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1 Introduction and notation

In the present note we will firstly introduce the notion of Laplace-Transforms of Borel
measures on the Borel measurable subsets of [0,4+00). The aim of the note will be the
formulation and proof of the Theorem of Bernstein on completely monotone functions stat-
ing that these functions can be written as a Laplace-Transform of a unique Borel measure.
This result will strongly rely on the Theorem of Riesz-Markov and the Theorem of Banach-
Alaoglu.

The following results are taken from | , Chapter 12, 14, 15, 18].

Definition 1.0.1. Let (©2,7) be a locally-compact Hausdorff Space. By Cp(2,R) we
denote all real valued continuous functions on €2 satisfying:

Ve >0 3K C Q compact : |f(z)| < eV e Q\ K.

Definition 1.0.2. Let (2, 7) be a locally-compact Hausdorff Space. Let u be a complex
(real) valued measure on A := A(T). We call u regular, if its variation || is regular, i.e.
if for every A € A

|| (A) = sup{|p|(K) : K € A, K compact} = inf{|u|(O): AC O, O € T}.
By M;¢q(£2, A, C(R)) we will denote the set of all regular complex (real) measures on A.

Lemma 1.0.3. Let (2, A, 1) be a measure space, I C R an Interval, s € I and f : IxQ2 — R
a function such that

1. x> f(t,x) is p-integrable for allt € I,
2. t— f(t,x) is differentiable at the point s for almost all x € ),

3. there exists a § > 0 and a p-integrable function g :  — R such that for all t €
(s —0,s+0) NI the inequality

’f(t,-)—f(s,-)

<
t—s ‘_g

holds true p-almost everywhere.

Then the function F(t) := [, f(t,.) du is differentiable at the point s € I and

o [ 9
F'(s) = Qa(s,.)du.
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Theorem 1.0.4. (Riesz-Markov) Let (2, T) be a locally-compact Hausdorff Space and
4 € Mrog(, A(T), C(R)). Defining B(s) : Co(S, C(R)) — C(R) by

®)() = [ Fu

we have ®(p) € Co(, C(R))". Indeed, ® := (u— ®(p)) constitutes a linear, isometric and
bijective mapping from M,cq(22, A,C(R)) onto Cy (92, C(R))".

We need a few results from functional analysis, which are taken from | , Chapter
5].

Definition 1.0.5. We denote by o(X’, X) := o(X’, (X)) the weak-topology on X’ with
respect to the subspace ¢(X) < X” and will call it w*-topology.

Theorem 1.0.6. (Banach-Alaoglu) Let (X,||.||) be a normed space and X' be its dualspace.
Then the closed unit ball in X' with respect to the operatornorm, i.e.

KX (0) ={feX :[Ifll <1}
is w*-compact.

Definition 1.0.7. Let (Q,7) be a locally-compact Hausdorff space. We say that a net
(wi)ier of positive measures defined on A(7T) converges vaguely to a positive measure p if

and only if
lim i) =
Z'161/0]"(1(#) /Qfd,u

for every f € Cy(Q2,R).

Corollary 1.0.8. Let (2,T) be a locally-compact Hausdorff space and (pn)nen be a se-
quence of probability measures on A(T). Then there exists a subnet (ji,;))icr that converges
vaguely to a finite positive measure on A(T).

Proof. By ® : M(Q,R) — Co(R2,R)" we denote the isometric isomorphism from
the Riesz-Markov Theorem 1.0.4. ||un|| = p1n(©2) = 1 implies ®(uy,) € KICO(Q’R) (0) for
every n € N. Since (Cp(£2,R), ||.||oo) is a normed space, the Banach-Alaoglu Theorem 1.0.6

implies the compactness of ch O(Q’R)I(O) with respect to the w* topology. Hence, there

exists a subnet and a functional ¢ € KICO(Q’R)/(O) such that ®(p,,;)) USK ¢ in the w* sense.

Hence,

icl

hm/gfd(un(i))—liierrflq)(un(i))(f)—¢(f>—/gfdﬂ

for every f € Co(Q,R) and where pu := ® !(¢). The fact that u is a positive measure
follows directly from the fact that all u, are positive since

[ an=tim [ fduy =0
QO i€l Jo

for every f € Cy(2,R) that are non-negative. O



2 Laplace-Transforms of measures

In the present chapter we will introduce the notion of Laplace-Transforms of positive mea-
sures. All Definition und results are based on | ]

Remark 2.0.1. All measures in the forthcoming considerations will be defined on

(A(T) l[0,400))> where T denotes the topology on R induced by the euclidian norm and the
set [0, +00) will only be equipped with this sigma-algebra. The set [0, +00) X [0, +00) will
be equiped with (A(T?) |jp+00)2). By A1 we will denote the Lebesgue measure, restricted
to (A(T) [p,520))

Definition 2.0.2. Let u be a positive Borel measure on [0, +00). We define the Laplace-
Transform £(u) : (po, +00) — R of p by

L)) = /[0 e,

where pg = inf{z € R : f[ Tt du < +oo}. Here we set pg = +oo if the corresponding

set is empty.

0,+00) €
Lemma 2.0.3. A positive Borel measure p is finite if and only if pg <0 and
limg 04+ L(p)(x) < +00.

Proof. By monotone convergence

lim £(1)(x) = /[0+ ()

T—rp+

as an element of [0, 4+o00] for any p > pg. In particular, p is finite if and only if pg < 0 and
limg 04 L(p)(x) < 400. O

Proposition 2.0.4. If p is a positive Borel measure on [0,400) and po is defined as in
Def. 2.0.2, then L(u) € C*((po, +0),R) and for every n € N, X € (po, +00) we have

(=1)"L(w)™ () > 0.
Proof. We define h : (po, +00) x (0, +00) — R by
h(\t) == e M.
Given A > po we choose € > 0 such that A — 2e > pg. For every s € (A — ¢, A\ + ¢) we have
J"h

| |
(S, t) — |(—t)n€_8t| — M5t < "l!eete—st < &eete—(k—e)t — &6—()\—25)1&‘
os™ €n €n €n
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Because of | |
/ =029t 1) = " £(u) (A — 2€) < +o0
[0,400)

€ €
we can apply Lemma 1.0.3 and obtain

(1)L ™ () = (~1)" / s

W(e_)‘t) du(t) = / t"e~Mdu(t) > 0.
[0,4-00) [0,4-00)

O
The following lemma will be imported without proof. The proof can be found in propo-
sition 1.2 in | , Chapter 1].

Lemma 2.0.5. If u,v are positive Borel measures on [0,400) such that Lu = Lv, then
w=v.



3 Completely monotone functions

The following chapter is mainly based on [ , Chapter 1]. Other sources will be stated
explicitly.

Definition 3.0.1. We say that f € C°°((0,+0c0),R) is completely monotone if
(=) £ > 0 for all n € Ny.
By CM we denote the set of all completely monotone functions.

Lemma 3.0.2. Let f € CM and assume that f(4+00) = limy 400 f(t) = 0. Then for
everyn € N and A > 0 we have

+o0o (_1\n £(n) S
) _A s (12_131)!( (s — 31 ds.

Proof. For any a, A > 0 and n € N by a version of Taylors Theorem

nlork)(g A ) (g
f\) = / k,( )(/\—a)k—i—/a ({Z_(l))!()\—s)”lds

k:(i 'k N . (3.1)
_ - CD)FfP(a) ¢ (=) M(s) n—
= k!(a—)\)k‘F//\ W(S_)‘) 1d8'

Because of f € CM for a > X all terms in (3.1) are non-negative. In particular the integral
on the right hand side is bounded by f()\) for any a > A. Hence, the limit

¢ (_1)nf(n) (S) (S _ )\)n—l ds = /+OO (_1)nf(n) (S) (8 _ )\)n—l ds
A

lim = 1),

a——+00 A (n — 1)'

exists and is smaller or equal to f(\). With the same argument we see that the sum in
(3.1) converges to a non-negative limit for a — 4o00. Since this is true for all n € N, the
same is true for every addend in the sum. For k € Ny we set

BT
pe(N) = lim (”kf!”m N

Since for x,y > 0 we have

pr(x) = aginoo k! a—+00 k!
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Pk 1s constant. Defining ¢, = ZZ;(% pr(x) we have

oo (_1ynf(n)(g
T €0 LT

A W(s — )" s,

Since the integral vanishes for A — 400 and by assumption f(4o00) = 0, we derive ¢, = 0
for all n € N, O

The following Theorem 3.0.3 constitutes the main result of the present work. Its proof
is split up into several steps and will primarly be based on Corollary 1.0.8.

Theorem 3.0.3. Fvery f € CM can be written as the Laplace-Transform of a unique
positive Borel measure on [0, +00).

Proof. The desired uniqueness follows from Lemma 2.0.5.
Assume first that limy_ o+ f(A) =: f(0+) = 1 and f(4+o00) = 0. Applying Lemma 3.0.2

yields o
+oo [ 1\n £(n S
o= [ e atas

1) f) (s
= /(0+ | W(s - )\)“—lllp\7+<>0) dX1(s), X € (0,+00).

By monotone convergence

IO
=00 =i 1 (1) =, T e

Setting
_ D™y (v
fuls) =t (5) (5) s 0ro0)
and substituting s = n/t in (3.2) yields 0+°° fn(t)dt = 1. Hence, f, is a probability density
function on (0, +00) for every n € N.
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In the following we employ the notation a4 := max(0,a). Also note that for
s, A € (0,+00) we have s > X if and only if (1 — A/s) > 0. For fixed A > 0 we obtain

400 (_1\n £(n) g
) :/)\ M(S_/\)nfl ds

(n—1)!
— /+OO (_1)nf(n)(8) Sn_l(l _ é)n—l ds
A (n— 1)' S
+oo_n(n)s )\_n(n)s
_/)\ ( (12_](.1>|< )Sn_l((l _ §)+)n—1 d8+/0 ( (12;]01)'( )((1 _ §)+)n—1 ds
too (_1ynf(n) (g
:/0 ( élg;fl)'( ) nfl((l o g)_’_)nfl ds
- [TEEE -2

If we set f,(0) := 0, f,, also constitutes a probability density function on [0, +00). We can

(
rewrite f(\) as Ny

FO) = / (1= 2 Ut dha ()
[0,+00) n

for every n € N. Defining hy,(t) := (1 — At/n)?"" we have

h (1) = | fu () dA1 (1) < [[hn =€ o (3.3)

B Y
\f(A) /[W)e fn(t)dh(t)‘< /[0 »

One can show that (h,)nen converges uniformly to (¢ — e~*) on [0, 400). Therefore,
the left hand side converges to 0 for n — oco. We apply Corollary 1.0.8 with Q = [0, +00)
and g, = fn-A1 and obtain a subnet (f,,;)-A1)ier that converges vaguely to a finite positive
Borel measure z on [0, +00). As (t — ™) € Cy([0, +00),R)

i [ @@ =l [ MG MO = [N dute),
i€l J10,+00) 2 i€l J[0,400) @ [0,4-00)

Taking (3.3) into account we obtain

/ e M du(t) = lim e M fuy () dA1(t) = lim e M fu(t) dAi(t) = f(N)
[0,4-00) €L J[0,4+00) 700 J10,+00)

for every A € (0, +00).
In the case 0 < f(0+) < 400 and f(4+00) = 0 we define g : (0,400) — R by g(\) =
f(N)/f(0+). Because of g(0+) = 1, by the first part of the proof exists a positive Borel

measure ' satisfying
o= [
[0,400)
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for all A > 0. Defining p := f(0+) - p we obtain L(u)(A\) = f(A), A > 0. If f(0+) =0,
then f must be identically zero, due to the fact that it is monotonically decreasing and
non-negative. Hence, L(u) = f for p = 0.
For a function f € CM, which only satisfies f(4+00) = 0, and a > 0 we set fo () := f(a+A).
Clearly, fo(0+) = f(a) < 400 and f(+00) = 0. From the previous considerations for any
a > 0 we obtain a finite positive Borel measure p, satisfying £(u,) = fo. For b,a > 0 and
A > 0 we have

L)\ = fla+ (A +b—a)) = /

e~Otb=a)t g, / e Metab) gy,
[0,4-00)

[0,+00)

From Lemma 2.0.5 we derive p, = ¢ (@) . 11, and in turn e® - o = e - 1. Consequently,
the definition p := e* - uq of a positive Borel measure does not depend on a > 0. For
A € (0, +00) we conclude

SN = fra(A/2) = /

[0,400)

A
3 dpn s (t) = /

[0,400)

Finally, in the case f(400) = ¢ > 0 we define g : (0, +00) — R by g(A) := f(A) —c. The
function g belongs to CM and satisfies g(+00) = 0. Hence, g = L(114) for a positive Borel
measure fiy. From

f<A>:g<A>+c:/

[0,400)

2 —
e_’\te2tdu)\/2(t) = /[0 )e A dp(t).
,+OO

e Mdpg(t) +c= /

e M dpugy(t) + / e Md(c-6o)(t)
[0,+00)

[0,400)
we conclude L(p) = f, where p == py + ¢ - do. O

Remark 3.0.4. From the previous theorem and Proposition 2.0.4 we nearly obtain an
equivalence of Laplace-Transforms of positive Borel measures and the notion of completely
monotone functions introduced in Definition 2.0.2. Note that we demanded a CM function
to be defined on all positive real numbers. If one starts with a positive Borel measure,
its Laplace-Transform will be of class C*°((po, +00), R), but might not be defined for all
positive numbers and, in turn, might not be a completely monotone function.

Example 3.0.5. The following examples are taken from | ].

1. Clearly, all constant non-negative functions f = ¢ belong to CM. From

= e Md(c- =cle=c¢
) = /[O’M) d(c- 80)()

we conclude f = L(c- dp).
2. The function f : (0,+00) — R defined by

belongs to f € CM. By

we see that f = [,()\1’[[”00)).
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Corollary 3.0.6. If f € CM is a non-constant function, then f(”)()\) #0 for alln € N
and all X > 0.

Proof. By Theorem 3.0.3 we have f = L(u) for some positive Borel measure p. By
assumption and Lemma 2.0.5 y can not be of the form ¢ - dg. Applying Proposition 2.0.4

gives
dTL
(OO = 0t [ e N = [ e M () > 0
[0,400) dA [0,400)
for all n € N and all A > 0. O
The following result is taken from [ , Chapter 1].

Definition 3.0.7. Let p, v be positive measures on [0, +00). We define the convolution of

w and v as
(1 v)( / / 5(@ + ) dplz)dv(y)
[0+oo 0,+00)

for all Borel measurable B C [0, +

Remark 3.0.8. Note that we can write the convolution of two positive measures p and v
in the form

Grn)B)= [ daGergdix e = [ 1) o))
[0,+00)? [0,+00)
where T : [0, +00)? — [0, +00) is defined by (x,t) = = +t. Recall that T is continuous
and therefore measurable. Therefore,
pxv=(uxv)oT L

Corollary 3.0.9. The set CM is closed under pointwise multiplication, i.e. fg € CM for
f,9 € CM.

Proof. By Theorem 3.0.3, there exist positive Borel measures p and v such that f = £(u)
and g = L(v). For A > 0 we derive

(F9)(N) = (L)L) = /[0 N /[0+ e ARty ) (1)
= [ M xvyer i
[0,+00)

— [ M
[0,400)

as elements of [0, —|—oo]. As f(A)g(A) < +oo the right hand side is finite for all A > 0. Hence,
inf{\ e R: fo o) M d(p*v)(t) < +00)} is smaller or equal to zero and by Proposition
204wehavefg€C/\/l. O

Corollary 3.0.10. If (fyn),cn @5 a sequence of completely monotone functions satisfying
sup,en fn(0+) < 4+o00. Then there exists a subnet (f”(k))kel and a completely monotone
function f, such that limger frx)(A) = f(A) for all X > 0.
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Proof. Applying Theorem 3.0.3 for every n € N gives a sequence of representing positive
measures ([ )nen, for which f, = L(uy,) and

Mn([07+oo)) = fn(0+) <c:= Sug fn(0+) < Fo0.
ne

Employing the same arguments as in Corollary 1.0.8 there exists a subnet (i, x))kes that
converges vaguely to a finite positive Borel measure p. In consequence

li A) =i M t :/ “AMdu(t) = L(p)(N) = f(A
Lim £ () (A) = lim oo i (k) (1) . pu(t) = L) (A) = f(A)
for every A > 0. By Proposition 2.0.4, we conclude f € CM. O

The following result will be presented without proof. Its proof can be found in |
Chapter 1].

Corollary 3.0.11. Let (fyn),cn be a sequence of completely monotone functions such
that the limit lim, o0 fn(A) = f(N\) exists for all A € (0,400). Then f € CM and
lim,, o0 fék)(/\) = fBN(\) for all k € Ny locally uniformly in X € (0, 400).

10
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