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Introduction
The famous Riesz-Markov representation theorem gives us a special characterization of the dual
space of C0 (X).

Definition 0.0.1. Let X be a non-empty locally compact Hausdorff space. C0 (X) denotes
the subset of all functions f ∈ C (X), for which the set

{
x ∈ X

∣∣ |f(x)| ≥ ε
}
is compact for all

ε > 0. If we endow this space with the supremum norm

‖f‖X = sup
x∈X
|f(x)| ,

it is a Banach space.

Definition 0.0.2. Let X be a non-empty, locally compact space. Then we denote by M(X)
the space of complex-valued, regular Borel measures on X and we set

‖µ‖ = |µ| (X).

With respect to this norm, called the total variational norm, it is a Banach space.

Theorem 0.0.3 (Riesz-Markov). Let X be a locally compact Hausdorff space. Then every
bounded linear functional Φ on C0 (X) is represented by a unique regular complex Borel measure
µ, as

Φ(µ)f =
∫
X

f dµ,

for every f ∈ C0 (X). More precisely, Φ is an isometric isomorphism from C0 (X)′ to M(X).

A proof of this theorem can be found in, e.g., [5, Theorem 6.19, p.130].

In this bachelor thesis we deal with the following question:

When is C0 (X) (isometrically) isomorphic to a dual space and if a predual exists,
how does it look like?

The thesis is mainly based on [2].

Existence of a predual of a Banach space is not always guaranteed.
Example 0.0.4. Let Z be a Banach space with Ext(BZ

1 (0)) = ∅, where Ext(BZ
1 (0)) denotes the

set of extreme points in BZ
1 (0) =

{
z ∈ Z

∣∣ ‖z‖ ≤ 1
}
, then there is no Banach space Y with

Y ′ ∼= Z.
To show this, assume that Z is isometrical isomorphic to the dual of a space Y . If we endow
Z with the weak∗-topology (Z, σ(Z, Y )), then, by the Banach-Alaoglu theorem the unit ball is
weak∗-compact. So BZ

1 (0) is a non-empty, compact and convex subset of a locally convex space.
By Krein-Milman, Ext(BZ

1 (0)) 6= ∅, a contradiction. �

Proposition 0.0.5. For a non-empty, locally compact space X, f ∈ Ext(BC0(X)
1 (0)) if and

only if |f(x)| = 1 for x ∈ X.

Proof. Take f ∈ BC0(X)
1 (0) and suppose that there exists x0 ∈ X such that |f(x0)| < 1. Set

ε = 1−|f(x0)|
2 . Then there exists a neighbourhood U of x0 with |f(x0)| < 1− ε, for x ∈ U . Take

g ∈ CR (X) such that 0 ≤ g ≤ 1U and g(x0) = 1. Then f ± εg ∈ BC0(X)
1 (0) and

f = 1
2(f + εg) + 1

2(f − εg),
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and so f /∈ Ext(BC0(X)
1 (0)). On the other hand, if we have |f(x)| = 1 for all x ∈ X and

1 6= |g| , |h| with g, h ∈ BC0(X)
1 (0), then there is x0 with |h(x0)| < 1. We get

1 = |f(x0)| = |(1− t)g(x0) + th(x0)| ≤ (1− t) |g(x0)|+ t |h(x0)| < 1− t+ t = 1,

a contradiction. �

Corollary 0.0.6. Let X be a non-empty, locally compact space, that is not compact. Then
Ext(BC0(X)

1 (0)) = ∅. Hence, C0 (X) is not isometrically isomorphic to a Banach space.

Proof. By Proposition 0.0.5, it is |f(x)| = 1 for all x ∈ X, for f ∈ Ext(BC0(X)
1 (0)). Since X is

not compact, f /∈ C0 (X) and with Example 0.0.4, C0 (X) cannot be isometrically isomorphic
to a dual space. �

In view of Corollary 0.0.6 we may restrict our attention to compact spaces X. Moreover, we
will always assume X to be Hausdorff.

Let us note that any predual of a space C (X) is isometrically isomorphic to a closed sub-
space of M(X). This is the consequence of the following theorems that are part of almost every
basic functional analysis course. These proofs can be found in [7, Lemma 5.5.2, p.86; Theorem
5.3.3, p.79].

Theorem 0.0.7. Let Z be a vector space and let Y be a seperating linear subspace of the
algebraic dual Z∗. Then (Z, σ(Z, Y ))′ = Y .

Theorem 0.0.8. Let (X, ‖.‖) be a normed space and let ι be the map

ι :
{

X → (X ′)∗

x 7→ (f 7→ f(x)).

Then ι maps into the topological bidual space (X ′, ‖.‖X′)
′, is linear, and is isometric if we endow

X ′′ with the operator norm ‖.‖X′′.

By means of Theorem 0.0.7 and Theorem 0.0.8, we can indeed identify a predual Y of C(X)
with a subspace of M(X):

Y ∼= ι(Y ) ⊆ Y ′′ ∼= C(X)′ ∼= M(X) (0.1)
(C(X), σ(C(X), ι(Y )))′ = ι(Y ) ⊆M(X). (0.2)

In the end we will even get some sort of uniqueness of this predual space. We have to distinguish
between types of preduals.

Definition 0.0.9. Let Z be a Banach space. Y is an isomorphic predual of Z if Z is isomor-
phic to Y ′ (linear homeomorphic) and a Banach space Y is an isometric predual of Z if Z is
isometrically isomorphic to Y ′, we will write Y ′ ∼= Z.

There are examples of spaces with isomorphic dual spaces, that are not isometrically isomorphic.
We will need the following proposition.

Proposition 0.0.10. Let Z and E be Banach spaces and let T be an isometric isomorphism.
Then T (Ext(BZ

1 (0))) = Ext(BE
1 (0)).
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Proof. T is a bijective linear map. Now for z ∈ Ext(BZ
1 (0)) the following holds:

T (z) = tT (a) + (1− t)T (b) = T (ta+ (1− t)b)⇒ z = ta+ (1− t)b⇒ z = a = b.

Hence z is an extreme point whenever T (z) is and vice versa. �

Example 0.0.11. Let c be the set of convergent sequences in R and c0 the subspace consisting of
the sequences with limit 0. We know that c′0 ∼= `1 ∼= c′. It is easy to see that Bc

1(0) has extreme
points (e.g. the sequence (1, 1, 1, · · · )), but the unit ball of Bc0

1 (0) has no extreme points. Let
x = (xn)n∈N ∈ Bc0

1 (0). Since x converges to 0 there is an index N > 0 for which |xN | < 1
2 . Now

define y± ∈ Bc0
1 (0) as

yn± =
{
xn n 6= N

xN ± 1
4 n = N.

So we can write x = 1
2(y+ + y−). So by Proposition 0.0.10 there can’t be an isometric isomor-

phism between c0 and c.
To see that these spaces are isomorphic, set

T (x) = (2x∞, x1 − x∞, x2 − x∞, · · · )

for x = (xn)n∈N ∈ c with lim
n→∞

xn = x∞. Then T : c → c0 is a linear map. Further, we know
that

T (x) = (0, 0, 0, · · · )⇒ x = 0

since limn→∞ xn = 0 and for every sequence y ∈ c0 we take

x =
(
y2 + y1

2 , y3 + y1
2 , · · ·

)
→ y1

2 and T (x) = y.

Obviously, ‖T‖ = 2. And as one can see

2
3 ‖x‖ ≤ ‖T (x)‖ .

It follows that
∥∥T−1∥∥ ≤ 3

2 , and so c is isomorphic to c0. �

4



1 Stonean spaces and normal measures

1.1 Normal measures

As we have to deal with a subspace of M(X), we should take a closer a look at it.

Definition 1.1.1. Let (X, T ) be a topological space. Then the Borel sets in X are the members
of the σ-algebra σ(T ) generated by the family T of open subsets of X; we set BX = σ(T ).

Identifying M(X) as the dual space of C(X), we define

〈f, µ〉 =
∫
X

f dµ f ∈ C(X), µ ∈M(X).

For real-valued measures µ, ν ∈MR(X), we define

(µ ∨ ν)(B) = sup
A∈BX
A⊆B

µ(A) + ν(B \A)

(µ ∧ ν)(B) = inf
A∈BX
A⊆B

µ(A) + ν(B \A).

and further µ+ = µ ∨ 0 and µ− = µ ∧ 0. It is obvious that |µ| = µ+ + µ−. The set of positive
measures in M(X) is denoted by M(X)+.

In the following C (X)+ ⊆ C (X) denotes the space of real-valued, continuous and positive
functions with pointwise order. Since the norm on C (X) is compatible with the lattice struc-
ture, the following definition is appropriate.

Definition 1.1.2. Let (Z, ‖.‖) be a Banach space and (Z,≤) an ordered linear space. The
norm is a lattice norm if ‖y‖ ≤ ‖z‖ whenever |y| ≤ |z|, with |z| = sup{z,−z} in the lattice.
The space Z is then called a Banach lattice.

To find a more concrete characterization of the space ι(Y ) in Equation (0.1), we define the
space of normal measures:

Definition 1.1.3. Let X be a non-empty, compact space, and let µ ∈M(X). Then µ is normal
if 〈fi, µ〉 → 0 for each net (fi)i∈I in C (X)+ with fi ↘ 0. We write fi ↘ 0 if (fi)i∈I is decreasing
and inf i∈I fi = 0 in the lattice. We denote the subspace of normal measures inM(X) by N(X).

Remark 1.1.4. We want N(X) to be a Banach space, so we have to check if it is a closed linear
space with respect to the total variation norm. It is obviously a linear space as we have

〈fi, µ+ ν〉 =
∫
X

fi d(µ+ ν) =
∫
X

fi dµ+
∫
X

fi dν = 〈fi, µ〉+ 〈fi, ν〉 → 0

and similar with scalar multiplication. To see that N(X) is closed, we again take a net (fi)i∈I
with fi ↘ 0, ε > 0 and a sequence (µn)n∈N with µn → µ. Then

|〈fi, µ〉| = |〈fi, µ− µn〉+ 〈fi, µn〉| ≤ |〈fi, µ− µn〉|+ |〈fi, µn〉| .

Choose i1 and take n0 with ‖µ− µn0‖ ≤ ε
2‖fi1‖X

. For this n0 we get i0 with |〈fi, µn0〉| ≤ ε
2 for

i ≥ i0 and because fi is decreasing, ‖fi‖X ≤ ‖fj‖X for j ≤ i. This leads to

|〈fi, µ− µn0〉| ≤ ‖fi‖X ‖µ− µn0‖ ≤
ε

2 , i ≥ i1

and to sum up |〈fi, µ〉| ≤ ε, for i ≥ i1, i0. Since ε was arbitrary, we get 〈fi, µ〉 → 0. �
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Subsequently we will need some basic properties of normal measures:

Theorem 1.1.5. Let X be a non-empty, compact space. Then:

(i) µ ∈M(X) is normal if and only if <(µ) and =(µ) are normal;

(ii) µ ∈MR(X) is normal if and only if |µ| is normal if and only if µ+ and µ− are normal;

(iii) µ ∈M(X) is normal if and only if |µ| is normal

To proof this theorem we need a corollary of Urysohn’s lemma [5, Theorem 2.12, p.39]:

Corollary 1.1.6. Let X be a non-empty, compact space. Suppose that C is compact and U is
open in X such that C ⊆ U . Then there exists f ∈ C (X)+ with 1C ≤ f ≤ 1U .

Proof. Since X is compact and Hausdorff, X is a normal space and hence, we can apply
Urysohn’s lemma to the closed subsets C and U c. It gives us a function

f : X → [0, 1] with f(C) ⊆ {1} and f(U c) ⊆ {0}. (1.1)

�

Proof of Theorem 1.1.5.
(i) This is trivial.
(ii) Suppose that µ+, µ− ∈ N(X). Then certainly µ, |µ| ∈ N(X). Suppose that |µ| ∈ N(X)
and that ν ∈ N(X) with |ν| ≤ |µ|. Then

0 ≤

∣∣∣∣∣∣
∫
X

fi dν

∣∣∣∣∣∣ ≤
∫
X

fi d |µ| → 0

when fi ↘ 0 ∈ C (X)+, and so ν ∈ N(X). In particular, µ, µ+ and µ− are normal whenever |µ|
is normal.
Suppose that µ ∈ MR(X) is normal and that fi ↘ 0 in B

C(X)+

1 (0). Let {P,N} be a Hahn
decomposition of X with respect to µ, and take ε > 0. Since µ is regular, there exist a compact
set C and an open set U in X with C ⊆ P ⊆ U and |µ| (U \C) < ε. Now there exists g ∈ C (X)+

with 1C ≤ g ≤ 1U . Then∫
X

fi dµ
+ =

∫
P

fi dµ ≤
∫
C

gfi dµ+
∫

U\C

gfi dµ+ 2ε =
∫
X

gfi dµ+ 2ε.

Since gfi ↘ 0 and µ is normal, limi∈I
∫
X
gfi dµ = 0, and so

lim sup
i∈I

∫
X

fi dµ
+ ≤ 2ε.

This holds true for each ε > 0, and so

lim
i∈I

∫
X

fi dµ
+ = 0.

Thus, µ+ is normal.
(iii) Suppose that µ ∈ N(X). Then |<(µ)| + |=(µ)| ∈ N(X) from (i) and (ii). However,
|µ| ≤ |<(µ)|+ |=(µ)|, and so |µ| ∈ N(X). �
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For another characterization of normal measures we will need the following theorem of Dini.

Theorem 1.1.7 (Dini’s theorem). Let X be a non-empty, compact space, and suppose that
(fi)i∈I is a net in CR (X) such that fi(x) ↘ g(x), for each x ∈ X, where g ∈ CR (X). Then,
for each ε > 0, there exists i0 ∈ I such that ‖fi − g‖X < ε, i ≥ i0.

Proof. Fix ε > 0 and i1 ∈ I, and then take the compact subset C of X such that fi1(x) < ε for
x ∈ X \ C. Set

Xi =
{
x ∈ X

∣∣ |fi(x)− g(x)| ≥ ε
}

and Ci = Xi ∩ C for i ∈ I, so that each Ci is a compact subset of C. Assume towards a
contradiction that each set Ci is non-empty. The family (Ci)i∈I has the finite intersection
property: for n ∈ N there is an index j with i1, . . . , in ≤ j. Since the net is decreasing, we have
fi1 , . . . , fin ≥ fj and this leads to

ε ≤ fj(x)− g(x) ≤ fik(x)− g(x), k ∈ {1, . . . , n} ⇒ x ∈
n⋂
k=1

Cik .

It follows that
⋂
i∈I Ci 6= ∅, a contradiction of the fact that fi(x) ↘ g(x). We get Xi = ∅, for

i ≥ i0. �

The following is a well-known theorem in measure theory. A proof can be found, e.g., in [5,
Theorem 2.24, p. 55]. We will need it to prove the next important characterization.

Theorem 1.1.8 (Lusin’s theorem). Let X be a non-empty, compact space, and take µ ∈
MR(X). For each Borel function f on X and each ε > 0, there is a compact subset C of
X such that |µ| (X \ C) < ε and f |C is continuous.

Theorem 1.1.9. Let X be a non-empty, compact space. Then a measure µ ∈M(X) is normal
if and only if µ(C) = 0 for C ∈ KX , where KX denotes the family of compact subsets C of X
such that C◦ = ∅.

Proof.
“⇒” Suppose that µ ∈ N(X). We may suppose that µ ∈ N(X)+. Now take C ∈ KX , and
consider the non-empty set

F =
{
f ∈ CR (X)

∣∣ f ≥ 1C
}
.

Suppose that g = inf F in CR (X). Then g(x) = 0 for x ∈ X \C. If there was x0 ∈ X \C with
g(x0) > 0, we can apply Urysohn’s lemma to the closed sets C and x0. So we get a function
f ∈ F , with f(x0) ≤ g(x0), so g(x0) = 0 and since

X \ C = X \ C◦ = X,

g(x) = 0 for a dense subset. It follows inf F = 0. Now (F ,≤) is a directed set and the net
(f)f∈F is decreasing. Since

µ(C) =
∫
X

1C dµ = lim
f∈F

∫
X

f dµ = inf
f∈F

∫
X

f dµ,

we have µ(C) = 0.
“⇐” Conversely, suppose that µ ∈M(X) and µ(C) = 0 for C ∈ KX . It suffices to suppose that
µ ∈M(X)+. Take (fi)i∈I in C (X)+ with fi ↘ 0. We may suppose that fi ≤ 1 for each i. Set

g(x) = inf
i∈I

fi(x) x ∈ X.
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Then g is a Borel function, since

g(x) < c⇔ ∃i0 : fi0 < c⇒ g−1 (−∞, c) =
⋃
i∈I

f−1
i (−∞, c) (1.2)

the right hand side of Equation (1.2) is open as a union of open sets and so it is a Borel set.
For n ∈ N, set Bn =

{
x ∈ X

∣∣ g(x) > 1
n

}
, so that Bn ∈ BX . For each compact subset C of Bn,

we have C◦ = ∅. To see this observe that Cc ⊇ Bc
n. If we can show that Bc

n is dense the claim
follows. Since Bc

n =
{
x ∈ X

∣∣ g(x) ≤ 1
n

}
, we have to show that for every open set U ⊆ X there

is x0 ∈ U with g(x0) ≤ 1
n . If there was no such x0, then for all i ∈ I, fi(x) > 1

n for all x ∈ U .
Now Urysohn’s lemma applies to show that there is a continuous function fU with fU (x) ≤ 1

n
for x ∈ U and fU (U c) = 0. Now we have

fU ≤ fi, ∀i ∈ I,

a contradiction to fi ↘ 0. So Cc is dense and C◦ = ∅. According to our condition µ(C) = 0.
Thus, since µ is regular, µ(Bn) = 0, and so

µ
({
x ∈ X

∣∣ g(x) > 0
})

= µ

⋃
n∈N

Bn

 = 0,

whence
∫
X g dµ = 0. Hence, it suffices to show that

lim
i∈I

∫
X

fi dµ =
∫
X

g dµ. (1.3)

Take ε > 0. By Lusin’s theorem, Theorem 1.1.8, there is a compact subset K of X with
µ(X \K) < ε and such that g|K ∈ C (K). By Dini’s theorem, Theorem 1.1.7, we know that
limi∈I ‖fi|K − g|K‖K = 0, and so there exists i0 with ‖fi|K − g|K‖K < ε for i ≥ i0. It follows
that ∣∣∣∣∣∣

∫
X

fi − g dµ

∣∣∣∣∣∣ ≤
∫
K

|fi − g| dµ+ 2ε < (‖µ‖ + 2)ε, i ≥ i0

giving Equation (1.3). �

Corollary 1.1.10. Let X be a non-empty compact space, and suppose that µ ∈ M(X). Then
the following are equivalent:

(i) µ ∈ N(X).

(ii) |µ| (B \B◦) = 0 for each B ∈ BX .

(iii) µ(B1) = µ(B2) for each B1, B2 ∈ BX with B14B2 meagre.

Proof. We may suppose that µ ∈M(X)+.
“(i) ⇒ (ii)” Take B ∈ BX . For each ε > 0, there exists an open set U in X with B ⊆ U and
µ(U \B) < ε. Since U \ U ∈ KX , we have µ(U \ U) = 0. Thus

µ(B) ≤ µ(B) ≤ µ(U) = µ(U) ≤ µ(B) + ε,

and so µ(B) = µ(B). By taking complements, it follows that µ(B◦) = µ(B). Hence, µ(B\B◦) =
0.
“(i)⇒ (iii)” We know that µ(B) = 0 for each nowhere dense set B in BX , and so µ(B) = 0 for
each meagre set B in BX . Thus, µ(B1) = µ(B2) whenever B1, B2 ∈ BX with B14B2 meagre.
“(ii), (iii)⇒ (i)” These are immediate from Theorem 1.1.9. �
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There is a connection between measures in M(X).

Definition 1.1.11. Let X be a non-empty, compact space and suppose that µ, ν ∈ M(X).
Then we write µ ⊥ ν if µ and ν are mutually singular, in the sense that there exists B ∈ BX

with |µ| (B) = 0 and |ν| (X \ B) = 0, and µ� ν if |µ| is absolutely continuous with respect to
|ν|, in the sense that |µ| (B) = 0 whenever B ∈ BX and |ν| (B) = 0.
A family F of measures in M(X)+ is singular if µ ⊥ ν whenever µ, ν ∈ F and µ 6= ν.

Remark 1.1.12. The collection of singular families in M(X)+ is ordered by inclusion. With
Zorn’s lemma we see that the collection of singular families of a non-empty subspace F of
M(X)+ has a maximal member that contains any specific singular family in F , a maximal
singular family in F . �

Definition 1.1.13. Let X be a compact space. A measure µ ∈M(X) is supported on a Borel
subset B of X if |µ| (X \B) = 0. The support is denoted by supp µ.

As supp µ is the complement of the union of open sets U in X such that |µ| (U) = 0, it is a
closed subset of X.

1.2 Stonean spaces

Since our main interest is the space C (X), the topology on X will play an important rule. We
will make use of a certain seperation property.

Definition 1.2.1. A topological space X is extremely disconnected if the closure of every open
set is itself open.

Remark 1.2.2. Equivalently, extremely disconnected means if pairs of disjoint open subsets of
X have disjoint closure. To see this let U ∈ T , then U and U

c are disjoint open sets. Since
every two disjoint open sets have disjoint closures we get

U ∩X \ U = ∅ ⇒ X \ U ⊆ X \ U,

which shows that U c is closed and U is open. Conversely take disjoint open sets U and V . Since
V is open for any x ∈ V , it is an open neighbourhood of x disjoint from U and so x /∈ U . It
follows that U ∩ V = ∅. �

Definition 1.2.3. A compact, extremely disconnected space is a Stonean space.

The definition of a Stonean space seems artificial but there are natural examples of topological
spaces which do have this seperation property.
Example 1.2.4. Let B be a complete Boolean algebra. The Stone space is the family of ultrafilters
on B, denoted by St(B). We define a topology on St(B) by taking the sets

Sb =
{
p ∈ St(B)

∣∣ b ∈ p}, b ∈ B

as a base of the topology. With this topology the Stone space is a Hausdorff, compact and
extremely disconnected topological space with clopen basis sets Sb.
To see this take p 6= q ∈ St(B). Now there is x ∈ p with x /∈ q. By definition of Sx, we
get q ∈ St(B) \ Sx, and since these are ultrafilters, there exists y ∈ q with x ∧ y = 0, and so
q ∈ Sy ⊆ St(B) \ Sx. These are disjoint open neighbourhoods of p respectively q and since Sx
is open and its complement is a neighbourhood of every element, Sx is clopen.
For a Boolean algebra we have St(B) = S1. Taking Γ ⊆ B such that

{
Sa
∣∣ a ∈ Γ

}
is a cover of S1

9



with basic sets, we may suppose that Γ is closed under finite union. We claim that necessarily
1 ∈ Γ. For otherwise, a′ 6= 0 for each a ∈ Γ. Since

n∧
i=1

a′i =
(

n∨
i=1

ai

)′
6= 0, n ∈ N

the family is contained in some p ∈ S1. But p /∈
⋃
a∈Γ Sa, a contradiction. So 1 ∈ Γ and S1 is

compact.
Finally, we have to check the seperation property from Definition 1.2.1. Take an open set U .
Since Sx for x ∈ B form a base of the open set, we get U =

⋃
b∈Γ Sb for a subset Γ of B. Since

B is complete, a =
∨
b∈Γ b exists. We claim that U = Sa. Now take p ∈ Sa. For each c ∈ p,

we have c ∧ a 6= 0, and hence c ∧ b 6= 0 for some b ∈ Γ, for otherwise we would have b ≤ c′ for
b ∈ Γ, and hence a ≤ c′. Thus Sc ∩ U 6= ∅. This shows that Sa ⊆ U . The reverse inclusion is
immideate and since Sa is open, U is open and St(B) is extremely disconnected. �

Definition 1.2.5. A subset U of a topological space X is regular-open if U =
(
U
)◦
.

Proposition 1.2.6. Let X be a Stonean space. Then every regular-open set in X is clopen,
and, for every B ∈ BX , there is a unique set C ∈ CX with B4C is meagre, where CX denotes
the family of open and compact subsets of X.

Proof. Let U be a regular-open set. We have

U ∈ T ⇒ U ∈ T ⇒ U =
(
U
)◦

= U.

For the second part, let F be the family of subsets of X that differ from a clopen set by a
meagre set and since X is compact these sets are compact and open. If B ∈ F and C is a
clopen set such that C4B is meagre, then Bc and Cc differ by this same set. As Cc is clopen,
Cc ∈ F . Each open set U lies in F , since U is clopen and U \ U is nowhere dense. If Bn ∈ F
for n ∈ N and Cn is a clopen set such that Bn4Cn is meagre, then( ∞⋃

n=1
Bn

)
4
( ∞⋃
n=1

Cn

)
⊆
∞⋃
n=1

(Bn4Cn) .

As
⋃∞
n=1 (Bn4Cn) is meagre and

⋃∞
n=1Cn is open,

⋃∞
n=1Bn ∈ F . Hence BX ⊆ F and F

contains the Borel subsets of X. �

The second part of the proof of Proposition 1.2.6 is taken from [4, Lemma 5.2.10, p.322].

Definition 1.2.7. A set U is regular-closed if its complement is regular-open.

Remark 1.2.8. Equivalently the equality U = U◦ holds:(
U◦
)c

=
((
U c
)c
)c

=
(
U c
)◦

= U c.

It is sometimes easier to work with this property. �

The properties of the topological space X have also effect on the measures on this space:

Proposition 1.2.9. Let X be a non-empty, compact space and suppose that µ ∈ N(X). Then
supp µ is a regular-closed set.
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Proof. Since supp µ = supp |µ|, we may suppose that µ ∈ N(X)+. Set A = supp µ, a closed
set, and set U = A◦, so that U ⊆ A. Since A \ U is nowhere dense, µ(A \ U) = 0. Thus
µ(X \ U) = 0, and so, by the definition of supp µ, we have X \ U ⊆ X \A. Hence U = A, and
A is regular-closed. �

Corollary 1.2.10. Let X be a Stonean space, and suppose that µ ∈ N(X)+ \ {0}. Then:

(i) The space supp µ is clopen in X, and hence Stonean.

(ii) For each B ∈ BX , there is a unique set C ∈ CX with C ⊆ supp µ and µ(B4C) = 0.

Proof.
(i) In a Stonean space, every regular-closed set is clopen. Since the closure of a set in the
subspace topology is just

U
T |supp µ = U

T ∩ supp µ

and an open set is obtained in the same way, UT |supp µ is open in supp µ.
(ii) By (i) supp µ is a clopen subset of X and µ(X \ supp µ) = 0, and so we may suppose that
X = supp µ. Take B ∈ BX . By Proposition 1.2.6, there is a unique C ∈ CX with B4C meagre,
and then µ(B4C) = 0. Suppose that C1, C2 ∈ CX are such that µ(B4C1) = µ(B4C2) = 0.
Then C14C2 ⊆ (B4C1) ∪ (B4C2), so that µ(C14C2) = 0. Since C14C2 is an open set in
X = supp µ and µ(U) > 0 for all non-empty open subsets U of X, it follows that C14C2 = ∅,
i.e., C1 = C2. �

Proposition 1.2.11. Let X be a Stonean space, and suppose that µ, ν ∈ N(X). Then:

(i) supp ν ⊆ supp µ if and only if ν � µ.

(ii) µ ⊥ ν if and only if supp µ ∩ supp ν = ∅.

Proof.
(i) Always supp ν ⊆ supp µ when ν � µ. For the converse, we may suppose that µ, ν ∈ N(X)+.
By Proposition 1.2.6, for each B ∈ BX , there exists C ∈ CX with B4C meagre. Now suppose
that B is a µ-nullset. Then by Corollary 1.2.10, C is also a µ-nullset, and so C ∩ supp ν = ∅,
whence ν(B) = ν(C) = 0. This shows that ν � µ.
(ii) Clearly µ ⊥ ν when supp µ ∩ supp ν = ∅. Next suppose that µ ⊥ ν, and set U =
supp µ ∩ supp ν, so that U is an open set. Then ν|U ⊥ µ and ν|U � µ. Thus ν|U = 0, and
hence U = ∅. �

Definition 1.2.12. A lattice is Dedekind complete if every non-empty subset which is bounded
above has a supremum and every non-empty subset which is bounded below has an infimum.

If the space C (X) satisfies this completeness property, we can infer that the space X has our
required seperation property.

Theorem 1.2.13. Let X be a non-empty, compact space. Then X is Stonean if and only if
C (X) is Dedekind complete.

Proof.
“⇒” Suppose that CR (X) is Dedekind complete, and let U be an open set in X. Take F to be
the family of functions f ∈ CR (X) such that

F =
{
f ∈ CR (X)

∣∣ f(x) = 0 for x ∈ X \ U , 0 ≤ f ≤ 1
}
.
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Then since C (X) is Dedekind complete, F has a supremum, say f0 ∈ CR (X). To determine
this supremum we make use of Urysohn’s lemma. We claim that f0(x) = 1 for x ∈ U and
f0(x) = 0 for x ∈ X \U . To see this take the closed sets {x} and U c. Then there is fx ∈ C (X)
with fx(x) = 1, fx(X \U) = 0 and 0 ≤ fx ≤ 1. Now fx ∈ F and fx ≤ f0. Next take x ∈ X \U .
Again with Urysohn’s lemma we get g ∈ C (X) with g({x}) = 0 and g(U) = 1. This leads to

f ∈ F ⇒ f = fg ≤ g

and sup F ≤ g. Hence we get f0 = 1U . As X \ U is closed as the preimage of {0} under the
continuous function f0, it follows that U is open and X is Stonean.
“⇐” Conversely, suppose that X is Stonean, and let F be a family in C (X)+ which is bounded
above, say by 1. For r ∈ [0, 1], define

Ur =
⋃
f∈F

{
x ∈ X

∣∣ f(x) > r
}
.

Then Ur is open in X, and so Vr := Ur is also open in X. Clearly V1 = ∅. Define

g(x) = sup
x∈Ur

r.

If g(x) ∈ (r, s), then x ∈ Vr \ Vs, and, if x ∈ Vr \ Vs, then g(x) ∈ [r, s]. Take x0 ∈ X, and take
a neighbourhood V of g(x0). Then there exist r, s ∈ R with g(x0) ∈ (r, s) ⊆ [r, s] ⊆ V . Since
Vr \ Vs is an open set and

x0 ∈ Vr \ Vs ⊆ g−1([r, s]) ⊆ g−1(V ),

we see that g is continuous at x0. Thus g ∈ CR (X).
Now take h ∈ CR (X) with h ≥ f for f ∈ F . Assume that there exists x0 ∈ X with h(x0) <
g(x0). Then h(x0) < r for some r with x0 ∈ Vr. Let W be a neighbourhood of x0 with h(x) < r
for x ∈ W . Then there exists x ∈ W with f(x) > r for some f ∈ F , a contradiction. Thus
h ≥ g, and so g = sup F . We have shown that CR (X) is Dedekind complete. �

We will make use of Theorem 1.2.13 in the following:
Example 1.2.14. A character on an Banach algebra Z is a homomorphism from Z to C. The
set of all characters on Z is denoted by ΦZ , this is the character space of Z.
For a locally compact space Γ and a measure µ ∈ P (Γ), the character space of the C∗-algebra
L∞(Γ, µ) is denoted by Φµ. Since L∞(Γ, µ) is commutative the Gelfand transform

Ψ :
{
L∞(Γ, µ)→ C (Φµ)
f 7→ f̂

is an isomorphism and moreover, a lattice isometry. Since L∞(Γ, µ) is Dedekind complete, it
follows that C (Φµ) is also Dedekind complete. Now Theorem 1.2.13 applies to show that Φµ

is a Stonean space. �

Theorem 1.2.15 (Baire’s theorem). If X is a compact Hausdorff space then the intersection
of every countable collection of dense open subsets of X is dense in X.

Proof. Suppose (Vn)n∈N are dense open subsets of X. Let U0 be an arbitrary non-empty open
set in X. If n ≥ 1 and an open non-empty Un−1 has been chosen, then there exists an open
non-empty Un since Vn is dense with

Un ⊆ Vn ∩ Un−1.
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Since (Un)n∈N has the finite intersection property, the set

K =
∞⋂
n=1

Un

is non-empty and we have K ⊆ U0 and K ⊆ Vn for each n. Hence U0 intersects
∞⋂
n=1

Vn. �

Theorem 1.2.16. Let X be a Stonean space, and let U be dense a or open subspace of X. Take
a compact space L and f ∈ C(U,L). Then there exists F ∈ C(U,L) such that F |U = f .

Proof. Take x ∈ U , and let (xi)i∈I and (yj)j∈J be nets in U with limi∈I xi = limj∈J yj = x.
Then the nets (f(xi))i∈I and (f(yj))j∈J have accumulation points, say x1 and x2, respectively,
in L. Assume towards a contradiction that x1 6= x2, and take open neighbourhoods Nx1 and
Nx2 of x1 and x2, respectively, such that Nx1 ∩Nx2 = ∅. Then the sets{

y ∈ U
∣∣ f(y) ∈ Nx1

}
and

{
y ∈ U

∣∣ f(y) ∈ Nx2

}
are disjoint, relatively open subsets of U , and so they have the form U ∩ V and U ∩ W ,
respectively, for some open subsets V and W in X. Since U = X, we have V ∩W = ∅, and
since X is Stonean V ∩W = ∅. In the case where U is open, U ∩ V ∩ U ∩W = ∅. However
x ∈ U ∩ V ∩U ∩W . Thus x1 = x2. It follows that (f(xi))i∈I converges to a unique limit F (x),
in L, and that the limit is independent of the net (xi)i∈I . Now F is the required extension of
f . �

Corollary 1.2.17. The complement of a meagre set M is dense in X.

Proof. M can be written as the countable union of nowhere dense sets (Mn)n∈N. Taking com-
plements we get

M c =
( ∞⋃
n=1

Mn

)c

⊇
( ∞⋃
n=1

Mn

)c

=
(( ∞⋃

n=1
Mn

)◦)c

.

And since the union of sets with empty interior has empty interior, M c is dense. �

Remark 1.2.18. Let X be a non-empty, compact space, and define

MX :=
{
f ∈ Bb(X)

∣∣ {x ∈ X ∣∣ f(x) 6= 0
}
is meagre

}
.

Then MX is a closed ideal in the C∗-algebra Bb(X):
Set

mf := {x ∈ X : f(x) 6= 0} = f−1({0})c.

Take g ∈ Bb(X) and f ∈ MX , we have to show that the set mfg is meagre. Now since every
subset of a meagre set is meagre and

mc
f = f−1({0}) ⊆ fg−1({0}) = mc

fg,

it follows that mfg ⊆ mf . So fg ∈MX .
Secondly we have to show that the sum of two functions f, g ∈MX is again inMX . This follows
because mf+g ⊆ mf ∪mg and the union of meagre sets is meagre.
At last we have to show that MX is closed. Let fn → f with fn ∈MX . We have to show that
mf is meagre. Take x ∈ mf , then |f(x)| = α > 0. Now let n0 be sufficiently large so that
|f(x)− fn0(x)| < α

2 . Then x ∈ mfn for n ≥ n0 and

mf ⊆
⋃
n∈N

mfn .

The countable union of meagre sets is again meagre and so mf is meagre. �
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Definition 1.2.19. Let X be a non-empty, compact space. Then

D(X) = Bb(X)/MX

is the Dixmier algebra of X.

Theorem 1.2.20. Let X be a non-empty, Stonean space. Then D(X) and C (X) are C∗-
isomorphic.

Proof. First consider a simple bounded Borel function f of the form f =
∑n
i=1 αi1Bi , where

α1, . . . , αn ∈ C and B1, . . . , Bn ∈ BX are pairwise disjoint. As we already know, there exist
C1, . . . , Cn ∈ CX such that Bi4Ci is meagre. Clearly, the sets C1, . . . , Cn are pairwise disjoint.
We define

g =
n∑
i=1

αi1Ci .

We have g ∈ C(X) since

Ci ∈ CX ⇒ ∃ gi ∈ C (X) : gi(Ci) ⊆ {1}, gi(Cc
i ) ⊆ {0} ⇒ gi ≡ 1Ci

and so the set
{
x ∈ X

∣∣ f(x) 6= g(x)
}
is meagre.

Now consider a general function f ∈ Bb(X). There is a sequence (fn)n∈N of simple, bounded
Borel functions that converges uniformly to f on X. For each n ∈ N, choose gn ∈ C(X) such
that Mn :=

{
x ∈ X

∣∣ f(x) 6= gn(x)
}
is a meagre subset of X. The set

M :=
⋃
n∈N

Mn

is also meagre in X, and gn(x) = fn(x) for all n ∈ N and x ∈ X \M , and so (gn)n∈N is a Cauchy
sequence in (C (X \M) , ‖·‖X\M ). The sequence converges uniformly to a function, say g, in
C (X \M). Now by Theorem 1.2.15, X \M is dense in X and by Theorem 1.2.16, g has an
extension in C (X).
For each f ∈ Bb(X), take π(f) to be the unique g ∈ C (X) and consider the map

π : Bb(X)→ C (X) .

Clearly the restriction of π to the simple functions is a ∗-homomorphism; since the simple
functions are dense in Bb(X) and π(f) = f, f ∈ C (X), the map π is a C∗-homomorphism that
is a bounded projection from Bb(X) to C (X). Clearly ker π = MX , and so the map

π : D(X) = Bb(X)/MX → C (X) .

is a C∗-isomorphism. �

Corollary 1.2.21. Let X be a Stonean space, and suppose that µ ∈ N(X)∩ P (X) is a strictly
positive measure. Then every equivalence class in L∞(X,µ) contains a continuous function, the
C∗-algebras (L∞(X,µ), ‖.‖∞) and (C (X) , ‖.‖X) are C∗-isomorphic.

Proof. By Theorem 1.2.20, there is a C∗-isomorphism π : D(X) → C (X). However µ(B) = 0
for each meagre set B ∈ BX by Corollary 1.1.10 and so ker π is exactly the kernel of the
projection of Bb(X) onto L∞(X,µ). �
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1.3 The complexification of CR (X)
Remark 1.3.1. Often it is easier to work with real Banach spaces. Since we are interested in the
complex Banach space C (X), we want to infer from the real to the complex case.
We give a sketch of how the complexification transfers to the dual space: Let (Z, ‖.‖) be a real
Banach lattice with dual Z ′ and ZC = Z ⊕ iZ its complexification. If we want to endow this
complexification with a fitting norm that respects the order, for z = x+ iy, define

|z| = |x+ iy| = sup
0≤θ≤2π

x cos θ + y sin θ.

Then the norm
‖z‖ = ‖|z|‖

makes ZC to a Banach space. At first we can identify Z ′ as a real-linear subspace of Z ′C if we
define λ(x+ iy) = λ(x) + iλ(y) for λ ∈ Z ′, x, y ∈ Z. And for each λ ∈ Z ′C, there exist λ1 and λ2
in Z ′ such that λ(x) = λ1(x) + iλ2(x) for x ∈ Z and so Z ′C is isomorphic as a complex Banach
space to the complexification Z ′ ⊕ iZ ′. �

In the following section we will deal with this complexification. We want to show that C (X) is
a dual space of a Banach space if and only if CR (X) is a dual space.

Lemma 1.3.2. Let X be a compact space, and let µ ∈ M(X)+. Take f, g ∈ L1
R(µ) and ε > 0.

Suppose that ‖f + ig‖1 = 1 and that 1− ε < ‖f‖1 ≤ 1. Then ‖g‖1 ≤
√

2ε.

Proof. Take a, b > 0. Since
√

1 + t ≤ 1 + t

2 , t ≥ 0,

we have

a2 + b2 ≥ a2

√
1 + b2

a2 + b2

2 = a
√
a2 + b2 + b2

2 ⇔
√
a2 + b2 ≥ a+ b2

2
√
a2 + b2

.

Set h = g2√
f2+g2

. It follows that

1 =
∫
X

√
f2 + g2 dµ ≥

∫
X

|f | dµ+ 1
2

∫
X

h dµ,

and so
∫
X
h dµ < 2ε. We then have

∫
X

|g| dµ =
∫
X

|g| (f2 + g2)
1
4

(f2 + g2)
1
4

dµ ≤

∫
X

h dµ

 1
2
∫
X

√
f2 + g2 dµ

 1
2

and so ‖g‖1 ≤
√

2ε. �

Corollary 1.3.3. Let X be a compact space, and let µ, ν ∈ MR(X). Take ε > 0, and suppose
that ‖µ+ iν‖ = 1 and that 1− ε < ‖µ‖ ≤ 1. Then ‖ν‖ ≤

√
2ε.

Proof. Consider the measure
λ = |µ|+ |ν| ∈M(X)+.

Then µ = f dλ and ν = g dλ for some f, g ∈ L1
R(λ) such that ‖µ‖ = ‖f‖1 and ‖ν‖ = ‖g‖1 and

the claim follows from Lemma 1.3.2. �
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Proposition 1.3.4. Let Z be a Banach space. Then ι(Z) is weak∗-dense in Z ′′.

Proof. Since Z ′′ is endowed with the weak∗-topology we have (Z ′′, σ(Z ′′, ι′(Z ′)))′ = ι′(Z ′). We
know from a corollary of the Hahn-Banach theorem [7, Corollary 5.2.6, p.79] that

ι(Z) =
⋂

f∈ι′(Z′)
ι(Z)⊆kerf

kerf.

We have to show that 0 is the only element with ι(Z) ⊆ ker f .

ι′(f)[ι(z)] = ι(z)[f ] = f(z) = 0, ∀z ∈ Z

Hence f ≡ 0. �

Proposition 1.3.5. Let X be a non-empty, compact space. Then the Banach space C (X)
is isometrically the dual of a Banach space if and only if the real Banach space CR (X) is
isometrically the dual of a real Banach space.

Proof.
“⇐” Suppose CR (X) is isometrically isomorphic to Y ′ for a real Banach space Y , and regard
Y as a closed subspace of CR (X)′. Now set

YC = Y ⊕ iY

so that YC is a closed subspace of C (X)′ and we have

C (X)′ ∼= Y ′′ ⊕ iY ′′ = Y ′′C

and YC is a Banach space. It must yet be shown that Y ′C ∼= C (X):
Take f ∈ C (X) and set

λ(y) = 〈f, y〉 , y ∈ YC.

Then λ ∈ Y ′C with ‖λ‖ ≤ ‖f‖, and the map

S :
{
C (X)→ Y ′C
f 7→ λ

is a linear contraction. Take λ ∈ Y ′C, and set

λ1 = <(λ)|Y , λ2 = =(λ)|Y

so that λ1 and λ2 are bounded real-linear functionals on Y with λ = λ1 + iλ2. Thus there exist
unique elements x and z in CR (X) such that

λ1(g) = 〈x, g〉 , λ2(g) = 〈z, g〉

for g ∈ Y . Set h = x+ iz ∈ C (X). Then for each g1, g2 ∈ Y , we have

λ(g1 + ig2) =(λ1 + iλ2)(g1 + ig2) = 〈x, g1〉 − 〈z, g2〉+ i(〈z, g1〉+ 〈x, g2〉)
= 〈x+ iz, g1 + ig2〉 = 〈h, g1 + ig2〉

and so λ = S(h). Thus S is a surejection.
Now fix ε > 0. By Proposition 1.3.4 we see, that YC is weak∗-dense in Y ′′C and there exists
k ∈ YC with ‖k‖ = 1 and |〈f, k〉| > ‖f‖− ε, and hence ‖λ‖ > ‖f‖− ε. This holds for each ε > 0,
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and so ‖λ‖ ≥ ‖f‖. So S is an isometric isomorphism.
“⇒” Now suppose C (X) ∼= Y ′ where Y is a Banach space. We regard Y as a closed subspace
of Y ′′ = M(X). Define

YR =
{
<(µ) ∈MR(X)

∣∣µ ∈ Y }.
Then YR is a real-linear subspace of MR(X), and <(µ),=(µ) ∈ YR whenever µ ∈ Y , so that
Y = YR ⊕ iYR. For each λ ∈ Y ′R, define

λ(µ+ iν) = λ(µ) + iλ(ν), µ, ν ∈ YR.

Then λ is a continuous, complex-linear functional on Y with

‖λ‖ ≤
∥∥∥λ∥∥∥ ≤ √2 ‖λ‖ .

Thus there exist unique elements f, g ∈ CR (X) with

λ(µ+ iν) = 〈f + ig, µ+ iν〉 , µ+ iν ∈ Y.

It follows that
λ(µ) = 〈f, µ〉 − 〈g, ν〉 and λ(ν) = 〈f, ν〉+ 〈g, µ〉 .

Define

T :
{
Y ′R → CR (X)
λ 7→ f.

Then T is a continuous, real-linear map such that

‖T (λ)‖X ≥ ‖λ‖ . (1.4)

Take f ∈ CR (X) and define
λ(µ) = 〈f, µ〉 , µ ∈ YR.

Then λ ∈ Y ′R is such that ‖λ‖ ≤ ‖f‖X and T (λ) = f . This shows T is a surjection. To show
injectivity we take λ ∈ Y ′R with T (λ) = 0, and assume towards a contradiction that λ 6= 0.
Then λ 6= 0, and so we may suppose that

∥∥∥λ∥∥∥ = 1. Now there exists g ∈ CR (X) with ‖g‖X = 1
such that

λ(µ) = −〈g, ν〉 and λ(ν) = 〈g, µ〉 , µ+ iν ∈ Y.

Choose x ∈ X with |g(x)| = 1, without loss of generality g(x) = 1. Since the closed unit ball
BY

1 (0) is weak∗-dense in BM(X)
1 (0), and so for each ε > 0, there exists µ0 + iν0 ∈ BY

1 (0) with
|〈g, δx − µ0 + iν0〉| < ε. Thus,

|1− 〈g, µ0〉| ≤ |1− 〈g, µ0 + iν0〉| < ε.

Since
1− ε < ‖µ0‖ ≤ 1,

it follows from Corollary 1.3.3 that

1− ε ≤ |〈g, µ0〉| = |λ(ν0)| ≤ ‖ν0‖ ≤
√

2ε,

a contradiction for some ε > 0. Thus λ = 0 and T is injective. Finally we have to show that T
is an isometry and since Theorem 0.0.8, it remains to show that

‖T (λ)‖X ≤ ‖λ‖ , λ ∈ Y ′R.
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Take f ∈ CR (X). Since X is compact there is x0 ∈ X with |f(x0)| = ‖f‖X . For each ε > 0,
there exists µ+ iν ∈ BY

1 (0) with

|f(x0)− 〈f, µ+ iν〉| < ε.

We have µ ∈ YR with ‖µ‖ ≤ 1. Take the unique λ with T (λ) = f , so that, as above, λ(µ) =
〈f, µ〉. Then

‖λ‖ ≥ |〈f, µ〉| > |f(x0)| − ε = ‖f‖X − ε = ‖T (λ)‖X − ε,

and so ‖T (λ)‖X ≤ ‖λ‖ + ε. This holds true for each ε > 0, and so ‖T (λ)‖X ≤ ‖λ‖ and so T is
an isometry. �

1.4 Hyper-Stonean spaces

Definition 1.4.1. Let X be a non-empty, compact space. Then

WX :=
⋃

µ∈N(X)
supp µ.

The space X is hyper-Stonean if X is Stonean and WX is dense in X.

Since the restriction of a normal measure to a Borel set is a normal measure, for each non-empty,
open subset U of X, there exists µ ∈ N(X) ∩ P (X) with supp µ ⊆ U .

The following theorem will characterize Hyper-Stonean spaces by a certain measure:

Definition 1.4.2. A positive measure µ on the Borel sets of a Stonean space X is a category
measure if

(i) µ is regular on closed subsets of finite measure;

(ii) every non-empty, clopen set in X contains a clopen set U with 0 < µ(U) <∞;

(iii) every nowhere dense Borel set has measure zero.

Proposition 1.4.3. Let X be a Stonean space. Then X is hyper-Stonean if and only if there
exists a category measure on X.

Proof.
“⇒” Suppose that X is hyper-Stonean. Consider a maximal family (µi)i∈I of measures in
N(X)+ with pairwise-disjoint supports, and set

µ =
∑
i∈I

µi,

so that µ is a positive measure on BX . Take C to be a clopen subset of X. Then

C0 := C ∩ supp µi0 6= ∅

for some i0 because of the maximality of the family (µi)i∈I and the assumption that X is
hyper-Stonean. Since X is Stonean, supp µi0 is clopen, and so C0 is a clopen subset of C with

0 < µ(C0) = µi0(C0) <∞.

Clearly µ(B) = 0 for each nowhere dense Borel set B because µi(B) = 0 for each such B and
each i. Thus, µ is a category measure.
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“⇐” Conversely, suppose that µ is a category measure on X. For an arbitrary clopen set C in
X, take some clopen C0 ⊆ C with 0 < µ(C0) <∞, and set

µC = µ|C0 .

By our characterization of normal measures, we have µC ∈ N(X)+ and supp µC ⊆ C. Since C
was arbitrary, X is hyper-Stonean. �

Remark 1.4.4. As we have seen in Example 1.2.14, the character space of a C∗-algebra is an
interesting tool. To describe the character space of C (X), let us remark that the kernel of a
character is a maximal modular ideal and on the other hand every maximal modular ideal is
the kernel of a character. Now in this case there is an easy description of those sets. Define

εx :
{
C (X)→ C
f 7→ f(x)

called the evaluation character at x, and

Mx :=
{
f ∈ C (X)

∣∣ f(x) = 0
}

= ker εx.

It can be shown that these are all characters. Finally we can identify the character space of
C (X) with X:

ΦC(X) = X.

So ifX is Stonean and we take a normal measure µ, we get by Corollary 1.2.21, that Φµ = ΦC(X)
is homeomorphic to X. �

Definition 1.4.5. Let (Zi, ‖.‖i)i∈I be a family of Banach spaces, defined for each i in a non-
empty index set I. Then set⊕

∞
Zi =

{
(zi)i∈I

∣∣ ‖(zi)i∈I‖ = sup
i∈I
‖zi‖i <∞

}
and ⊕

p

Zi =
{
(zi)i∈I

∣∣ ‖(zi)i∈I‖ =
(∑
i∈I
‖zi‖pi

) 1
p

<∞
}
.

These are Banach spaces.

Remark 1.4.6. Let q be the conjugate index to p, then similar to the Lp-spaces the duality(⊕
p

Zi

)′
=
⊕
q

Z ′i,

holds. �

Remark 1.4.7. As a preparation for Theorem 2.1.1 we want to sum up: LetX be a Stonean space
such that N(X) 6= {0}, and take (µi)i∈I to be a maximal singular family in N(X)∩P (X), where
the measures µi are distinct. For each i ∈ I, set Si = supp µi, so that, each Si is Stonean, and
hence by Corollary 1.2.21, Φµi = ΦC(Si) is homeomorphic to Si. (Si)i∈I is a pairwise-disjoint
family of clopen subsets of X. We set

UF =
⋃
i∈I

supp µi.
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Then UF is an open subset of X. In the case where X is hyper-Stonean, UF is dense in X. For
the family of compact spaces (Si)i∈I set

A =
⊕
∞
C(Si).

Take j ∈ I, and write δj for the element (fi)i∈I in A such that fj = 1Sj and fi = 0 for j 6= i.
Take j ∈ I and x ∈ Sj . Then the map

φx :
{

A → C
(fi)i∈I 7→ fj(x)

is a character on A , and the map

ψ :
{
Si → ΦA

x 7→ φx

is a homeomorphism onto a compact subspace of ΦA , which we identify with Si. Clearly
Si ∩ Sj = ∅ when i, j ∈ I with i 6= j. For each i ∈ I, we have Si =

{
φ ∈ ΦA

∣∣φ(δi) = 1
}
, and so

Si is clopen in ΦA . Further, UΦA
=
⋃
i∈I Si and UΦA

is a dense, open subspace of ΦA . �

We have to consider a generalization of σ-finite measures:

Definition 1.4.8. A measure space (Γ,B, µ) is decomposable if there is a subfamily U of B
that partitions X such that:

(i) 0 ≤ µ(U) <∞, U ∈ U .

(ii) µ(B) =
∑
U∈U µ(U ∩B) for each B ∈ B with µ(B) <∞.

(iii) B ∈ B for each B ⊆ Γ such that B ∩ U ∈ B for U ∈ U .

Not all properties that are true for σ-finite measures hold true for decomposable measures. The
duality of the spaces L1 and L∞, thus, still applies. The proof of the following can be found in
[3, Theorem 20.19, p. 351].

Theorem 1.4.9. Let (Γ,B, µ) be a decomposable measure space. Then
(
L1(Γ, µ), ‖.‖1

)′ is
isometrically isomorphic to (L∞(Γ, µ), ‖.‖∞).

Example 1.4.10. Let X be a non-empty, Stonean space and let (µi)i∈I be a maximal singular
family in N(X)∩P (X) and set Si = supp µi. Now take Γ to be the union of the family (Si)i∈I
and set

µ =
∑
i∈I

µi.

Then µ is a decomposable measure as in Definition 1.4.8:
(i) Since µi(X) = 1 for all i ∈ I, it follows that 0 ≤ µ(Si0) = µi0(Si0) ≤ µi0(X) <∞.
(ii) The family (Si)i∈I consits of pairwise disjoint sets, so

µ(B) =
∑
i∈I

µ(B ∩ Si) =
∑
i∈I

µi(B).

(iii) This is trivial. �
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2 C (X) as dual space of a Banach space

2.1 Dual space theorem

Theorem 2.1.1. Let X be a non-empty compact space. Then the following statements are
equivalent.

(i) C (X) is isometrically a dual space;

(ii) there is a C∗-isomorphism

T :

f 7→ f |Si
C (X)→

⊕
∞
L∞(Si, µi)

where (µi)i∈I is a maximal singular family in N(X) ∩ P (X) and we are setting Si =
supp µi, i ∈ I;

(iii) the map T : C (X)→ N(X)′ defined by

(Tf)(µ) = 〈f, µ〉 =
∫
X

f dµ

is an isometric isomorphism, and so C (X) ∼= N(X)′.

(iv) X is Stonean and, for each f ∈ C (X)+ with f 6= 0, there exists µ ∈ N(X)+ with
〈f, µ〉 6= 0;

(v) X is hyper-Stonean;

(vi) X is Stonean and there exists a category measure on X;

(vii) there is a locally compact space Γ and a decomposable measure µ on Γ such that C (X)
is C∗-isomorphic to L∞(Γ, µ).

Proof.
We are going to establish the following implications:

(iii)

(vi) (v) (ii) (i)

(vii) (iv)

“(ii)⇒ (i)” This is trivial.
“(iii)⇒ (i)” This is trivial.
“(i) ⇒ (iv)” By Proposition 1.3.5, there exists a real-linear subspace Y of MR(X) with Y ′ =
CR (X). The space (BCR(X)

1 (0), σ(CR (X) , Y )) is compact. Since the map

ψ :
{
f 7→ 1

2(1 + f)
B
CR(X)
1 (0)→ B

C(X)
1 (0)+
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is a bijection which is a homeomorphism with respect to the weak∗-topology and so BC(X)
1 (0)+ is

compact as the continuous image of a compact set. By the Krein-Šmulian theorem [7, Theorem
6.3.4, p.121], the positive cone is closed. Take f ∈ CR (X)\C (X)+. Then, by the Hahn-Banach
theorem, there exists

λ ∈ (CR (X) , σ(CR (X) , Y ))′ = Y

with ∫
X

f dλ < inf
g∈CR(X)+

∫
X

g dλ.

It cannot be that ∫
X

g dλ < 0

for some g ∈ CR (X)+: indeed this would imply that∫
X

ng dλ <

∫
X

f dλ

for some n ∈ N, a contradiction, and so

inf
g∈CR(X)+

∫
X

g dλ = 0.

Thus λ ∈ Y +. It follows that, for each f ∈ CR (X), we have f ≥ 0 if and only if

0 ≤
∫
X

f dλ, λ ∈ Y +.

Let (fi)i∈I be an increasing net in B
CR(X)+

1 (0). Then (fi)i∈I has an accumulation point, say
f0, in the unit ball of CR (X)+ endowed with σ(CR (X) , Y )). By passing to a subnet we may
suppose that limj∈J fij = f0 with respect to the weak*-topology. For each λ ∈ Y +, the net
(
∫
X fi dλ)i∈I is increasing and bounded. So it converges to the limit of the subnet, and hence

to
∫
X f0 dλ, and so ∫

X

fi dλ ≤
∫
X

f0 dλ, i ∈ I.

It follows that fi ≤ f0 for i ∈ I. Suppose that g ∈ C (X)+ with fi ≤ g for all i ∈ I. Then∫
X

fi dλ ≤
∫
X

g dλ, λ ∈ Y +,

for each i ∈ I, and so ∫
X

f0 dλ ≤
∫
X

g dλ, λ ∈ Y +.

This implies that f0 ≤ g and hence that f0 = supi∈I fi. Thus C (X) is Dedekind complete, thus
X is a Stonean space.
Next suppose that µ ∈ Y and gi ↘ 0 in CR (X). Then

1 = sup
i∈I

(1− gi)
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and we know from the first part of the proof that 1− gi
w∗→ 1, hence we get

lim
i∈I

∫
X

gi dµ = 0.

This shows that µ is normal. Thus, Y ⊆ N(X). For each f ∈ C (X)+ with f 6= 0, there exists
µ ∈ Y + with ∫

X

f dµ 6= 0,

since Y + ⊆ N(X)+.
“(iv) ⇒ (v)” Let U be a non-empty, open subset of the Stonean space X. Then there exists
f ∈ C (X)+ with f 6= 0 such that supp f ⊆ U . By (iv), there exists µ ∈ N(X)+ with∫

X

f dµ 6= 0.

Clearly supp µ ∩ U 6= ∅. This shows that WX is dense in X, and so X is hyper-Stonean.
“(v)⇔ (ii)” Since X is Stonean and UF , from Remark 1.4.7, is dense in X, the map

ψ :
{
f 7→ f |UF

C (X)→ Cb(UF )

is a unital C∗-isomorphism. The map

φ :

f 7→ f |Si
Cb(UF )→

⊕
∞
C(Si)

is clearly a unital C∗-isomorphism. For each i ∈ I, the measure µi is normal, and so L∞(Si, µi) =
C(Si).
“(ii) ⇒ (iii)” Since (ii) ⇒ (i) ⇒ (iv), the space X is Stonean, and the spaces Si are pairwise
disjoint. Set Y =

⊕
1
L1(Si, µi), so that Y ′ =

⊕
∞
L∞(Si, µi). The map

T ′ : Y ′′ →M(X)

is an isometric isomorphism. We will show that T ′ maps Y onto N(X). Take y = (yi)i∈I in Y
and set

λ = T ′y ∈M(X).

Take f ∈ C (X), and, for each i, set fi = f |Si , so that∫
X

f dλ = 〈f, λ〉 = 〈Tf, y〉 =
∑
i∈I

∫
Si

fiyi dµi, (2.1)

where we note that ∫
Si

fiyj dµi = 0, i 6= j.

Take C ∈ KX . Then, for each i ∈ I, we have C∩Si ∈ KX and µi ∈ N(X), and so µi(C∩Si) = 0.
By Equation (2.1) with f = 1C , we have λ(C) = 0. By Theorem 1.1.9, λ ∈ N(X).
Conversely, take λ ∈ N(X). Then |λ| (X \

⋂
i∈I Si) = 0. For each i ∈ I, it follows that λ|Si � µi,
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and so, by the Radon-Nikodym theorem, there exists yi ∈ L1(Si, µi) with λ|Si = yi dµi and
‖yi‖1 = ‖λ|Si‖. Set y = (yi)i∈I . Then∑

i∈I
‖yi‖1 =

∑
i∈I
‖λ|Si‖ = ‖λ‖ ,

so that y ∈ Y , and ∫
X

f dλ =
∑
i∈I

∫
Si

fiyi dµi,

whence T ′y = λ. It follows that C (X) ∼= N(X)′. When we identify Y and N(X), we obtain
the formula.
“(v)⇔ (vi)” This follows from Proposition 1.4.3.
“(vii)⇒ (i)” This follows from Theorem 1.4.9 because L∞(Γ, µ) ∼= L1(Γ, µ)′.
“(ii) ⇒ (vii)” We take Γ to be the pairwise disjoint union of the family (Si)i∈I , and set
µ =

∑
i∈I µi. We have seen in Example 1.4.10 that µ is decomposable. It is clear that C (X) is

C∗-isomorphic to L∞(Γ, µ). �

Definition 2.1.2. A C∗-algebra Z is a von Neumann algebra if there is a Hilbert space H such
that Z is a C∗-subalgebra of B(H) and Z closed in the weak operator topology.

Theorem 2.1.1 will help us proving, that every commutative C∗-algebra that is isometrically
isomorphic to a dual space is a von Neumann algebra.

Definition 2.1.3. Let Z be a subset of B(H), for a Hilbert space H. Then the commutant of
Z is

Z{ =
{
T ∈ B(H)

∣∣TS = ST, S ∈ Z
}
.

Theorem 2.1.4. Let H be a Hilbert space, and let Z be a C∗-subalgebra of B(H). Then
Z
wo = Z{{.

A proof of this can be found, e.g., in [1, Theorem 3.2.32].
Example 2.1.5. Let Z be a commutative C∗-algebra which is isometrically a dual space. As
we have already seen Z is isometrically isomorphic to C (X) for a compact space X. Now by
Theorem 2.1.1, there is a locally compact space Γ and a decomposable measure µ on Γ such
that C (X) is C∗-isomorphic to L∞(Γ, µ). We show that L∞(Γ, µ) is a von Neumann algebra.
Take H to be the Hilbert space L2(Γ, µ), and for f ∈ L∞(Γ, µ), define

Mf (g) = fg, g ∈ L2(Γ, µ).

ThenMf ∈ B(L2(Γ, µ)) and the setN :=
{
Mf

∣∣ f ∈ L∞(Γ, µ)
}
is a C∗-subalgebra of B(L2(Γ, µ)).

The map

ψ :
{
L∞(Γ, µ)→ N

f 7→Mf

is a C∗-isomorphism. N is a C∗-subalgebra and if N is closed in the weak operator topology
it is even a von Neumann algebra. To show this we will make use of Theorem 2.1.4. We even
show that N = N{.
Let T ∈ N{ with T 6= 0 and let f = T (1Γ) ∈ L2(Γ, µ). We have to show that f belongs to
L∞(Γ, µ) and T is Mf . We claim that the essential supremum of |f | is less than ‖T‖. Assume
the contrary, then there exists a measureable set A ⊆ Γ of positive measure such that |f | > ‖T‖
on A. Define a function

g :

Γ→ C
x 7→ 1A

1
f(x)
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Then g ∈ L∞(Γ, µ), so we have

T (g) = T (Mg(1Γ)) = Mg(T (1Γ)) = gT (1Γ) = gf. (2.2)

Now since gf ≡ 1A, we have

µ(A) = ‖gf‖2L2(Γ,µ) = ‖T (g)‖2L2(Γ,µ) ≤ ‖T‖
2 ‖g‖2L2(Γ,µ) < ‖T‖

2 µ(A)
‖T‖2

= µ(A).

A contradiction and so f ∈ L∞(Γ, µ). Moreover, Equation (2.2) shows that T (g) = gf for g in
the dense subset L∞(Γ, µ) of L2(Γ, µ) and we get T = Mf .
So we see that L∞(Γ, µ) satisfies the conditions of Definition 2.1.2 and is a von Neumann
algebra. �

2.2 Uniqueness of the predual

Definition 2.2.1. Let X be a Banach space with an isometric predual Y . Then X has a
strongly unique predual Y if, whenever Z is also a Banach space and T : Z ′ → Y ′ is an
isometric isomorphism, the map T ′ : Y ′′ → Z ′′ carries ιY (Y ) onto ιZ(Z).

Y ′ Y ′′ ιY (Y ) Y

X ⇒

Z ′ Z ′′ ιZ(Z) Z

T
∼=

T ′ T ′

⊇ ∼=

∼=

⊇ ∼=

Lemma 2.2.2. Let Y and Z be Banach spaces. A linear map T : Z ′ → Y ′ is weak∗-weak∗-
continuous if and only if T = S′ for some bounded operator S : Y → Z.

Proof.
“⇒” Since T is weak∗-weak∗-continuous, take y ∈ Y , then ι(y)◦T is weak∗-continuous on Z and
so it is of the form ι(S(y)) for a unique S(y) ∈ Y . Since S(y) is uniquely determined, it follows
that S is linear. Now S is continuous by the closed graph theorem. If yn → y and Syn → z
then for each z′ on Z ′ we have〈

z, z′
〉
Z,Z′ = lim

n→∞

〈
Syn, z

′〉
Z,Z′ = lim

n→∞

〈
yn, T z

′〉
Y,Y ′ =

〈
y, Tz′

〉
Y,Y ′ =

〈
Sy, z′

〉
Z,Z′

and thus z = Sy. Hence S is bounded.
“⇐” Conversely, to see that the dual of a bounded operator is weak∗-weak∗-continuous, we take
a net z′i

w∗→ z′. Then we get〈
y, Tz′i − Tz′

〉
Y,Y ′ =

〈
Sy, z′i − z′

〉
Z,Z′ → 0

and hence the claim follows.
�

The following proposition can be useful to see when isometric isomorphisms have dual operators
that take ιZ(Z) onto ιY (Y ).
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Proposition 2.2.3. The dual of an isometric isomorphism T is weak∗-weak∗-continuous if and
only if T ′ maps ιY (Y ) onto ιZ(Z).

Proof.
“⇒” We have 〈

z′, T ′ ◦ ιY (y)
〉
Z′,Z′′ =

〈
Tz′, ιY (y)

〉
Y ′,Y ′′ =

〈
y, Tz′

〉
Y,Y ′ .

By Lemma 2.2.2 there is a bounded operator S with S′ = T . This leads to〈
z′, T ′ ◦ ιY (y)

〉
Z′,Z′′ =

〈
y, S′z′

〉
Y,Y ′ =

〈
Sy, z′

〉
Z,Z′ =

〈
z′, ιZ(Sy)

〉
Z′,Z′′ .

Since S is bijective, T ′ is a bijection between ιY (Y ) and ιZ(Z).
“⇐” We define a map S by the diagram below, S = ι−1

Z ◦ T ′ ◦ ιY .

Y Y ′ Y ′′ ιY (Y )

Z Z ′ Z ′′ ιZ(Z)

ιY

T T ′ T ′

ι−1
Z

If we can show that S′ = T the statement follows by Lemma 2.2.2. We compute〈
y, S′z′

〉
Y,Y ′ =

〈
Sy, z′

〉
Z,Z′ =

〈
ι−1
Z ◦ T

′ ◦ ιY (y), z′
〉
Z,Z′

=
〈
z′, T ′ ◦ ιY (y)

〉
Z′,Z′′ =

〈
Tz′, ιY (y)

〉
Y ′,Y ′′ =

〈
y, Tz′

〉
Y,Y ′ .

And T is weak∗-weak∗-continuous. �

Theorem 2.2.4. Let X be a non-empty, hyper-Stonean space. Then N(X) is a strongly unique
predual of C (X).

Proof. Suppose that Y is an isometric predual of C (X). Then we can regard Y as a closed
linear subspace of M(X), and we have noted in the proof of Theorem 2.1.1 in implication
“(i)⇒ (iv)” that Y ⊆ N(X). Now assume that there is µ ∈ N(X) \Y . With the Hahn-Banach
theorem we get

∃f ∈ N(X)′ :f(Y ) ≤ γ1 < γ2 ≤ f(µ)⇒ f(Y ) = 0

but Y operates seperating on C (X) and so f = 0. Thus, we have f(µ) 6= 0, a contradiction.
Hence, Y = N(X).
Next suppose that Z is a Banach space and that

T : N(X)′ → Z ′

is an isometric isomorphism. By Lemma 2.2.2, we know that T ′ is weak∗-weak∗-continuous.
Now we endow Z ′ with σ(Z ′, Z) and C (X) with σ(C (X) , N(X)). It now follows that T ′(ιZ(Z)) ⊆
ιN(X)(N(X)). The first part of the proof now applies to show that T ′(ιZ(Z)) = ιN(X)(N(X)).
Thus N(X) is the strongly unique predual of C (X). �
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