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Abstract

This paper presents a detailed proof of Wigner’s Theorem. The proof here was given by Daniel D.
Spiegel in 2018. As this is a seminar-paper it comprises a lot of detailed calculations that are needed for
the proof.

1 Introduction

Wigner’s theorem has its motivation in physics. It plays a role in the mathematical formulation of quantum
mechanics. In this paper we proof a rather general form of Wigner’s theorem. As already mentioned in the
abstract most of the ideas in this paper were taken from [4]. The present paper is a seminar paper. Therefore,
it was written with the intention of practicing the writing process and not with the intention to present new
results. Nevertheless the paper might be interesting, especially for less experienced mathematicians, because
everything is presented in great detail. Furthermore the paper comprises some additional ideas from |[2] or
1.

2 Complex numbers C

As we will have to work a lot with the complex numbers C we want to start with some of their properties.

Definition 2.1. Let K be a field and ¢ : K — K a bijective function. We call ¢ an automorphism on K if
for all A\, u € K the equalities

CA+ 1) =CA) +¢(pr) and  ((Ap) = C(A)¢(1)
hold true.
Definition 2.2. Throughout this paper = : C — C : Ay +i)o — A1 — iAo will be the complex conjugation.

Lemma 2.3. There exist only two continuous automorphisms on C, namely the identity function and the
complex conjugation. These two functions both conincide with their own inverse and act as the identity
function on the real line.

Proof. The identity function and the complex conjugation are both isometries. Thus, they are continuous
and they are clearly automorphisms on C. They both coincide with their own inverse and act as the identity
function on the real line.

For any continuous automorphism ¢ on C we have ¢(0) = 0 and (1) = 1. Assume ((a) = « for some « € N.
We conclude ((a+ 1) = {(a) + (1) = a+ 1. Hence, we showed by induction that for all & € N the equality



¢(a) = a holds true. For an arbitrary A € C\ {0} we have

0=C0) ==X = ) +¢(-A) and 1= (1) =¢( ) =<

Thus, ((—A) = —=¢(A) and ¢((A™!) = ¢(A)~'. We conclude ¢(3) = § for all § € Z and, in turn, {(y) = v for
all v € Q. For any 6 € R there exists a sequence of rational numbers (v,), oy that converges to 6. Due to
continuity of ¢ we have

€@ =¢( tim ) = lim C(3) = lim 7, = 4.

n—oo

From
—1=¢(=1) =¢(®) = ¢(@)?
we conclude that {(i) € {i,—i}. For a complex number p = uq + ips, where u, uo € R, we obtain

C(p) = C(p1 +ip2) = ((p1) + C()C(p2) = p1 + C(7) po-

Thus, ( is either the identity function or the complex conjugation. O

R}

Figure 1: Geometric interpretaion of Lemma

Lemma 2.4. For A € C with |A| =1 the following statements are true.

1. If — X has euclidean distance 2 from the complex number 1 then A = 1. Thus,

T+A=2=X=1



2. If —\ has euclidean distance v/2 from the complex number 1 then either A = ¢ or A = —i holds true,
i.e.

I+ A =V2=A=iVA=—i

Proof. For any A € C, |A\| =1, we have
T+APA= T4+ N1 +X)A=(1+N)>=1+2\+ 1%
1. If |1 + A|* = 4, then we obtain
0=1-2\+A=(1-))?

and in turn A = 1.

2. If |1 + |2 = 2, then we obtain
0=1+\
Hence, A € {i,—i}.
O

Lemma 2.5. Let u € C\ {0}. If a function ¢ : C — C satisfies [((u)| = |u|, then there exists a unique A € C
with |[A| = 1 such that |u| = A{(u).

Proof. Let u € C\ {0} be an arbitrary number. Defining

/\::M

ol wl
C(p) !

we have |\ = ——+

K] [ul

and

_ sy
IM—Cw)w%fMW)

For another v € C with |v| =1 and || = v{(u) we obtain

_ Aul
C(n)

Lemma 2.6. Let A\, u,v € C where A # 0 and || = |v|. Then the following implication holds true.
A+v|= A+ puAXN—iv]|=|X—iul = v =p
Proof. We have
N2+ XE+ 2+ P = A+ ) +1) = A+ pfP =D+ = A+ )+ ) = NP+ AT+ dw + [y
and because of |u| = |v| we conclude A\(¥ — 1) = —A(v — p). Furthermore,
A2+ g — x4 [u]? = A —ip) (A +im) = A —ip]> = (A —iv] = A=) (A +i7) = AP +i\v — idw + v

Again because of the assumption |u| = |v| we obtain

(v — 1) = A7 —71) = —A(v — p).

A £ 0 finally implies v = p. O



3 Hilbert spaces

Definition 3.1. Let H be a vector space over C. A function (-,-) : H x H — C is called inner product if
1. (z,2) >0 for all z € H \ {0}.
2. (z,y) = (y,z) for all x,y € H.
3. (x+y,2) =(z,2)+ (y,2) for all z,y,z € H, and (Az,y) = Az,y) forall A e C, z,y € H.

Remark 3.2. We know from [5, p.41] that an inner product induces a norm ||z|| = \/(x,2). Throughout
this paper a vector space H provided with an inner product will always be normed with this norm.

Remark 3.3. Let V be a vector space and (-, -) an inner product on V. Then for all z,y € V the inequality
|(z,y)| < ||=]|||ly]| holds true. Equality holds if and only if 2 and y are linearly dependent. This inequality is
called Cauchy-Schwarz inequality. The proof can be found in [5, p. 41].

Remark 3.4. For a vector space with inner product (-,-) : V' x V' — C the inner product is continuous when
V is endowed with the topology induced by the norm and V x V is endowed with the product topology.
Furthermore for every y € V' the linear functional f, : V' — C defined by f,(x) = (z,y), is continuous. The
proof of these facts can be found in [5| p.43]

Definition 3.5. A vector space H over C with a scalar product that is complete as a normed space endowed
with the norm induced by the scalar product is called Hilbert space.

In this paper a Hilbert space shall always be a vector space over the field C and not over R.

Definition 3.6. Let V be a vector space with an inner product (-,-). We call two subsets M, N C V
orthogonal, denoted by M 1 N, if for all z € M and all y € N we have (z,y) = 0. Two vectors v,w € V are
called orthogonal if (v, w) = 0.

Definition 3.7. Let H be a Hilbert space. A subset M C H is called an orthonormal system if for all
u,v € M

1 ifu=w,
(U,U): .
0 ,if u#w.

If M is an orthonormal system and every orthonormal system M with M D M satisfies M = M, then M is
called an orthonormal basis of H.

Remark 3.8. Whenever we write an orthonormal system M as an indexed set M = {e; | j € J} in this
paper, we require that e; # ey for 5,k € J with j # k.

Lemma 3.9. Let H be a Hilbert space and M an orthonormal system. Then there exists an orthonormal
basis M O M. In particular, there exists an orthonormal basis of H.

The proof can be found in |5, p.52].

Theorem 3.10. Let H be a Hilbert space and M = {e; | j € J} an orthonromal system. Then the following
statements are equivalent.

1. M is an orthonormal basis.

2. For every x € H

>l ep)* = il (1)

JjeJ



3. For all z,y € H the equality

holds true.

4. For every x € H

r=> (z,e))e;. (2)

JjeJ
The proof can be found in [5, p. 54].

Definition 3.11. For a Hilbert space H, an orthonormal basis M = {e; | j € J} of H and = € H, equality

is called Parseval’s equality. The series in is called Fourier series of x with respect to the orthonormal
basis M.

Lemma 3.12. Let H be a Hilbert space and M := {e; | j € J} be a non-empty orthonormal system. Then
for every z € H we have

2] =Dl e))l” & 2= (x,¢)e;. 3)

jeJ jeJ
Proof. We consider an orthonormal basis {fx | k € K} DO M; see Lemma

»,=“ Using Parzeval’s equality we obtain

Dol el = lzl* = I, fo).

jedJ keK

Hence, for all k € K with fy ¢ M the equality (x, fr) = 0 must hold true. Finally, using the
representation as a Fourier series we obtain

=Y (x, fi)fr = _(z.¢))e;.

keK jeJ

»<=* We observe that for all k € K with fi ¢ M we have

(@, fr) = Z(x?ej)ejvfk = Z($;€j>(€j7fk) = 0.

JjeJ JjeJ

Hence, Parseval’s equality yields

Yo l@e) =D I fo)l = =]

jeJ keK

O

Definition 3.13. Let V and W be two vector spaces over the same field K and { be an automorphism on
K. A function f: V — W is called semilinear with respect to ¢ or (-linear, if for all z,y € V and all A € K

fle+y)=f@)+fly) and f(Az) = C(N)f(2).

If K = C and ( is the complex conjugation, then f is called an antilinear function.



Remark 3.14. If f is a (-linear function and { = idk, then f is simply a linear function. The properties of
¢-linear functions are very similar to the ones we know from linear function. See 3| p. 138] for these results.
We will use the property that a (-linear function f is injective if ker f = {0}. Furthermore, a scalar product
in this paper is linear in the first and antilinear in the second argument, as can be found in [5, p. 41].

It is not necessary to precisely define a topological vector space here. We only need to know that every
normed space is a topological vector space. This result can be found in [5, p. 18]

Definition 3.15. Let (X, 7x) and (Y, Ty') be topological vector spaces. We denote the set of all (-linear and
continuous functions from X to Y with ¢-Ly(X,Y). In the case (X, Tx) = (Y, Ty) we write (-Ly(X) = ¢-
Ly(X,Y). If ¢ is the identity function, then we write Ly(X,Y") and Ly(X).

Definition 3.16. If (X,7) is a topological vector space over C, then we denote by (X, T)’ the set of all
linear and continuous functions from X into the field C. We call this set the continuous dual space of (X, T).

Remark 3.17. Let X be a normed space. Then X’ provided with the operator norm
IflIl =sup{|f(2)]: z € X Allz]ly <1}, [feX

is a Banach space. See [, p. 25] for this result.

Proposition 3.18. Let H be a Hilbert space. Then the function

H— H

where f,, : H — C defined by f, () = (z, y) is an isometric and antilinear bijection from H onto H' endowed
with the norm introduced in Remark .17

The proof can be found in [5 p. 50]

Definition 3.19. Let A be an algebra with an identity element e. This is a vector space additionally
provided with a bilinear and associative multiplication - : A x A — A, where e € A satisfies ea = ae = a
for all a € A. See |5, p.121-122] for this definition and some properties of an algebra. An element a € A is
called inveritble, if there exists b € A with ab = ba = e. We define

Inv(A) := {a € A a is invertible}
and based on this the spectrum of an element a € A as
ola)={A e C|(a—Ae) ¢ Inv(A4)}.
Furthermore, we define the spectral radius of an element a € A by
r(a) :=sup{|A| : A € o(a)},

where sup ) := 0. If A is a Banach space with a norm ||-|| that satisfies ||ab|| < ||a||||0]| for all a,b € A, then
we call it a Banach algebra with identity element.

Remark 3.20. For a Banach space X the space Ly(X) is a Banach algebra with the identity mapping as
the identity element, see [5 p.121-122] for this result.

Definition 3.21. Let X be a Banach space and T' € Ly(X). Then XA € C is called eigenvalue of T if
ker(T — A\I) # {0}.

Definition 3.22. Let X,Y be Banach spaces. A linear function T" : X — Y is called compact, if
T({x € X : |z| < 1}) is relatively compact in Y.



Remark 3.23. If XY are Banach spaces and T' € Ly(X,Y’) with dimranT < oo, then T' is compact. This
result can be found in [, p. 133].

Remark 3.24. Let X be a Banach space and T : X — X compact. Then every A € o(T) \ {0} is an
eigenvalue of T'. This result can be found in [5, p.138].

Lemma 3.25. Let H; and Hy be Hilbert spaces and ( : C — C either the identity mapping or the complex
conjugation. If T' € (-Ly(Hy, Hs), then there exists a unique function I¢ - Hy — Hy such that for all x € Hy
and y € Hy the equation

(Txvy)Hz = C((x’T;y)Hl)

holds true. The function T is (-linear.

Proof. For an arbitrary y € Hy we define f, : Hi — C by f,(x) = ("' ((T%,y)n,). For u,v € Hy and
A, 1 € C we obtain

Fy(pu+ o) = CH(T (pu+ M), y) ) = CHE) (T y) i, + CON(T0, ) )
= NC_I((Tuvy)H2> + Ag_l((T/wy)Hz) = ny(u) + Afy(v)

Hence, f, is a linear function. Furthermore, by Remarkthe function (-, ) g, : Ha X Hy — C is continuous
and by Lemma we have continuity of (7. As f, is a composition function of these two functions it is
continuous as well. Using Proposition there exists a unique z, € H; which fulfills f,(z) = (x, z,)m, for
all x € Hy. This allows us to uniquely define a function

TC*IHQ—>H1, y'—>2y
that satisfies
(T, y) i, = C(CH (T, 9)m,)) = C(fy(2) = (=, TEY)m,)-

for all x € Hy and all y € Hs.
Consider arbitrary y,z € Hy and A, u € C. For every x € Hy; we have

(2, TE(ny +22)) . = CH(Ta, py +A2)gy,) = CHRCTH (T2, y) ) + )T (T2, 2) )

= MA@ Ty, O N (@182, = (0 CT@Iy + T

We conclude T (uy + Az) = (@) Ty + ¢! (X)ng. By assumption ¢ = id¢ or ¢ =*. In both cases we see
that T is a (-linear function. O

Definition 3.26. Let H be a Hilbert space and T' € Ly(H). Then T is called normal if TT* = T*T.

Remark 3.27. If H is a Hilbert space and N : H — H is normal, then r(N) = ||N||. The proof of this
statement can be found in [5, p.142].

Definition 3.28. Let H; and Hy be Hilbert spaces, ( : C — C either the identity mapping or the complex
conjugation and U € (-Ly(H;, Hs) satisfying UtU = Iy, and UU} = Ip,. If ¢ is the identity mapping, then
U is called unitary. If ¢ is the complex conjugation, then U is called antiunitary.

Remark 3.29. If H is a Hilbert space and if T' € Ly(H) satisfies (Tx,x)y = 0 for all x € H, then T' = 0.
The proof of this can be found in [5], p.142].

Proposition 3.30. Let H; and Hy be Hilbert spaces U € (-Ly(Hy, H2), where ¢ : C — C is either the
identity mapping or the complex conjugation. Then the following statements are equivalent.



(i) U is ¢-unitary.
(ii) ranU = Hy and (Uz,Uy) g, = C((z,y) g, ) for all z,y € Hy.
(iii) ranU = Hy and ||Uz|| g, = ||z, for all € H;.

Proof.

(i) = (ii)“. Due to the fact that UU} = Iy, we have ranU = H,. Because of the assumption
¢ 2
UC*U = Iy, we obtain for z,y € H;

Uz, Uy)n, = C((x, UUY)m, ) = C((,y)m,)-

»(i1) = (iii)“. By assumption the function ( is either the identity function or the complex conjugation.
Hence, ((a) = a for all & € R. Given € H; we have

2 2 2
WUzl = U2, U), = (0, 20)5,) = (N2l ) = ol
»(iil) = (i)“. For every x € Hy we have

(2, UgUn)m, = ¢ (U, Un)wy) = ¢ (U3, ) = (U3, = lally, = @,2)m,.

Using Remark we obtain UfU = Ip,. The function U is surjective by assumption and injective
as a consequence of ||Uz| y, = ||z 5, . Hence, U is bijective and U;U = Iy, implies

UU; =UUUU ™ =UIg, U™ =UU " = I,.
O

Definition 3.31. Let V be a vector space with an inner product (-,-). We call a linear function P : V — V
an orthogonal projection, if P = P? and ran P L ker P.

Remark 3.32. In a vector space V with an inner product (-,-) a linear function P : V — V with P2 = P
is an orthogonal projection if and only if for all z,y € V'

(any) = (.IT,Py)

Moreover, orthogonal projections are bounded with norm one in case P # 0. This result can be found in [5,
p. 47].

Remark 3.33. Let H be a Hilbert space. If M C H is a closed subspace, then there exists a unique
orthogonal projection P with ran P = M. The proof of this statement can be found in [5, p. 48].

4 Projective Hilbert spaces

Definition 4.1. Let V be a vector space over the field K. The set P(V) = {Kxz | x € V' \ {0}} consisting
of all onedimensional subspaces of V is called the projective space of V. If V is a Hilbert space then we call
P(V) projective Hilbert space and its elements rays.

Lemma 4.2. If R; and R, are rays of a projective Hilbert space P(H), then there exists a unique p € [0, 1]
such that for all z; € Ry \ {0} and z2 € Ry \ {0}

(@1, 22)| _
21| 22|



Proof. Let x1,y1 € Ry \ {0} and z3,y2 € Ry \ {0}. Then we can write y; = Ax; and ya = Aazo for some
A1, A2 € C\ {0}. Hence,

_ o)l [z, deza)m| _ [Midel[(@r, 20)| _ [(21, %)
lyallllgall IMzalllidezzll [Aadellzallllzall llzall[lazll

Because of the Cauchy-Schwarz inequality we have p € [0, 1]. O

Definition 4.3. The previous Lemmaallows us to define the ray-product (-,-)pgy : P(H)xP(H) — [0,1]
on a projective Hilbert space P(H) by

(2, y)|

(€. Co)pan = il

Lemma 4.4. Let P(H) be a projective Hilbert space and let f : P(H) — Ly(H) be defined by f(R)(x) :=
(z,vg)vg for x € H and R € P(H), where vg € R is a vector of norm one. Then for all R € P(H) the
operator f(R) is the orthogonal projection with ran f(R) = R. Moreover, d : P(H) x P(H) — [0, 00) defined
by (R,S) — ||f(R) — f(S5)]| is a metric.

Proof. Given u,v € R with |ju|| = ||v|| we have v = Au for some A € C with |A| = 1. Hence,
(z,0)v = (2, \u) u = A\ (2, u)u = (z,u)u

for x € H. Thus, f(R): H — H is an obviously linear operator which does not depend on the choice of vg.
Moreover,

P%z = P((z,vr)vr) = ((z,vRr)vR,vr)vRr = (x,vR)vr = Pu.
Since also for z,y € H we have
(vay) = ((ZE,UR)UR,y) = (IvvR)(UR’y) = (x7 (yavR)UR) = (Z‘,Py),

the operator P = f(R) is an orthogonal projection. The map d is a metric, because the operator norm
induces a metric in the well known way. O

Remark 4.5. Throughout this paper a projective Hilbert space will be endowed with the metric from
Lemma [£.4]

Lemma 4.6. In a projective Hilbert space P(H) the equality
d(R, S) =4/1- (R> S)%(H)

holds true for all rays R, S € P(H).

Proof. Let R, S € P(H) be arbitrary rays and let P := f(R) and Q := f(S) be the orthogonal projections
onto R and S respectively as in Lemma [4.4] and set u := vg and v := vg. If R = S then the equation holds
true because of Remark Thus, from now on we assume R # S. We are going to have a look at the



spectrum of T : H — H defined by Tax = Pz — Qz = (z,u)u — (z,v)v. From

(ua U) (ua U) (U,U)

T u-— v| =Tu-— Tv=u— (u,v)v— ((v,u)u —v)
L+ 4/ = [(u, ) L+ /1= |(u,0)[? L+ /1= |(u,0)*
(1 |(u, v)[? S (u,v) ;
14+ 4/1 = [(u,0)? 1+ /1= |(u,0)

1—|(u, )] +4/1 - I(uav)l2u_ (u,v)y/1— \(uvv)lzv
1+ /1— [(u,0)]? 14 4/1—|(u,0)]?

= /1= |(u,v)|u-— (u,v) v

L+ /1= |(u,0)[*

we conclude that /1 — |(u,v)|]> = /1 — (R, S)?,(H) is an eigenvalue of T'. As

T* =P —Q*=P-Q=T

the operator T is selfadjoint and therefore normal. We also observe that ranT C span{u,v}. According to
Remark this implies that T is compact. Let us now assume that A € C\ {0} belongs to the spectrum
of T. Due to the fact that T is compact and by Remark the complex number A is eigenvalue of T,
which gives Tz = Az for some 2 € H \ {0}. Hence, x € ranT which implies the existence of u,rv € C with
x = pu + vv. From x # 0 we conclude p # 0 or v # 0. With no loss of generality we assume p # 0.

As R # S, the vectors u and v are linearly independent. We conclude

Mi = s+ 10, 0) ()
Av=—v— u(u,v) (5)

from
Apu+dvo = e =Te = pTu+vTv = p(u — (u,v)v) + v((v,u)u —v) = (p+v(v,u))u — (v + p(u,v))v.

If (v,u) = 0, then (4)) yields Ay = p and hence A = 1. In this case we have (R, S)p) = |(u,v)n| = 0 which,
according to Remark yields

d(R,S) = |P=Q| =r(P-Q)=1=/1—(R,S)pu):

Assuming (v,u) # 0 we can do further calculations. From (4) we conclude that

Ao o) v
I ju
and hence
v A—1

Using we obtain

A+ 1); = —(u,v),

10



what together with @ implies

A2 -1

(v, u)

=+ 1)2\1}_1; = —(u,v).

With a simple transformation we find

A=EV1I=|(u,0)]? =£/1= (R, 9}

Although we do not know for sure, whether 0 belongs to the spectrum of T, we know its spectral radius |A|.
Finally, by Remark [3.27] we obtain

d(R,8) =[P - Q| =r(P—Q)=/1—(R,py)
O

Lemma 4.7. Let P(H;) and P(Hs) be two projective Hilbert spaces and ¢ : P(H;) — P(Hz) an isometry
with respect to the metric from Lemma Let M := {e; | j € J} be an orthonormal basis of H; and
z,y € Hi1 \ {0}. Let € g(Cx) and § € g(Cy) be vectors satistying ||z[|;, = ||Z]/5, and |lyllz, = (9l p,-
Lastly, for every j € J let €; € g(Ce;) be a normalized vector. Then

‘(fvg)ﬂi|::|($vy)HéL (7)

the set L :={é; | j € J} is an orthonormal system in H, and
F=> (88)mé;- (8)
Proof. Employing Lemma [4.6] we obtain

2
Z,Y)H,
WH¢<><>

e, 9l e,

P E
— d(g(C2), 9(Cy) = /T~ (512, 9CH oy = \/1'”’)”

120 22, 1191,

which immediately implies (7). Using this equation and the fact that M is an orthonormal basis of H; we
obtain for every i,7 € J

0 Lifi#j,
1 Lifi=j.

(€35 €;)mz| = [(ei, €5)m, | = {
Hence, L is an orthonormal system. Using (7)) and Parzeval’s equality (I}) we obtain

~112
1217, = lellz, =D @ e)m® =Y 1@ &)m*.

JjeJ jeJ

Due to the fact that L is an orthonormal system by we obtain . O

5 Statement and proof of Wigner’s Theorem

If for Hilbert spaces Hy and Hy we consider an isometry g : P(H;) — P(Hz), we mean in this section a
function from P(H;) to P(Hz) which is isometric with respect to the metric d from Lemma [4.4]

11



Example 5.1. Let H; and Hs be Hilbert spaces where H; = {0} and let g : P(H;) — P(Hz) be an isometry.
Obviously, we have P(H1) = (. By defining U : H; — H» as the zero operator, we observe that U is linear
as well as antilinear and both unitary and antiunitary. Furthermore, the statement Uz € ¢g(Cz) is true for
every x € H; \ {0}, simply because no such z exists.

Example 5.2. Let H; and Hy be Hilbert spaces where dim H; = 1 and let g : P(H;) — P(Hz) be an
isometry. Due to the fact that P(Hy) = {H;} there exists only one ray in P(H;). Take a normalized x € Hy
and a normalized y € g(H;). We define U : H; — H by Az + Ay and T : H; — Hy by Az + \y. For any
A € C we have

U] g, = (Ml g, = (MYl g, = 1A= M2l g, = 1Az,
and
17Xz 7, = [Nyl g, = Il g, = (A= Iz, = A, -
Hence, U is unitary and T is antiunitary. Furthermore, we clearly have Tu, Uu € g(Cu) for every u € Hy\{0}.

Lemma 5.3. Let H; and Hy be Hilbert spaces and let g : P(Hy) — P(Hz) be an isometry. For two vectors
z,y € Hy with (y,z)n, # 0 and a vector & € g(Cx) with [|Z,, = [[z[/;, there exists a unique § € g(Cy)
that satisfies ||g||H2 = HyHHl and (ﬂ7i')H2 = |(g7‘%)H2"

Proof. Take an arbitrary vector w € g(Cy) with |||, = [|Z|;, and define p = (@, %)n,. By we have
le| = (0, %) m,| = |(y, %), | # 0. According to Lemma there exists a unique A € C with |A| = 1 such
that |u| = Ap. For g := A we obtain

(575%)1‘12 = A(wv‘%)fb = )‘lu’ = ‘:u| = P‘H(ﬁ}ﬂ‘%)fb‘ = |(g7‘%)H2‘

and (|9l g, = M@l g, = Iyl -
For another vector z € g(Cy) with |2, = [lylly, and (2,2)y, = |(2,i)H2| we have Z = vg for some
v e C\ {0}. From

19l = 120 a, = 1W9lla, = W9la, = WY,

we conclude |v| = 1. Furthermore, from

|V||(y7x)H1| = |V||(gvfi')H2| = |(275)H2| = (évj)Hz = V(ya‘%)j—h = V|(gv‘%)1—]2| = V|(yax)1—]1|
and the assumption (y,z) # 0 we obtain v = |v| = 1. Thus, Z = v§ = 4. O

Lemma 5.4. Let Hy and Hy be Hilbert spaces and g : P(H1) — P(Hz) an isometry. Let M = {e; | j € J}
be an orthonormal basis of H; and for every j € J let €; € g(Ce;) be a normalized vector. Furthermore, let
r € Hy with

Tr = Z)\j@j.

Jje€J

If k € J such that A\, € C\ {0} and ¢ : C — C with |Ax| = |((Ax)|, then there exists a unique & € g(Cx)
such that

E=Cw)E+ D> (8,8),6

jeI\{k}

= |\j| for j € J\ {k}.

This vector & € g(Cx) satisfies [|Z| , = ||lz[/;,. Moreover, ’(i,éj)HZ

12



Proof. We first observe that for every [ € J

(Jc,el)H1 = Z)\jej,el = Z)‘j(eﬂ"el)Hl = \. (9)

JjeJ H, jeJ

As A\ # 0 we can employ Lemma and (7) in order to obtain a unique @ € g(Cz) with [0l g, = 1zl g,
and

(wvek)Hz - ‘(waék)H2| = |($76k)H1| = |)‘k|

By Lemma [2.5 there exists a unique v € C with [v| = 1 and [\;| = v((\r). We define

- 1. . - 1 1
Z = and find (%, éx)m, = ;(w,ek)H2 = ;|>\k| = ;V(()\k) = ((Mg).

Finally, by we obtain

1

>l = Nzl g, -

~ -~ =~ o e T e e z 1 0
F= E (Z,€7) 1,65 = C(Ak)ex + Z (#,65)m,€; and |7y, = HVw’
= JENTRY

Consider another g € g(Cz) with
§=C(Ae)er + Z (9,€5) 11, 5-
jeJ\{k}
We have § = pZ for some p € C\ {0}. From
1C(Ak) = (2, €x) g, = (Y €k) g, = C(Ak)

we conclude p = 1. Thus, T = .
Finally, by for all j € J\ {k} we have

il = | 5) g, | = | @50, | = Al

O

Lemma 5.5. Let H; and Hs be Hilbert spaces with dim H; > 1 and g : P(H1) — P(H2) an isometry.
Furthermore, let M = {e; | j € J} be an orthonormal basis of H;. We fix ¢ € J and define for all j € J\ {¢}

Vgj = ﬁ(eq +ej),  wg = %(eq +tieg),  wig = %(ej +ieg).
Assume that &, € g(Ce,) is a given normalized vector. Then for every k € J \ {¢} there exists a normalized
ér € g(Cey), a normalized Uy, € g(Cvgy), a normalized wqr, € g(Cwgyr), a normalized Wy, € g(Cwy,y), and
A € {i,—i} such that
(éq + Akék)?

(éq + ék)a Wak = €r + )\kéq).

- 1 1 . 1 (
v = — —_— w = —
ar V2 V2 ha V2
Proof. First observe that for every j € J and every k € J \ {¢} we have

Vgk, €5 = | —=(eqteg) ey ={ V2
( ar j)Hl (\/i( I k) J>H1 {0 7else'

13



Hence, we can employ Lemma and @ in order to obtain a unique, normalized ¥4, € g(Cvgy) with

Sl-

(Vg» €q) 1, = |(Vghs €q) iz | = [(vgr, €q) 1, | =
Again by Lemma together with we find a unique, normalized éj, € g(Cey) such that

(5qkaék)H2 = ‘(5qkaék)H2‘ = ‘('Uqlmek)Hl‘ =

Sl

Since for all j € J\ {¢, k}

:O7

‘(ﬁqméa‘)m‘ = ‘(vqk’ej)Hl
we derive (8) from
. N .
gk = Y (Tgk, €) 11,65 = —=(Eq + &)
: V2
JjeJ
By Lemma [5.4] there exist wgr € g(Cwgr) and rq € g(Cwyq) with
. 1 . - - 1 .
Wqk = ﬁ(eq + )\k;ek), Wkqg = ﬁ(ek + )\qeq)
and |Ag| = |Ag] = 1. We have

|1 +/\k| = ‘(éq —|—)\ké;€,éq J’_ék)Hz‘ = 2‘(qu7ﬁqk)H2

= 2’(qu,vqk)Hl‘ = ‘(eq—l—z’ek,eq—kek)Hl‘ =[1+i|=Vv2

and similarly |1+ ;| = v/2. By Lemma we obtain Ag, Ay € {3, —i}. From

1 — 1 N 1 - - -
§|)‘k + /\q| = ‘(ﬂ(eq + Ak€r), ﬁ(ek +/\q6q))H = ’(quvwkq)m
2
st | = | (g tea+ e Tsen i) | =li=il =0
= | (wgk, w = | —=(eq +iex), —=(ex + i€ =—li—i| =
qk> Wkq) g, \/§ q k \/i k q ", 9
together with Ay, A\, € {i, —i} we conclude that A\, = \,. O

Example 5.6. Let H; and Hs be Hilbert spaces with dim H; = 2 and g : P(H;) — P(H>) an isometry. We
consider an orthonormal basis M = {e1, ea} of Hy and define

1 1 ) 1 .
v:=—(e1 + e2), wig = —=(e1 +iea), woy 1= —=(ea + ie1).

V2 V2 V2
By Lemma [5.5] there exist & € g(Ce1), & € g(Cez), 0 € g(Cv), w12 € g(Cwiz), W € g(Cwsy) and
X\ € {i,—i} with
P Gt e = — ENERIPER
NG 1+ €2), 12 /2 7 2 1)
If A =4, then we define ¢ := id¢. If A = —i, then we define ¢ as the complex conjugation. Either way we
have A = ((7).

(é1 4+ Aé2), W1 =

14



We are going to define U : H; — Hj. First of all set U0 := 0. For an arbitrary z € H; \ {0} there exist
A1, A2 € C with z = Ae; + Aaea where A; # 0 for some j € {1,2}. We choose r = 1if Ay # 0 and r = 2
otherwise. Let s € {1,2} \ {r}. By Lemma [5.4] there exists a unique z € g(Cz) with

2= CO)Er + (5,84) 1, &
and this vector satisfies ||Z[|;;, = [|z]|;;, . First we define v, := ¢H(z, éS)Hz) and then

Uz:=Z2= C()‘r)ér + C(Vs)és-

We find
1 1 . 1
$|)\T +Vs| = E‘C(/\T +VS)| = ‘(Z,’U)sz = ‘(270)1{1’ = E'AT +)‘S|
and for
1 . . 1 . N
Y= \ﬁ(er +ies) and §:= \ﬁ(er +¢(i)és)
we have
D =il = = |e ) + TOC0)| = |G )|
\/i r s \/§ r s i Ho
= |(z7y)H1| = ()\Ter + Ases, %(er —|—z'es))H1 = %P\T —iXg].
As
|VS| = |Cil ((2’63)H2)| = |(2758)H2| = |(2763)H1’ = |/\9|

we can employ Lemma [2.6]in order to obtain Ay = vs. Hence, we have
Uz = ((A1)é1 + ((Az)éz.
and
1017, = I€On)E + CO2)eallzy, = ISP+ [COI” = al* + el = Aaer + Aaeallzy, = 12l

Lemma 5.7. Let H; and Hs be Hilbert spaces with dim Hy > 2 and g : P(H;) — P(Hz) an isometry. Let
{e; | j € J} be an orthonormal basis of H; and for all distinct k,! € J set

1 1 .
Vil ‘= ——= €k €l arn Wk ‘= ——=\€k €r).
J5lex e and e+ i)

Then for all j € J there exists €; € g(Ce;), for all distinct k,! € J there exists a normalized ¥, € g(Cuy),
a normalized wy; € g(Cwy;) and Ay € {—4, i} such that

(éx+¢é) and Wy = —=(Ex + Auér),

- 1 1
Vgl = —= —
kl \/i \/i

where )\k:l = >\llc'

Proof. Choose ¢ € J and a normalized é; € g(Cey). By Lemma there exist €; € g(Ce;), ¥q; € g(Cuy;),
Wqj € 9(Cwygj), Wjq € g(Cwjq) and Ajq = Ag; € {1, —i} with

- 1
qu:ﬁ

I - 1 - -
(6 + &), Wy = —= (84 + Agj€j), Wjq =

V2

1. N
(€5 + Ajg€q)-

V2
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for every j € J\ {q}. We set 04 := 0y;. For distinct k,l € J \ {¢} we define

1
7(6(1 + e + 61).

Tl -—
kl \/g

Note that because of dim H; > 2 such a choice of k,[ is possible. By Lemma there exists Zx; € g(Cxg;)
such that

. 1 - ~
Ty = ﬁ(eq + €y + 1uép)

and |ug| = || = 1. Next, observe that for j € {k,}

1 1 . _ N
%\1+/~LJ‘| = ‘(\/g(quruk@ker@l) 7 (g + ¢ )H = [(Zk1, Vgj) a1, |
2
(s vng)a] = |( e b+ e Sl e)) | =2
= |(Tkt, Vg5 ) H, | = ETe), 7= - e
qJ 1 \/g q \ﬁ q J Hy \/6
Employing Lemma, [2.4] we obtain p = p; = 1 and therefore
_ 1.
Tpl = %(eq + eg +€l).
Making use of Lemma again we obtain Uy; € g(Cug;) and Wy € g(Cwy;) satisfying
B = = (6 + miEr) and i = —= (5 + Auél)
O = —= (&, + 1€ nd Wy = —(é ),
ki 7 kT V€ ki NG kT Aki€r
where |v;| = |Axi| = 1. Due to
14l = | (50 ) J ot ot @) | = [unul|
_ V| = — (e ver), —l(e €L €] = [\Vkl, Tk
V6 V2 31 s b
1 1 2
= |(Vki, T = || —=(exte),—=(e;ter+e = —
|(Vkt, Tht) g, | |( 2( kK +en), 3( qt ek l))Hl 7
and
Tl = | (5t i, e+ et @) | = (i du
— kil = || —=(€k + Arier), —=(€q +€x + € = |(Wkt, Tra
V6 V2 V3! i, e
1 1 V2
= |(Wrt, Tr) g, | = <(€k+i€l)7(€ +ek+€l)> =—=
(sl | =\ 73 V3 |V

we conclude from Lemma that v; = 1 and Ag; € {i,—i}. Finally, for any k,l € J

1 1 J— 1 1
=Xt — Al = 2| A+ | = ((ék + Ai€r), —=(é + )\zkék)> = |(Wpr, Wik
9 2| ‘ \/5 \/ﬁ i, ‘ H2|
1 . 1 . 1, -
= |(wrt, win) gy, | = 7(6194-261),*2(61-&-2619) =§|Z—H| =0
H,
yields Akl = /\lk~ D
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Theorem 5.8 (Wigner). Let Hy and Hs be Hilbert spaces and g : P(H;) — P(H2) be an isometry. Then
there exists an isometry U : H; — Hj that is either linear or antilinear and satisfies Uz € g(Cx) for every
T € Hy.

Proof. We already showed the theorem for dim Hy = 0 in Example [5.1} for dim H; = 1 in Example [5.2] and
for dim H; = 2 in Example [5.6 Thus we assume dim H; > 2. We know from Lemma that there exists
an orthonormal basis M := {e; | j € J} of H;. We assume that J is well-ordered and note that by the
well-ordering theorem every set can be well-ordered. For all distinct k,l € J we define

1 1 )
vg = —=(ex +€) and  wy = —=(eg + ie;).

V2 V2
By Lemmathere exist normalized é; € g(Ce;), j € J, normalized 0y € g(Cuy;), normalized wy; € g(Cwy)
and A\ € {—i,i}, k,l € J, k # 1, such that

(6 +€1) and wy = (éx + A1)

- 1 1

Vgl = —= —
ki NG NG

and )\kl = )\lk~

For distinct k,I,m € J we define

1 .
Yilm = %(ek + e +ien).

By Lemma there exists Jxim € g(Cygim) with
y ! (~ + e + Em)
m = —=\€ € mE€m
Ykl /3 kT i€ T W

and || = |um| = 1. For j € {I,m} we find

i|1+ -|—’(1(é + € + pmeé )i(é +é-))‘—
\/6 ,Uf] \/§ k Hi1€] lffmmv\/i k 7

_ ‘(1(ek e+ iem), = (ex +€j)>

(Yrim Okj) g,

2 ifj=1,
- % Jif = m.

= ’(yklma Ukj)Hl

V3 V2

Employing Lemma [2.4] we obtain 1y = 1 and p,, € {—i,i}. Next, for j € {k,{} we have

Hy

1 1 R 1 . - - 1 -
%Lum - )\mj| = %}Hm + >\mj| = |(\/§(6k + € +Nmem)a ﬁ(em +)\mjej)>

= ‘ (?jklrm 'LZ]mj)H2

H»>
_1

V6

= ‘(ykl'rn)wmj)Hl i+i[=0

(gten bt ien) S (e i)
= —(er (] 1€m ), —=\€m 1€

3 At
and conclude that A\jx = i = A For an additional n € J\ {k, m} we derive

Thus, we have A\, = A\, for all k,1,m,n € J with k # [ and m # n.

We define ¢ : C — C as the identitiy function if Ag; = ¢ and as the complex conjugation if Ay, = —i. For all
distinct k,1 € J we then have

(ex + C(i)er).

Wy =

L
V2
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We are going to define U : Hy — Hj. First we set U0 := 0. For z € H; \ {0} we have

z = Z/\jej

JjeJ

where )\ := (2,¢e;)m, for all j € J. As z # 0 there exists a least element k € J with A\ # 0. By Lemma
there exists a unique vector Z € g(Cz) such that

P=CWEn+ Y (56,6

jeI\{k}

This vector satisfies ||Z ;, = ||z]|y, . First we define v := ¢~ ((z €i)y ) for all j € J\ {k} and then

Uz:=2z2=((M\g)ér + Z C(v;)é;

jeI\k
For I € J\ {k} we have
1 1 1
—= Ak ul = —=C) + S| = || COwex + Y C(v))éj, —= (e + &) = |(Uz, 0nt) m, |
V2 V2 it TR .
1
:‘(z7vkl)H1’: j;])\ 6]77616—"-6[) . :Ep\k—l-)\”
and
%P\k—ivz\ \[‘C M) + C(D)¢ (v )‘ =([cOwe+ > C(Vj)éj’%(ekw%(i)el) = |(Uz, Wp1) m, |
JENTR} s
1
A, — : A — i
}(z ) H1 (; 3 €3 €k+l€z)> . \/§| —
As
il = [¢THE ), | =G &), | = (2 e0) g, | = 1M

we can employ Lemma in order to obtain v; = \;. Thus,

Uz = ZC()\j)éj = ZC((Za@j)Hl)éj

JjeJ jeJ

By definition Uz = Z € g(Cz). For arbitrary x,y € Hy and u, A € C we obtain

U(pr +Xy) =U (Z (u(x,ej)Hl + )\(y,ej)H1>ej)
jeJ
(1) Y <@ i), ) + 6N D ¢((9:¢3), )& = SV + CNU

jeJ jeJ
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Thus, U is (-linear and

W1, = (S c(Ge)e| =X (e
JjeJ H, JjeJ
2
=X c(enm, )esl| = el
= 0,

O

Corollary 5.9. Let H; and Hy be Hilbert spaces and g : P(H;) — P(H>) be a surjective isometry. Then
there exists a function U : H; — Hs that is either linear and unitary or antilinear and antiunitary and
satisfies Uz € g(Cz) for every x € H;.

Proof. By Theorem there exists a (-linear isometry U : H; — Hj that satisfies Uz € g(Cx) for all
x € Hy \ {0}, where ¢ : C — C is either the identity mapping or the complex conjugation. Let us consider
some arbitrary y € Hs. If y = 0, then U0 = 0 = y. Thus, assume y # 0. Due to the fact that g is
surjective we know there exists R € P(H;) with g(R) = Cy. From this we conclude that U(R) = Cy. Hence,
there exists * € R with Ux = y which implies ranU = H,. From Proposition [3.30| we obtain that U is
(-unitary. O

6 Concluding remarks

The proof given here is not particularly short and it involves quite a few calculations. Despite these drawbacks
it has the merit that it proves a very general form of Wigner’s theorem where the two Hilbert spaces involved
can be different ones and do not have to be separable. Furthermore, we constructed the desired function
step by step in the proof which might be very insightful and we did not have to use very deep mathematical
results. Finally, it is worth mentioning that the paper does give a lot of detailed calculations which should
make it easy to read.
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