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Abstract

This paper presents a detailed proof of Wigner’s Theorem. The proof here was given by Daniel D.
Spiegel in 2018. As this is a seminar-paper it comprises a lot of detailed calculations that are needed for
the proof.

1 Introduction

Wigner’s theorem has its motivation in physics. It plays a role in the mathematical formulation of quantum
mechanics. In this paper we proof a rather general form of Wigner’s theorem. As already mentioned in the
abstract most of the ideas in this paper were taken from [4]. The present paper is a seminar paper. Therefore,
it was written with the intention of practicing the writing process and not with the intention to present new
results. Nevertheless the paper might be interesting, especially for less experienced mathematicians, because
everything is presented in great detail. Furthermore the paper comprises some additional ideas from [2] or
[1].

2 Complex numbers C
As we will have to work a lot with the complex numbers C we want to start with some of their properties.

Definition 2.1. Let K be a field and ζ : K → K a bijective function. We call ζ an automorphism on K if
for all λ, µ ∈ K the equalities

ζ(λ+ µ) = ζ(λ) + ζ(µ) and ζ(λµ) = ζ(λ)ζ(µ)

hold true.

Definition 2.2. Throughout this paper · : C→ C : λ1 + iλ2 7→ λ1 − iλ2 will be the complex conjugation.

Lemma 2.3. There exist only two continuous automorphisms on C, namely the identity function and the
complex conjugation. These two functions both conincide with their own inverse and act as the identity
function on the real line.

Proof. The identity function and the complex conjugation are both isometries. Thus, they are continuous
and they are clearly automorphisms on C. They both coincide with their own inverse and act as the identity
function on the real line.
For any continuous automorphism ζ on C we have ζ(0) = 0 and ζ(1) = 1. Assume ζ(α) = α for some α ∈ N.
We conclude ζ(α+ 1) = ζ(α) + ζ(1) = α+ 1. Hence, we showed by induction that for all α ∈ N the equality
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ζ(α) = α holds true. For an arbitrary λ ∈ C \ {0} we have

0 = ζ(0) = ζ(λ− λ) = ζ(λ) + ζ(−λ) and 1 = ζ(1) = ζ

(
λ

λ

)
= ζ(λ)ζ(λ−1).

Thus, ζ(−λ) = −ζ(λ) and ζ
(
λ−1

)
= ζ(λ)−1. We conclude ζ(β) = β for all β ∈ Z and, in turn, ζ(γ) = γ for

all γ ∈ Q. For any δ ∈ R there exists a sequence of rational numbers (γn)n∈N that converges to δ. Due to
continuity of ζ we have

ζ(δ) = ζ
(

lim
n→∞

γn

)
= lim
n→∞

ζ(γn) = lim
n→∞

γn = δ.

From

−1 = ζ(−1) = ζ
(
i2
)

= ζ(i)2

we conclude that ζ(i) ∈ {i,−i}. For a complex number µ = µ1 + iµ2, where µ1, µ2 ∈ R, we obtain

ζ(µ) = ζ(µ1 + iµ2) = ζ(µ1) + ζ(i)ζ(µ2) = µ1 + ζ(i)µ2.

Thus, ζ is either the identity function or the complex conjugation.
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Figure 1: Geometric interpretaion of Lemma 2.4

Lemma 2.4. For λ ∈ C with |λ| = 1 the following statements are true.

1. If −λ has euclidean distance 2 from the complex number 1 then λ = 1. Thus,

|1 + λ| = 2⇒ λ = 1.
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2. If −λ has euclidean distance
√

2 from the complex number 1 then either λ = i or λ = −i holds true,
i.e.

|1 + λ| =
√

2⇒ λ = i ∨ λ = −i.

Proof. For any λ ∈ C, |λ| = 1, we have

|1 + λ|2λ = (1 + λ)
(
1 + λ

)
λ = (1 + λ)2 = 1 + 2λ+ λ2.

1. If |1 + λ|2 = 4, then we obtain

0 = 1− 2λ+ λ2 = (1− λ)2,

and in turn λ = 1.

2. If |1 + λ|2 = 2, then we obtain

0 = 1 + λ2.

Hence, λ ∈ {i,−i}.

Lemma 2.5. Let µ ∈ C\{0}. If a function ζ : C→ C satisfies |ζ(µ)| = |µ|, then there exists a unique λ ∈ C
with |λ| = 1 such that |µ| = λζ(µ).

Proof. Let µ ∈ C \ {0} be an arbitrary number. Defining

λ :=
|µ|
ζ(µ)

we have |λ| = |µ|
|ζ(µ)|

=
|µ|
|µ|

= 1

and

|µ| = |µ|
ζ(µ)

ζ(µ) = λζ(µ).

For another ν ∈ C with |ν| = 1 and |µ| = νζ(µ) we obtain

ν =
|µ|
ζ(µ)

= λ.

Lemma 2.6. Let λ, µ, ν ∈ C where λ 6= 0 and |µ| = |ν|. Then the following implication holds true.

|λ+ ν| = |λ+ µ| ∧ |λ− iν| = |λ− iµ| ⇒ ν = µ.

Proof. We have

|λ|2 + λµ+ λµ+ |µ|2 = (λ+ µ)
(
λ+ µ

)
= |λ+ µ|2 = |λ+ ν|2 = (λ+ ν)

(
λ+ ν

)
= |λ|2 + λν + λν + |ν|2

and because of |µ| = |ν| we conclude λ(ν − µ) = −λ(ν − µ). Furthermore,

|λ|2 + iλµ− iλµ+ |µ|2 = (λ− iµ)
(
λ+ iµ

)
= |λ− iµ|2 = |λ− iν|2 = (λ− iν)

(
λ+ iν

)
= |λ|2 + iλν − iλν + |ν|2.

Again because of the assumption |µ| = |ν| we obtain

λ(ν − µ) = λ(ν − µ) = −λ(ν − µ).

λ 6= 0 finally implies ν = µ.
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3 Hilbert spaces

Definition 3.1. Let H be a vector space over C. A function (·, ·) : H ×H → C is called inner product if

1. (x, x) > 0 for all x ∈ H \ {0}.

2. (x, y) = (y, x) for all x, y ∈ H.

3. (x+ y, z) = (x, z) + (y, z) for all x, y, z ∈ H, and (λx, y) = λ(x, y) for all λ ∈ C, x, y ∈ H.

Remark 3.2. We know from [5, p.41] that an inner product induces a norm ‖x‖ =
√

(x, x). Throughout
this paper a vector space H provided with an inner product will always be normed with this norm.

Remark 3.3. Let V be a vector space and (·, ·) an inner product on V . Then for all x, y ∈ V the inequality
|(x, y)| ≤ ‖x‖‖y‖ holds true. Equality holds if and only if x and y are linearly dependent. This inequality is
called Cauchy-Schwarz inequality. The proof can be found in [5, p. 41].

Remark 3.4. For a vector space with inner product (·, ·) : V ×V → C the inner product is continuous when
V is endowed with the topology induced by the norm and V × V is endowed with the product topology.
Furthermore for every y ∈ V the linear functional fy : V → C defined by fy(x) = (x, y), is continuous. The
proof of these facts can be found in [5, p.43]

Definition 3.5. A vector space H over C with a scalar product that is complete as a normed space endowed
with the norm induced by the scalar product is called Hilbert space.

In this paper a Hilbert space shall always be a vector space over the field C and not over R.

Definition 3.6. Let V be a vector space with an inner product (·, ·). We call two subsets M,N ⊆ V
orthogonal, denoted by M ⊥ N , if for all x ∈M and all y ∈ N we have (x, y) = 0. Two vectors v, w ∈ V are
called orthogonal if (v, w) = 0.

Definition 3.7. Let H be a Hilbert space. A subset M ⊆ H is called an orthonormal system if for all
u, v ∈M

(u, v) =

{
1 , if u = v,

0 , if u 6= v.

If M is an orthonormal system and every orthonormal system M̃ with M̃ ⊇M satisfies M̃ = M , then M is
called an orthonormal basis of H.

Remark 3.8. Whenever we write an orthonormal system M as an indexed set M = {ej | j ∈ J} in this
paper, we require that ej 6= ek for j, k ∈ J with j 6= k.

Lemma 3.9. Let H be a Hilbert space and M an orthonormal system. Then there exists an orthonormal
basis M̃ ⊇M . In particular, there exists an orthonormal basis of H.

The proof can be found in [5, p.52].

Theorem 3.10. Let H be a Hilbert space and M = {ej | j ∈ J} an orthonromal system. Then the following
statements are equivalent.

1. M is an orthonormal basis.

2. For every x ∈ H ∑
j∈J
|(x, ej)|2 = ‖x‖2. (1)
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3. For all x, y ∈ H the equality ∑
j∈J

(x, ej)(y, ej) = (x, y)

holds true.

4. For every x ∈ H

x =
∑
j∈J

(x, ej)ej . (2)

The proof can be found in [5, p. 54].

Definition 3.11. For a Hilbert space H, an orthonormal basis M = {ej | j ∈ J} of H and x ∈ H, equality
(1) is called Parseval’s equality. The series in (2) is called Fourier series of x with respect to the orthonormal
basis M .

Lemma 3.12. Let H be a Hilbert space and M := {ej | j ∈ J} be a non-empty orthonormal system. Then
for every x ∈ H we have

‖x‖2 =
∑
j∈J
|(x, ej)|2 ⇔ x =

∑
j∈J

(x, ej)ej . (3)

Proof. We consider an orthonormal basis {fk | k ∈ K} ⊇M ; see Lemma 3.9.

”
⇒“ Using Parzeval’s equality (1) we obtain∑

j∈J
|(x, ej)|2 = ‖x‖2 =

∑
k∈K

|(x, fk)|2.

Hence, for all k ∈ K with fk /∈ M the equality (x, fk) = 0 must hold true. Finally, using the
representation as a Fourier series (2) we obtain

x =
∑
k∈K

(x, fk)fk =
∑
j∈J

(x, ej)ej .

”
⇐“ We observe that for all k ∈ K with fk /∈M we have

(x, fk) =

∑
j∈J

(x, ej)ej , fk

 =
∑
j∈J

(x, ej)(ej , fk) = 0.

Hence, Parseval’s equality yields∑
j∈J
|(x, ej)|2 =

∑
k∈K

|(x, fk)|2 = ‖x‖2.

Definition 3.13. Let V and W be two vector spaces over the same field K and ζ be an automorphism on
K. A function f : V →W is called semilinear with respect to ζ or ζ-linear, if for all x, y ∈ V and all λ ∈ K

f(x+ y) = f(x) + f(y) and f(λx) = ζ(λ)f(x).

If K = C and ζ is the complex conjugation, then f is called an antilinear function.
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Remark 3.14. If f is a ζ-linear function and ζ = idK , then f is simply a linear function. The properties of
ζ-linear functions are very similar to the ones we know from linear function. See [3, p. 138] for these results.
We will use the property that a ζ-linear function f is injective if ker f = {0}. Furthermore, a scalar product
in this paper is linear in the first and antilinear in the second argument, as can be found in [5, p. 41].

It is not necessary to precisely define a topological vector space here. We only need to know that every
normed space is a topological vector space. This result can be found in [5, p. 18]

Definition 3.15. Let (X, TX) and (Y, TY ) be topological vector spaces. We denote the set of all ζ-linear and
continuous functions from X to Y with ζ-Lb(X,Y ). In the case (X, TX) = (Y, TY ) we write ζ-Lb(X) = ζ-
Lb(X,Y ). If ζ is the identity function, then we write Lb(X,Y ) and Lb(X).

Definition 3.16. If (X, T ) is a topological vector space over C, then we denote by (X, T )′ the set of all
linear and continuous functions from X into the field C. We call this set the continuous dual space of (X, T ).

Remark 3.17. Let X be a normed space. Then X ′ provided with the operator norm

‖f‖ = sup {|f(x)| : x ∈ X ∧ ‖x‖X ≤ 1}, f ∈ X ′,

is a Banach space. See [5, p. 25] for this result.

Proposition 3.18. Let H be a Hilbert space. Then the function

Φ :

{
H → H ′

y 7→ fy

where fy : H → C defined by fy(x) = (x, y) is an isometric and antilinear bijection from H onto H ′ endowed
with the norm introduced in Remark 3.17.

The proof can be found in [5, p. 50]

Definition 3.19. Let A be an algebra with an identity element e. This is a vector space additionally
provided with a bilinear and associative multiplication · : A × A → A, where e ∈ A satisfies ea = ae = a
for all a ∈ A. See [5, p.121-122] for this definition and some properties of an algebra. An element a ∈ A is
called inveritble, if there exists b ∈ A with ab = ba = e. We define

Inv(A) := {a ∈ A | a is invertible}

and based on this the spectrum of an element a ∈ A as

σ(a) = {λ ∈ C | (a− λe) /∈ Inv(A)}.

Furthermore, we define the spectral radius of an element a ∈ A by

r(a) := sup{|λ| : λ ∈ σ(a)},

where sup ∅ := 0. If A is a Banach space with a norm ‖·‖ that satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A, then
we call it a Banach algebra with identity element.

Remark 3.20. For a Banach space X the space Lb(X) is a Banach algebra with the identity mapping as
the identity element, see [5, p.121-122] for this result.

Definition 3.21. Let X be a Banach space and T ∈ Lb(X). Then λ ∈ C is called eigenvalue of T if
ker(T − λI) 6= {0}.

Definition 3.22. Let X,Y be Banach spaces. A linear function T : X → Y is called compact, if
T ({x ∈ X : |x| ≤ 1}) is relatively compact in Y .
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Remark 3.23. If X,Y are Banach spaces and T ∈ Lb(X,Y ) with dim ranT <∞, then T is compact. This
result can be found in [5, p. 133].

Remark 3.24. Let X be a Banach space and T : X → X compact. Then every λ ∈ σ(T ) \ {0} is an
eigenvalue of T . This result can be found in [5, p.138].

Lemma 3.25. Let H1 and H2 be Hilbert spaces and ζ : C→ C either the identity mapping or the complex
conjugation. If T ∈ ζ-Lb(H1, H2), then there exists a unique function T ∗ζ : H2 → H1 such that for all x ∈ H1

and y ∈ H2 the equation

(Tx, y)H2 = ζ
(
(x, T ∗ζ y)H1

)
holds true. The function T ∗ζ is ζ-linear.

Proof. For an arbitrary y ∈ H2 we define fy : H1 → C by fy(x) := ζ−1((Tx, y)H2
). For u, v ∈ H1 and

λ, µ ∈ C we obtain

fy(µu+ λv) = ζ−1((T (µu+ λv), y)H2
) = ζ−1(ζ(µ)(Tu, y)H2

+ ζ(λ)(Tv, y)H2
)

= µζ−1((Tu, y)H2
) + λζ−1((Tv, y)H2

) = µfy(u) + λfy(v).

Hence, fy is a linear function. Furthermore, by Remark 3.4 the function (·, ·)H2
: H2×H2 → C is continuous

and by Lemma 2.3 we have continuity of ζ−1. As fy is a composition function of these two functions it is
continuous as well. Using Proposition 3.18 there exists a unique zy ∈ H1 which fulfills fy(x) = (x, zy)H1 for
all x ∈ H1. This allows us to uniquely define a function

T ∗ζ : H2 → H1, y 7→ zy

that satisfies

(Tx, y)H2
= ζ
(
ζ−1((Tx, y)H2

)
)

= ζ(fy(x)) = ζ
(
(x, T ∗ζ y)H1

)
.

for all x ∈ H1 and all y ∈ H2.
Consider arbitrary y, z ∈ H2 and λ, µ ∈ C. For every x ∈ H1 we have(

x, T ∗ζ (µy + λz)
)
H1

= ζ−1
(
(Tx, µy + λz)H2

)
= ζ−1(µ)ζ−1

(
(Tx, y)H2

)
+ ζ−1

(
λ
)
ζ−1

(
(Tx, z)H2

)
= ζ−1(µ)

(
x, T ∗ζ y

)
H1

+ ζ−1
(
λ
)(
x, T ∗ζ z

)
H1

=
(
x, ζ−1(µ)T ∗ζ y + ζ−1

(
λ
)
T ∗ζ z

)
H1

.

We conclude T ∗ζ (µy + λz) = ζ−1(µ)T ∗ζ y+ ζ−1
(
λ
)
T ∗ζ z. By assumption ζ = idC or ζ = ·. In both cases we see

that T ∗ζ is a ζ-linear function.

Definition 3.26. Let H be a Hilbert space and T ∈ Lb(H). Then T is called normal if TT ∗ = T ∗T .

Remark 3.27. If H is a Hilbert space and N : H → H is normal, then r(N) = ‖N‖. The proof of this
statement can be found in [5, p.142].

Definition 3.28. Let H1 and H2 be Hilbert spaces, ζ : C→ C either the identity mapping or the complex
conjugation and U ∈ ζ-Lb(H1, H2) satisfying U∗ζ U = IH1

and UU∗ζ = IH2
. If ζ is the identity mapping, then

U is called unitary. If ζ is the complex conjugation, then U is called antiunitary.

Remark 3.29. If H is a Hilbert space and if T ∈ Lb(H) satisfies (Tx, x)H = 0 for all x ∈ H, then T = 0.
The proof of this can be found in [5, p.142].

Proposition 3.30. Let H1 and H2 be Hilbert spaces U ∈ ζ-Lb(H1, H2), where ζ : C → C is either the
identity mapping or the complex conjugation. Then the following statements are equivalent.
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(i) U is ζ-unitary.

(ii) ranU = H2 and (Ux,Uy)H2
= ζ((x, y)H1

) for all x, y ∈ H1.

(iii) ranU = H2 and ‖Ux‖H2
= ‖x‖H1

for all x ∈ H1.

Proof.

”
(i) ⇒ (ii)“. Due to the fact that UU∗ζ = IH2 we have ranU = H2. Because of the assumption
U∗ζ U = IH1 we obtain for x, y ∈ H1

(Ux,Uy)H2 = ζ
(
(x, U∗ζ Uy)H1

)
= ζ((x, y)H1).

”
(ii)⇒ (iii)“. By assumption the function ζ is either the identity function or the complex conjugation.

Hence, ζ(α) = α for all α ∈ R. Given x ∈ H1 we have

‖Ux‖2H2
= (Ux,Ux)H2

= ζ
(
(x, x)H1

)
= ζ
(
‖x‖2H1

)
= ‖x‖2H1

.

”
(iii)⇒ (i)“. For every x ∈ H1 we have

(x, U∗ζ Ux)H1 = ζ−1((Ux,Ux)H2) = ζ−1
(
‖Ux‖2H2

)
= ‖Ux‖2H2

= ‖x‖2H1
= (x, x)H1 .

Using Remark 3.29 we obtain U∗ζ U = IH1
. The function U is surjective by assumption and injective

as a consequence of ‖Ux‖H2
= ‖x‖H1

. Hence, U is bijective and U∗ζ U = IH1
implies

UU∗ζ = UU∗ζ UU
−1 = UIH1

U−1 = UU−1 = IH2
.

Definition 3.31. Let V be a vector space with an inner product (·, ·). We call a linear function P : V → V
an orthogonal projection, if P = P 2 and ranP ⊥ kerP .

Remark 3.32. In a vector space V with an inner product (·, ·) a linear function P : V → V with P 2 = P
is an orthogonal projection if and only if for all x, y ∈ V

(Px, y) = (x, Py).

Moreover, orthogonal projections are bounded with norm one in case P 6= 0. This result can be found in [5,
p. 47].

Remark 3.33. Let H be a Hilbert space. If M ⊆ H is a closed subspace, then there exists a unique
orthogonal projection P with ranP = M . The proof of this statement can be found in [5, p. 48].

4 Projective Hilbert spaces

Definition 4.1. Let V be a vector space over the field K. The set P(V ) = {Kx | x ∈ V \ {0}} consisting
of all onedimensional subspaces of V is called the projective space of V . If V is a Hilbert space then we call
P(V ) projective Hilbert space and its elements rays.

Lemma 4.2. If R1 and R2 are rays of a projective Hilbert space P(H), then there exists a unique ρ ∈ [0, 1]
such that for all x1 ∈ R1 \ {0} and x2 ∈ R2 \ {0}

|(x1, x2)|
‖x1‖‖x2‖

= ρ.
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Proof. Let x1, y1 ∈ R1 \ {0} and x2, y2 ∈ R2 \ {0}. Then we can write y1 = λ1x1 and y2 = λ2x2 for some
λ1, λ2 ∈ C \ {0}. Hence,

ρ :=
|(y1, y2)|
‖y1‖‖y2‖

=
|(λ1x1, λ2x2)H |
‖λ1x1‖‖λ2x2‖

=
|λ1λ2||(x1, x2)|
|λ1λ2|‖x1‖‖x2‖

=
|(x1, x2)|
‖x1‖‖x2‖

.

Because of the Cauchy-Schwarz inequality we have ρ ∈ [0, 1].

Definition 4.3. The previous Lemma 4.2 allows us to define the ray-product (·, ·)P(H) : P(H)×P(H)→ [0, 1]
on a projective Hilbert space P(H) by

(Cx,Cy)P(H) :=
|(x, y)|
‖x‖‖y‖

.

Lemma 4.4. Let P(H) be a projective Hilbert space and let f : P(H)→ Lb(H) be defined by f(R)(x) :=
(x, vR)vR for x ∈ H and R ∈ P(H), where vR ∈ R is a vector of norm one. Then for all R ∈ P(H) the
operator f(R) is the orthogonal projection with ran f(R) = R. Moreover, d : P(H)×P(H)→ [0,∞) defined
by (R,S) 7→ ‖f(R)− f(S)‖ is a metric.

Proof. Given u, v ∈ R with ‖u‖ = ‖v‖ we have v = λu for some λ ∈ C with |λ| = 1. Hence,

(x, v)v = (x, λu)λu = λλ(x, u)u = (x, u)u

for x ∈ H. Thus, f(R) : H → H is an obviously linear operator which does not depend on the choice of vR.
Moreover,

P 2x = P ((x, vR)vR) = ((x, vR)vR, vR)vR = (x, vR)vR = Px.

Since also for x, y ∈ H we have

(Px, y) = ((x, vR)vR, y) = (x, vR)(vR, y) = (x, (y, vR)vR) = (x, Py),

the operator P = f(R) is an orthogonal projection. The map d is a metric, because the operator norm
induces a metric in the well known way.

Remark 4.5. Throughout this paper a projective Hilbert space will be endowed with the metric from
Lemma 4.4.

Lemma 4.6. In a projective Hilbert space P(H) the equality

d(R,S) =
√

1− (R,S)2P(H)

holds true for all rays R,S ∈ P(H).

Proof. Let R,S ∈ P(H) be arbitrary rays and let P := f(R) and Q := f(S) be the orthogonal projections
onto R and S respectively as in Lemma 4.4 and set u := vR and v := vS . If R = S then the equation holds
true because of Remark 3.3. Thus, from now on we assume R 6= S. We are going to have a look at the
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spectrum of T : H → H defined by Tx = Px−Qx = (x, u)u− (x, v)v. From

T

u− (u, v)

1 +

√
1− |(u, v)|2

v

 = Tu− (u, v)

1 +

√
1− |(u, v)|2

Tv = u− (u, v)v − (u, v)

1 +

√
1− |(u, v)|2

((v, u)u− v)

=

1− |(u, v)|2

1 +

√
1− |(u, v)|2

u−
(u, v)− (u, v)

1 +

√
1− |(u, v)|2

v
=

1− |(u, v)|2 +

√
1− |(u, v)|2

1 +

√
1− |(u, v)|2

u−
(u, v)

√
1− |(u, v)|2

1 +

√
1− |(u, v)|2

v

=

√
1− |(u, v)|2

u− (u, v)

1 +

√
1− |(u, v)|2

v


we conclude that

√
1− |(u, v)|2 =

√
1− (R,S)2P(H) is an eigenvalue of T . As

T ∗ = P ∗ −Q∗ = P −Q = T

the operator T is selfadjoint and therefore normal. We also observe that ranT ⊆ span{u, v}. According to
Remark 3.23 this implies that T is compact. Let us now assume that λ ∈ C \ {0} belongs to the spectrum
of T . Due to the fact that T is compact and by Remark 3.24 the complex number λ is eigenvalue of T ,
which gives Tx = λx for some x ∈ H \ {0}. Hence, x ∈ ranT which implies the existence of µ, ν ∈ C with
x = µu+ νv. From x 6= 0 we conclude µ 6= 0 or ν 6= 0. With no loss of generality we assume µ 6= 0.
As R 6= S, the vectors u and v are linearly independent. We conclude

λµ = µ+ ν(v, u) (4)

λν = −ν − µ(u, v) (5)

from

λµu+ λνv = λx = Tx = µTu+ νTv = µ(u− (u, v)v) + ν((v, u)u− v) = (µ+ ν(v, u))u− (ν + µ(u, v))v.

If (v, u) = 0, then (4) yields λµ = µ and hence λ = 1. In this case we have (R,S)P(H) = |(u, v)H | = 0 which,
according to Remark 3.27, yields

d(R,S) = ‖P −Q‖ = r(P −Q) = 1 =
√

1− (R,S)P(H).

Assuming (v, u) 6= 0 we can do further calculations. From (4) we conclude that

λ =
µ+ ν(v, u)

µ
= 1 +

ν

µ
(v, u)

and hence

ν

µ
=
λ− 1

(v, u)
. (6)

Using (5) we obtain

(λ+ 1)
ν

µ
= −(u, v),
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what together with (6) implies

λ2 − 1

(v, u)
= (λ+ 1)

λ− 1

(v, u)
= −(u, v).

With a simple transformation we find

λ = ±
√

1− |(u, v)|2 = ±
√

1− (R,S)2P(H).

Although we do not know for sure, whether 0 belongs to the spectrum of T , we know its spectral radius |λ|.
Finally, by Remark 3.27 we obtain

d(R,S) = ‖P −Q‖ = r(P −Q) =
√

1− (R,S)2P(H).

Lemma 4.7. Let P(H1) and P(H2) be two projective Hilbert spaces and g : P(H1)→ P(H2) an isometry
with respect to the metric from Lemma 4.4. Let M := {ej | j ∈ J} be an orthonormal basis of H1 and
x, y ∈ H1 \ {0}. Let x̃ ∈ g(Cx) and ỹ ∈ g(Cy) be vectors satisfying ‖x‖H1

= ‖x̃‖H2
and ‖y‖H1

= ‖ỹ‖H2
.

Lastly, for every j ∈ J let ẽj ∈ g(Cej) be a normalized vector. Then

|(x̃, ỹ)H1
| = |(x, y)H2

|, (7)

the set L := {ẽj | j ∈ J} is an orthonormal system in H2, and

x̃ =
∑
j∈J

(x̃, ẽj)H2
ẽj . (8)

Proof. Employing Lemma 4.6 we obtain√
1− |(x, y)H1

|2

‖x‖2H1
‖y‖2H1

=
√

1− (Cx,Cy)2P(H1)
= d(Cx,Cy)

= d(g(Cx), g(Cy)) =
√

1− (g(Cx), g(Cy))2P(H2)
=

√
1− |(x̃, ỹ)H2 |2

‖x̃‖2H2
‖ỹ‖2H2

which immediately implies (7). Using this equation and the fact that M is an orthonormal basis of H1 we
obtain for every i, j ∈ J

|(ẽi, ẽj)H2 | = |(ei, ej)H1 | =

{
0 , if i 6= j,

1 , if i = j.

Hence, L is an orthonormal system. Using (7) and Parzeval’s equality (1) we obtain

‖x̃‖2H2
= ‖x‖2H1

=
∑
j∈J
|(x, ej)H1 |2 =

∑
j∈J
|(x̃, ẽj)H2 |2.

Due to the fact that L is an orthonormal system by (3) we obtain (8).

5 Statement and proof of Wigner’s Theorem

If for Hilbert spaces H1 and H2 we consider an isometry g : P(H1) → P(H2), we mean in this section a
function from P(H1) to P(H2) which is isometric with respect to the metric d from Lemma 4.4.
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Example 5.1. Let H1 and H2 be Hilbert spaces where H1 = {0} and let g : P(H1)→ P(H2) be an isometry.
Obviously, we have P(H1) = ∅. By defining U : H1 → H2 as the zero operator, we observe that U is linear
as well as antilinear and both unitary and antiunitary. Furthermore, the statement Ux ∈ g(Cx) is true for
every x ∈ H1 \ {0}, simply because no such x exists.

Example 5.2. Let H1 and H2 be Hilbert spaces where dimH1 = 1 and let g : P(H1) → P(H2) be an
isometry. Due to the fact that P(H1) = {H1} there exists only one ray in P(H1). Take a normalized x ∈ H1

and a normalized y ∈ g(H1). We define U : H1 → H2 by λx 7→ λy and T : H1 → H2 by λx 7→ λy. For any
λ ∈ C we have

‖Uλx‖H2
= ‖λy‖H2

= |λ|‖y‖H2
= |λ| = |λ|‖x‖H1

= ‖λx‖H1

and

‖Tλx‖H2
=
∥∥λy∥∥

H2
= |λ|‖y‖H2

= |λ| = |λ|‖x‖H1
= ‖λx‖H1

.

Hence, U is unitary and T is antiunitary. Furthermore, we clearly have Tu,Uu ∈ g(Cu) for every u ∈ H1\{0}.

Lemma 5.3. Let H1 and H2 be Hilbert spaces and let g : P(H1)→ P(H2) be an isometry. For two vectors
x, y ∈ H1 with (y, x)H1

6= 0 and a vector x̃ ∈ g(Cx) with ‖x̃‖H2
= ‖x‖H1

there exists a unique ỹ ∈ g(Cy)
that satisfies ‖ỹ‖H2

= ‖y‖H1
and (ỹ, x̃)H2

= |(ỹ, x̃)H2
|.

Proof. Take an arbitrary vector w̃ ∈ g(Cy) with ‖w̃‖H2
= ‖x̃‖H1

and define µ := (w̃, x̃)H2
. By (7) we have

|µ| = |(w̃, x̃)H2 | = |(y, x)H1 | 6= 0. According to Lemma 2.5 there exists a unique λ ∈ C with |λ| = 1 such
that |µ| = λµ. For ỹ := λw̃ we obtain

(ỹ, x̃)H2 = λ(w̃, x̃)H2 = λµ = |µ| = |λ||(w̃, x̃)H2 | = |(ỹ, x̃)H2 |

and ‖ỹ‖H2
= |λ|‖w̃‖H2

= ‖y‖H1
.

For another vector z̃ ∈ g(Cy) with ‖z̃‖H2
= ‖y‖H1

and (z̃, x̃)H2
=
∣∣(z̃, x̃)H2

∣∣ we have z̃ = νỹ for some
ν ∈ C \ {0}. From

‖y‖H1
= ‖z̃‖H2

= ‖νỹ‖H2
= |ν|‖ỹ‖H2

= |ν|‖y‖H1
.

we conclude |ν| = 1. Furthermore, from

|ν|
∣∣(y, x)H1

∣∣ = |ν|
∣∣(ỹ, x̃)H2

∣∣ =
∣∣(z̃, x̃)H2

∣∣ = (z̃, x̃)H2
= ν(ỹ, x̃)H2

= ν
∣∣(ỹ, x̃)H2

∣∣ = ν
∣∣(y, x)H1

∣∣
and the assumption (y, x) 6= 0 we obtain ν = |ν| = 1. Thus, z̃ = νỹ = ỹ.

Lemma 5.4. Let H1 and H2 be Hilbert spaces and g : P(H1)→ P(H2) an isometry. Let M = {ej | j ∈ J}
be an orthonormal basis of H1 and for every j ∈ J let ẽj ∈ g(Cej) be a normalized vector. Furthermore, let
x ∈ H1 with

x =
∑
j∈J

λjej .

If k ∈ J such that λk ∈ C \ {0} and ζ : C → C with |λk| = |ζ(λk)|, then there exists a unique x̃ ∈ g(Cx)
such that

x̃ = ζ(λk)ẽk +
∑

j∈J\{k}

(x̃, ẽj)H2
ẽj .

This vector x̃ ∈ g(Cx) satisfies ‖x̃‖H2
= ‖x‖H1

. Moreover,
∣∣∣(x̃, ẽj)H2

∣∣∣ = |λj | for j ∈ J \ {k}.
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Proof. We first observe that for every l ∈ J

(x, el)H1
=

∑
j∈J

λjej , el


H1

=
∑
j∈J

λj(ej , el)H1
= λl. (9)

As λk 6= 0 we can employ Lemma 5.3 and (7) in order to obtain a unique w̃ ∈ g(Cx) with ‖w̃‖H2
= ‖x‖H1

and

(w̃, ẽk)H2
= |(w̃, ẽk)H2

| = |(x, ek)H1
| = |λk|.

By Lemma 2.5 there exists a unique ν ∈ C with |ν| = 1 and |λk| = νζ(λk). We define

x̃ :=
1

ν
w̃ and find (x̃, ẽk)H2

=
1

ν
(w̃, ẽk)H2

=
1

ν
|λk| =

1

ν
νζ(λk) = ζ(λk).

Finally, by (8) we obtain

x̃ =
∑
j∈J

(x̃, ẽj)H2
ẽj = ζ(λk)ẽk +

∑
j∈J\{k}

(x̃, ẽj)H2
ẽj and ‖x̃‖H2

=

∥∥∥∥1

ν
w̃

∥∥∥∥
H2

=

∣∣∣∣1ν
∣∣∣∣‖w̃‖H2

= ‖x‖H1
.

Consider another ỹ ∈ g(Cx) with

ỹ = ζ(λk)ẽk +
∑

j∈J\{k}

(ỹ, ẽj)H2
ẽj .

We have ỹ = µx̃ for some µ ∈ C \ {0}. From

µζ(λk) = µ(x̃, ẽk)H2
= (ỹ, ẽk)H2

= ζ(λk)

we conclude µ = 1. Thus, x̃ = ỹ.
Finally, by (7) for all j ∈ J \ {k} we have

|µj | =
∣∣∣(x̃, ẽj)H2

∣∣∣ =
∣∣∣(x, ej)H1

∣∣∣ = |λj |.

Lemma 5.5. Let H1 and H2 be Hilbert spaces with dimH1 > 1 and g : P(H1) → P(H2) an isometry.
Furthermore, let M = {ej | j ∈ J} be an orthonormal basis of H1. We fix q ∈ J and define for all j ∈ J \{q}

vqj :=
1√
2

(eq + ej), wqj :=
1√
2

(eq + iej), wjq :=
1√
2

(ej + ieq).

Assume that ẽq ∈ g(Ceq) is a given normalized vector. Then for every k ∈ J \ {q} there exists a normalized
ẽk ∈ g(Cek), a normalized ṽqk ∈ g(Cvqk), a normalized w̃qk ∈ g(Cwqk), a normalized w̃kq ∈ g(Cwkq), and
λk ∈ {i,−i} such that

ṽqk =
1√
2

(ẽq + ẽk), w̃qk =
1√
2

(ẽq + λkẽk), w̃kq =
1√
2

(ẽk + λkẽq).

Proof. First observe that for every j ∈ J and every k ∈ J \ {q} we have

(vqk, ej)H1
=

(
1√
2

(eq + ek), ej

)
H1

=

{
1√
2

, if j ∈ {q, k},
0 , else.
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Hence, we can employ Lemma 5.3 and (7) in order to obtain a unique, normalized ṽqk ∈ g(Cvqk) with

(ṽqk, ẽq)H2
= |(ṽqk, ẽq)H2

| = |(vqk, eq)H1
| = 1√

2
.

Again by Lemma 5.3 together with (7) we find a unique, normalized ẽk ∈ g(Cek) such that

(ṽqk, ẽk)H2
=
∣∣∣(ṽqk, ẽk)H2

∣∣∣ =
∣∣∣(vqk, ek)H1

∣∣∣ =
1√
2
.

Since for all j ∈ J \ {q, k} ∣∣∣(ṽqk, ẽj)H2

∣∣∣ =
∣∣∣(vqk, ej)H1

∣∣∣ = 0,

we derive (8) from

ṽqk =
∑
j∈J

(ṽqk, ẽj)H2
ẽj =

1√
2

(ẽq + ẽk).

By Lemma 5.4 there exist w̃qk ∈ g(Cwqk) and w̃kq ∈ g(Cwkq) with

w̃qk =
1√
2

(ẽq + λkẽk), w̃kq =
1√
2

(ẽk + λq ẽq)

and |λq| = |λk| = 1. We have

|1 + λk| =
∣∣∣(ẽq + λkẽk, ẽq + ẽk)H2

∣∣∣ = 2
∣∣∣(w̃qk, ṽqk)H2

∣∣∣
= 2
∣∣∣(wqk, vqk)H1

∣∣∣ =
∣∣∣(eq + iek, eq + ek)H1

∣∣∣ = |1 + i| =
√

2

and similarly |1 + λq| =
√

2. By Lemma 2.4 we obtain λk, λq ∈ {i,−i}. From

1

2

∣∣λk + λq
∣∣ =

∣∣∣∣∣
(

1√
2

(ẽq + λkẽk),
1√
2

(ẽk + λq ẽq)

)
H2

∣∣∣∣∣ =
∣∣∣(w̃qk, w̃kq)H2

∣∣∣
=
∣∣∣(wqk, wkq)H1

∣∣∣ =

∣∣∣∣∣
(

1√
2

(eq + iek),
1√
2

(ek + ieq)

)
H1

∣∣∣∣∣ =
1

2
|i− i| = 0

together with λk, λq ∈ {i,−i} we conclude that λk = λq.

Example 5.6. Let H1 and H2 be Hilbert spaces with dimH1 = 2 and g : P(H1)→ P(H2) an isometry. We
consider an orthonormal basis M = {e1, e2} of H1 and define

v :=
1√
2

(e1 + e2), w12 :=
1√
2

(e1 + ie2), w21 :=
1√
2

(e2 + ie1).

By Lemma 5.5 there exist ẽ1 ∈ g(Ce1), ẽ2 ∈ g(Ce2), ṽ ∈ g(Cv), w̃12 ∈ g(Cw12), w̃21 ∈ g(Cw21) and
λ ∈ {i,−i} with

ṽ =
1√
2

(ẽ1 + ẽ2), w̃12 =
1√
2

(ẽ1 + λẽ2), w̃21 =
1√
2

(ẽ2 + λẽ1).

If λ = i, then we define ζ := idC. If λ = −i, then we define ζ as the complex conjugation. Either way we
have λ = ζ(i).
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We are going to define U : H1 → H2. First of all set U0 := 0. For an arbitrary z ∈ H1 \ {0} there exist
λ1, λ2 ∈ C with z = λ1e1 + λ2e2 where λj 6= 0 for some j ∈ {1, 2}. We choose r = 1 if λ1 6= 0 and r = 2
otherwise. Let s ∈ {1, 2} \ {r}. By Lemma 5.4 there exists a unique z̃ ∈ g(Cz) with

z̃ = ζ(λr)ẽr + (z̃, ẽs)H2
ẽs

and this vector satisfies ‖z̃‖H2
= ‖z‖H1

. First we define νs := ζ−1
(
(z̃, ẽs)H2

)
and then

Uz := z̃ = ζ(λr)ẽr + ζ(νs)ẽs.

We find

1√
2
|λr + νs| =

1√
2
|ζ(λr + νs)| =

∣∣(z̃, ṽ)H2

∣∣ =
∣∣(z, v)H1

∣∣ =
1√
2
|λr + λs|

and for

y :=
1√
2

(er + ies) and ỹ :=
1√
2

(ẽr + ζ(i)ẽs)

we have

1√
2
|λr − iνs| =

1√
2

∣∣∣ζ(λr) + ζ(i)ζ(νs)
∣∣∣ =

∣∣(z̃, ỹ)H2

∣∣
=
∣∣(z, y)H1

∣∣ =

∣∣∣∣∣
(
λrer + λses,

1√
2

(er + ies)

)
H1

∣∣∣∣∣ =
1√
2
|λr − iλs|.

As

|νs| =
∣∣ζ−1((z̃, ẽs)H2

)∣∣ =
∣∣(z̃, ẽs)H2

∣∣ =
∣∣(z, es)H1

∣∣ = |λs|

we can employ Lemma 2.6 in order to obtain λs = νs. Hence, we have

Uz = ζ(λ1)ẽ1 + ζ(λ2)ẽ2.

and

‖Uz‖2H2
= ‖ζ(λ1)ẽ1 + ζ(λ2)ẽ2‖2H2

= |ζ(λ1)|2 + |ζ(λ2)|2 = |λ1|2 + |λ2|2 = ‖λ1e1 + λ2e2‖2H1
= ‖z‖2H1

.

Lemma 5.7. Let H1 and H2 be Hilbert spaces with dimH1 > 2 and g : P(H1)→ P(H2) an isometry. Let
{ej | j ∈ J} be an orthonormal basis of H1 and for all distinct k, l ∈ J set

vkl :=
1√
2

(ek + el) and wkl :=
1√
2

(ek + iel).

Then for all j ∈ J there exists ẽj ∈ g(Cej), for all distinct k, l ∈ J there exists a normalized ṽkl ∈ g(Cvkl),
a normalized w̃kl ∈ g(Cwkl) and λkl ∈ {−i, i} such that

ṽkl =
1√
2

(ẽk + ẽl) and w̃kl =
1√
2

(ẽk + λklẽl),

where λkl = λlk.

Proof. Choose q ∈ J and a normalized ẽq ∈ g(Ceq). By Lemma 5.5 there exist ẽj ∈ g(Cej), ṽqj ∈ g(Cvqj),
w̃qj ∈ g(Cwqj), w̃jq ∈ g(Cwjq) and λjq = λqj ∈ {i,−i} with

ṽqj =
1√
2

(ẽq + ẽj), w̃qj =
1√
2

(ẽq + λqj ẽj), w̃jq =
1√
2

(ẽj + λjq ẽq).

15



for every j ∈ J \ {q}. We set ṽjq := ṽqj . For distinct k, l ∈ J \ {q} we define

xkl :=
1√
3

(eq + ek + el).

Note that because of dimH1 > 2 such a choice of k, l is possible. By Lemma 5.4 there exists x̃kl ∈ g(Cxkl)
such that

x̃kl =
1√
3

(ẽq + µkẽk + µlẽl)

and |µk| = |µl| = 1. Next, observe that for j ∈ {k, l}

1√
6
|1 + µj | =

∣∣∣∣∣
(

1√
3

(ẽq + µkẽk + µlẽl),
1√
2

(ẽq + ẽj)

)
H2

∣∣∣∣∣ = |(x̃kl, ṽqj)H2 |

= |(xkl, vqj)H1
| =

∣∣∣∣∣
(

1√
3

(eq + ek + el),
1√
2

(eq + ej)

)
H1

∣∣∣∣∣ =
2√
6
.

Employing Lemma 2.4 we obtain µk = µl = 1 and therefore

x̃kl =
1√
3

(ẽq + ẽk + ẽl).

Making use of Lemma 5.4 again we obtain ṽkl ∈ g(Cvkl) and w̃kl ∈ g(Cwkl) satisfying

ṽkl =
1√
2

(ẽk + νlẽl) and w̃kl =
1√
2

(ẽk + λklẽl),

where |νl| = |λkl| = 1. Due to

1√
6
|1 + νl| =

∣∣∣∣∣
(

1√
2

(ẽk + νlẽl),
1√
3

(ẽq + ẽk + ẽl)

)
H2

∣∣∣∣∣ =
∣∣(ṽkl, x̃kl)H2

∣∣
=
∣∣(vkl, xkl)H1

∣∣ =

∣∣∣∣∣
(

1√
2

(ek + el),
1√
3

(eq + ek + el)

)
H1

∣∣∣∣∣ =
2√
6

and

1√
6
|1 + λkl| =

∣∣∣∣∣
(

1√
2

(ẽk + λklẽl),
1√
3

(ẽq + ẽk + ẽl)

)
H2

∣∣∣∣∣ =
∣∣(w̃kl, x̃kl)H2

∣∣
=
∣∣(wkl, xkl)H1

∣∣ =

∣∣∣∣∣
(

1√
2

(ek + iel),
1√
3

(eq + ek + el)

)
H1

∣∣∣∣∣ =

√
2√
6

we conclude from Lemma 2.4 that νl = 1 and λkl ∈ {i,−i}. Finally, for any k, l ∈ J

1

2
|λkl − λlk| =

1

2

∣∣λkl + λlk
∣∣ =

∣∣∣∣∣
(

1√
2

(ẽk + λklẽl),
1√
2

(ẽl + λlkẽk)

)
H2

∣∣∣∣∣ =
∣∣(w̃kl, w̃lk)H2

∣∣
=
∣∣(wkl, wlk)H1

∣∣ =

∣∣∣∣∣
(

1√
2

(ek + iel),
1√
2

(el + iek)

)
H1

∣∣∣∣∣ =
1

2

∣∣i+ i
∣∣ = 0

yields λkl = λlk.
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Theorem 5.8 (Wigner). Let H1 and H2 be Hilbert spaces and g : P(H1) → P(H2) be an isometry. Then
there exists an isometry U : H1 → H2 that is either linear or antilinear and satisfies Ux ∈ g(Cx) for every
x ∈ H1.

Proof. We already showed the theorem for dimH1 = 0 in Example 5.1, for dimH1 = 1 in Example 5.2 and
for dimH1 = 2 in Example 5.6. Thus we assume dimH1 > 2. We know from Lemma 3.9 that there exists
an orthonormal basis M := {ej | j ∈ J} of H1. We assume that J is well-ordered and note that by the
well-ordering theorem every set can be well-ordered. For all distinct k, l ∈ J we define

vkl :=
1√
2

(ek + el) and wkl :=
1√
2

(ek + iel).

By Lemma 5.7 there exist normalized ẽj ∈ g(Cej), j ∈ J , normalized ṽkl ∈ g(Cvkl), normalized w̃kl ∈ g(Cwkl)
and λkl ∈ {−i, i}, k, l ∈ J , k 6= l, such that

ṽkl =
1√
2

(ẽk + ẽl) and w̃kl =
1√
2

(ẽk + λklẽl)

and λkl = λlk.
For distinct k, l,m ∈ J we define

yklm :=
1√
3

(ek + el + iem).

By Lemma 5.4 there exists ỹklm ∈ g(Cyklm) with

ỹklm =
1√
3

(ẽk + µlẽl + µmẽm)

and |µl| = |µm| = 1. For j ∈ {l,m} we find

1√
6
|1 + µj | =

∣∣∣∣( 1√
3

(ẽk + µlẽl + µmẽm),
1√
2

(ẽk + ẽj)

)∣∣∣∣ =
∣∣∣(ỹklm, ṽkj)H2

∣∣∣
=
∣∣∣(yklm, vkj)H1

∣∣∣ =

∣∣∣∣∣
(

1√
3

(ek + el + iem),
1√
2

(ek + ej)

)
H1

∣∣∣∣∣ =

{
2√
6

, if j = l,
√
2√
6

, if j = m.

Employing Lemma 2.4 we obtain µl = 1 and µm ∈ {−i, i}. Next, for j ∈ {k, l} we have

1√
6
|µm − λmj | =

1√
6

∣∣µm + λmj
∣∣ =

∣∣∣∣∣
(

1√
3

(ẽk + ẽl + µmẽm),
1√
2

(ẽm + λmj ẽj)

)
H2

∣∣∣∣∣ =
∣∣∣(ỹklm, w̃mj)H2

∣∣∣
=
∣∣∣(yklm, wmj)H1

∣∣∣ =

∣∣∣∣∣
(

1√
3

(ek + el + iem),
1√
2

(em + iej)

)
H1

∣∣∣∣∣ =
1√
6

∣∣i+ i
∣∣ = 0

and conclude that λmk = µm = λml. For an additional n ∈ J \ {k,m} we derive

λkl = λkn = λnk = λnm = λmn.

Thus, we have λkl = λmn for all k, l,m, n ∈ J with k 6= l and m 6= n.
We define ζ : C→ C as the identitiy function if λkl = i and as the complex conjugation if λkl = −i. For all
distinct k, l ∈ J we then have

w̃kl =
1√
2

(ek + ζ(i)el).
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We are going to define U : H1 → H2. First we set U0 := 0. For z ∈ H1 \ {0} we have

z =
∑
j∈J

λjej

where λj := (z, ej)H1 for all j ∈ J . As z 6= 0 there exists a least element k ∈ J with λk 6= 0. By Lemma 5.4
there exists a unique vector z̃ ∈ g(Cz) such that

z̃ = ζ(λk)ẽk +
∑

j∈J\{k}

(z̃, ẽj)H2
ẽj .

This vector satisfies ‖z̃‖H2
= ‖z‖H1

. First we define νj := ζ−1
(

(z̃, ẽj)H2

)
for all j ∈ J \ {k} and then

Uz := z̃ = ζ(λk)ẽk +
∑
j∈J\k

ζ(νj)ẽj .

For l ∈ J \ {k} we have

1√
2
|λk + νl| =

1√
2
|ζ(λk) + ζ(νl)| =

∣∣∣∣∣∣
ζ(λk)ẽk +

∑
j∈J\k

ζ(νj)ẽj ,
1√
2

(ẽk + ẽl)


H2

∣∣∣∣∣∣ = |(Uz, ṽkl)H2
|

=
∣∣(z, vkl)H1

∣∣ =

∣∣∣∣∣∣
∑
j∈J

λjej ,
1√
2

(ek + el)


H1

∣∣∣∣∣∣ =
1√
2
|λk + λl|

and

1√
2
|λk − iνl| =

1√
2

∣∣∣ζ(λk) + ζ(i)ζ(νl)
∣∣∣ =

∣∣∣∣∣∣
ζ(λk)ẽk +

∑
j∈J\{k}

ζ(νj)ẽj ,
1√
2

(ek + ζ(i)el)


H2

∣∣∣∣∣∣ = |(Uz, w̃kl)H2 |

=
∣∣(z, wkl)H1

∣∣ =

∣∣∣∣∣∣
∑
j∈J

λjej ,
1√
2

(ek + iel)


H1

∣∣∣∣∣∣ =
1√
2
|λk − iλl|.

As

|νl| =
∣∣ζ−1((z̃, ẽl)H2

)∣∣ =
∣∣(z̃, ẽl)H2

∣∣ =
∣∣(z, el)H1

∣∣ = |λl|

we can employ Lemma 2.6 in order to obtain νl = λl. Thus,

Uz =
∑
j∈J

ζ(λj)ẽj =
∑
j∈J

ζ
(

(z, ej)H1

)
ẽj .

By definition Uz = z̃ ∈ g(Cz). For arbitrary x, y ∈ H1 and µ, λ ∈ C we obtain

U(µx+ λy) = U

∑
j∈J

(
µ(x, ej)H1

+ λ(y, ej)H1

)
ej


= ζ(µ)

∑
j∈J

ζ
(

(x, ej)H1

)
ẽj + ζ(λ)

∑
j∈J

ζ
(

(y, ej)H1

)
ẽj = ζ(µ)Ux+ ζ(λ)Uy.
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Thus, U is ζ-linear and

‖Uz‖2H2
=

∥∥∥∥∥∥
∑
j∈J

ζ
(

(z, ej)H1

)
ẽj

∥∥∥∥∥∥
2

H2

=
∑
j∈J

∣∣∣ζ((z, ej)H1

)∣∣∣2

=

∥∥∥∥∥∥
∑
j∈J

ζ
(

(z, ej)H1

)
ej

∥∥∥∥∥∥
2

H1

= ‖z‖2H1
.

Corollary 5.9. Let H1 and H2 be Hilbert spaces and g : P(H1) → P(H2) be a surjective isometry. Then
there exists a function U : H1 → H2 that is either linear and unitary or antilinear and antiunitary and
satisfies Ux ∈ g(Cx) for every x ∈ H1.

Proof. By Theorem 5.8 there exists a ζ-linear isometry U : H1 → H2 that satisfies Ux ∈ g(Cx) for all
x ∈ H1 \ {0}, where ζ : C → C is either the identity mapping or the complex conjugation. Let us consider
some arbitrary y ∈ H2. If y = 0, then U0 = 0 = y. Thus, assume y 6= 0. Due to the fact that g is
surjective we know there exists R ∈ P(H1) with g(R) = Cy. From this we conclude that U(R) = Cy. Hence,
there exists x ∈ R with Ux = y which implies ranU = H2. From Proposition 3.30 we obtain that U is
ζ-unitary.

6 Concluding remarks

The proof given here is not particularly short and it involves quite a few calculations. Despite these drawbacks
it has the merit that it proves a very general form of Wigner’s theorem where the two Hilbert spaces involved
can be different ones and do not have to be separable. Furthermore, we constructed the desired function
step by step in the proof which might be very insightful and we did not have to use very deep mathematical
results. Finally, it is worth mentioning that the paper does give a lot of detailed calculations which should
make it easy to read.
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