mathcal{CM}$.

Corollary 3.0.10. If $(f_n)_{n \in \mathbb{N}}$ is a sequence of completely monotone functions satisfying $\sup_{n \in \mathbb{N}} f_n(0+) < +\infty$. Then there exists a subnet $(f_{n(k)})_{k \in I}$ and a completely monotone function f, such that $\lim_{k \in I} f_{n(k)}(\lambda) = f(\lambda)$ for all $\lambda > 0$.

Proof. Applying Theorem 3.0.3 for every $n \in \mathbb{N}$ gives a sequence of representing positive measures $(\mu_n)_{n \in \mathbb{N}}$, for which $f_n = \mathcal{L}(\mu_n)$ and

$$\mu_n([0, +\infty)) = f_n(0+) \le c := \sup_{n \in \mathbb{N}} f_n(0+) < +\infty.$$

Employing the same arguments as in Corollary 1.0.8 there exists a subnet $(\mu_{n(k)})_{k\in I}$ that converges vaguely to a finite positive Borel measure μ . In consequence

$$\lim_{k \in I} f_{n(k)}(\lambda) = \lim_{k \in I} \int_{[0, +\infty)} e^{-\lambda t} d\mu_{n(k)}(t) = \int_{[0, +\infty)} e^{-\lambda t} d\mu(t) = \mathcal{L}(\mu)(\lambda) =: f(\lambda)$$

for every $\lambda > 0$. By Proposition 2.0.4, we conclude $f \in \mathcal{CM}$.

The following result will be presented without proof. Its proof can be found in [SSV12, Chapter 1].

Corollary 3.0.11. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of completely monotone functions such that the limit $\lim_{n\to\infty} f_n(\lambda) = f(\lambda)$ exists for all $\lambda \in (0, +\infty)$. Then $f \in \mathcal{CM}$ and $\lim_{n\to\infty} f_n^{(k)}(\lambda) = f^{(k)}(\lambda)$ for all $k \in \mathbb{N}_0$ locally uniformly in $\lambda \in (0, +\infty)$.

Bibliography

- [Kal21] Michael Kaltenbäck. Aufbau Analysis. Heldermann Verlag, 2021.
- [Mer14] Milan Merkle. Completely monotone functions: a digest. Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava, pages 347–364, 2014.
- [MK23] Martin Blümlinger Michael Kaltenbäck, Harald Woracek. Funktionalanalysis. https://www.asc.tuwien.ac.at/~funkana/skripten/fana_1_maerz_ 2023.pdf, 2023. [Online; accessed 13-Mai-2023].
- [SSV12] René L Schilling, Renming Song, and Zoran Vondracek. *Bernstein functions*. de Gruyter, 2012.