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Notation

If X is a Banach space and A is an operator1 on X we denote by

B(X) ... the set of bounded linear operators on X
τs ... the strong operator topology on B(X)
τw ... the weak operator topology on B(X)
D(A) ... the domain of A
ρ(A) ... the resolvent set of A
σ(A) ... the spectrum of A
R(λ,A) ... the resolvent (A− λ)−1 of A (if λ ∈ ρ(A))
I ... the identity operator on X
[M ] ... the linear hull of M ⊂ X.

Apart from the standard C(R)- and Lp-spaces the following spaces of func-
tions will occur in the text:

Cc(R) ... {f ∈ C(R)
∣∣ f has compact support}

C0(R) ... {f ∈ C(R)
∣∣ ∀ ε > 0 ∃K compact such that f(x) < ε ∀x ∈

Kc}
Cub(R) ... the set of uniformly continuous bounded functions on R
Cb(R) ... the set of bounded functions on R
S(Rn) ... the Schwartz space on Rn
Hm(Ω) ... the Sobolev space {f ∈ L2(Ω)

∣∣Dαf ∈ L2(Ω) ∀|α| ≤ m},
where Ω is an open subset of Rn and, for α ∈ Nn0 , |α| :=∑n

i=1 αi.

Finally, for any sets Y,Z and a function f : Y → Z, a ∈ Z, we use the
notation [f = a] := f−1({a}).

1If nothing else is speci�ed we use the word �operator� as short for linear operator.
We do not require an operator to be bounded, nor do we make any assumptions on its
domain.



1. Introduction

1 Introduction

Partial di�erential equations are ubiquitous in physics. Typically they relate
the �time derivative� of a function u : R × R3 → C with certain derivatives
of u �in space�. The heat equation

∂t(t, x) = ∆u(t, x),

is a simple example.

Physicists like to write down the solutions of such PDEs in terms of evo-
lution operators: operators (T (t))t≥0 which map the initial state u(0, ·) to
a future state u(t, ·) = T (t)u(0, ·). In quantum mechanics this is particu-
larly common, which is why we sketch the physical2 approach for this case
in a little more detail: The central equation in quantum mechanics is the
Schrödinger equation; for a free particle

Ψt(t, x) = i∆Ψ(t, x). (1)

We can regard Ψ as a function ψ depending only on the parameter t with
values in a space of functions on R3 (usually L2(R3)):

ψ : R→ L2(R3) : t 7→ Ψ(t, ·).

Then the partial di�erential equation (1) becomes an ordinary (vector space-
valued) di�erential equation:

ψ′(t) = −i∆ψ(t). (2)

Now this equation strongly resembles the di�erential equation f ′(t) = af(t)
for a function f : R → R and a constant a ∈ R, which has the solution
f(t) = etaf(0). For physicists it is clear that the solutions of (2) can be
written in the same way:

ψ(t) = eti∆ψ(0),

where eti∆ is now an operator on L2(R3), the �time evolution operator�. For
mathematicians this is less clear: we do not know what eti∆ is; actually, we
do not even know what ∆ is, because we have not speci�ed its domain.

The subject of this paper is the mathematical theory of families of op-
erators similar to (ei∆t)t≥0: more precisely, families of (bounded) operators
(T (t))t≥0 which are the evolution operators of certain vector space-valued
di�erential equations

u′(t) = Au(t), (3)

2We emphasize the word physical. The derivation is not rigorous.
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1. Introduction

where A is an operator on a Banach space X and u : R+
0 → X is a di�eren-

tiable function. The precise de�nition of the families (T (t))t≥0 we consider
here (namely strongly continuous semigroups) is given in the main text (Def-
inition 2.1). In essence, we only require an algebraic property similar to
the one enjoyed by the exponential function, ex+y = exey, and a continuity
property .

The theory of strongly continuous semigroups has applications in various
�elds, for instance PDEs but also more general equations of the form (3) (e.g.
delay di�erential equations) where A is not a classical di�erential operator.
In this paper we study a speci�c aspect of semigroup theory: the asymptotic
behaviour of the time averages

1

r

∫ r

0
T (t)dt, r > 0,

where (T (t))t≥0 is a strongly continuous semigroup. We will consider con-
vergence of these means (as r → ∞) with respect to di�erent topologies on
B(X). As an application we will examine the behaviour of the �time aver-
ages� of solutions of certain PDEs.

In more detail, the content of the thesis is organized as follows:
In Section 2 we present some general results on operator semigroups: The
motivation for studying strongly continuous semigroups is given in Sec-
tion 2.1, where we examine the connection of semigroups and di�erential
equations of the form (3). We proceed with an overview of the most impor-
tant results in semigroup theory in Section 2.3.
Sections 3 to 5 constitute the core of this thesis. In Section 3 we de�ne
mean ergodic semigroups and give some equivalent characterizations and ex-
amples. The results are applied to some physically important di�erential
equations in Section 4: the heat, wave and Schrödinger equation. In the
last section, Section 5, we introduce the notion of uniform mean ergodicity
and characterize the semigroups having this property. As a special case of
uniformly mean ergodic semigroups we consider semigroups whose generator
has compact resolvent.

The information presented here is drawn from numerous sources: The
most important one is the excellent book on semigroups by K. Engel and
R. Nagel, [Eng00]. For the part concerning the application of semigroups
to PDEs the text relies mainly on [Paz83] and [Ber05]. As an additional
reference for speci�c results on semigroups, PDEs and operator theory I
used [Con85] and [Yos74] as well as the lecture notes by my teachers at TU
Vienna: [Wor10], [Blü10] and [Jü09]. Other sources are cited in the main
text.
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2. Strongly continuous semigroups

2 Strongly continuous semigroups

In this and all subsequent sections, let X be a Banach space.

2.1 C0-semigroups and the abstract Cauchy problem

De�nition 2.1. A family (T (t))t≥0 of bounded linear operators on X is called
a semigroup (of operators) if the function

T : R+
0 → B(X) : t 7→ T (t)

is a monoid homomorphism from (R+
0 ,+, 0) to (B(X), ◦, I); in other words

if (T (t))t≥0 satis�es the functional equations

T (0) = I

T (s)T (t) = T (s+ t) for all s, t ∈ R+.
(FE)

The semigroup (T (t))t≥0 is called strongly continuous (or a C0-semigroup)
if T is continuous with respect to the strong operator topology on B(X); in
other words if

lim
t→t0

T (t)x = T (t0)x for all t0 ∈ R+, x ∈ X.

As mentioned in the introduction there is a connection between C0-semi-
groups of operators and Banach space-valued initial value problems of the
form

u(0) = u0 ∈ D(A)

u̇(t) = Au(t) for t ≥ 0,
(ACP)

where A is a (possibly unbounded) linear operator with domain D(A) ⊂ X.
Here we will explore this connection in more detail.

De�nition 2.2. The problem of �nding a solution u : R+
0 → X to (ACP)

given A and u0 is called an abstract Cauchy problem. Here, we un-
derstand the concept of a solution in the classical sense: the function
u : R+

0 → X is a solution if all the expressions in (ACP) are well-de�ned (i.e.
u is di�erentiable3 and u(t) ∈ D(A)∀t ≥ 0) and the equalities hold.

Let us assume that the problem (ACP) above has a unique solution
u(·, u0) for every u0 ∈ D(A). (This is one of the features we expect a well-
posed problem, e.g. the equations of motion of a dynamical system, to have.)
Then

τ(t) : D(A)→ X : u0 7→ u(t, u0)

3By di�erentiability we understand that the limits u̇(t) := limh→0
u(t+h)−u(t)

h
, t > 0

and u̇(0) = limh↘0
u(h)−u(0)

h
exist.
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2.1 C0-semigroups and the abstract Cauchy problem

is a linear operator for all t ∈ R+
0 . Moreover, τ satis�es the functional

equation

τ(0) = I

τ(s)τ(t) = τ(s+ t) for all s, t ∈ R+.

This resembles the de�nition of a semigroup given above. However, the oper-
ators τ(t) need not be bounded, so we do not necessarily obtain a semigroup
in the sense of De�nition 2.1. With an additional assumption concerning
the �well-posedness� of the problem, however, all solutions of (ACP) can be
given in terms of a semigroup associated with A:

De�nition 2.3. The abstract Cauchy problem (ACP) associated with the
linear operator A : D(A) ⊂ X → X is called well-posed if

• for every u0 ∈ D(A) there exists a unique solution u(·, u0) of (ACP)

• the solution depends continuously on the data: there exists C > 0 such
that for all u0 ∈ D(A)

sup
t∈[0,1]

‖u(t, u0)‖ ≤ C‖u0‖.

Theorem 2.4. Let A : D(A) ⊂ X → X be a closed operator with dense

domain. Then the following properties are equivalent:

(i) The problem (ACP) associated with A is well-posed in the sense of

De�nition 2.3.

(ii) There exists a C0-semigroup (T (t))t≥0 such that for all u0 ∈ D(A) the

function u(·, u0) := T (·)u0 is a solution of (ACP).

(iii) There exists a C0-semigroup (T (t))t≥0 such that for the functions u(·, u0) :=
T (·)u0 the following holds:

D(A) = {u0 ∈ X
∣∣u(·, u0) : R+

0 → X is di�erentiable}

and u(·, u0)′(0) = Au0 for all u0 ∈ D(A).4

Condition (iii) in the theorem above is the common way of de�ning the
generator of a C0-semigroup: Given a C0-semigroup (T (t))t≥0 its gener-
ator A is simply the operator which has the properties stated in (iii) (or, in

4The implication (ii)⇒(iii) is not trivial, since in (ii) we only demand D(A) ⊃ {u0 ∈
X
∣∣u(·, u0) : R+

0 → X is di�erentiable} instead of equality between these two sets. More-
over, note that in (iii) we only demand that the derivative of u(t, u0) at t = 0 equals
Au(t, u0).
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2.2 Some properties of C0-semigroups

a more explicit form, in Equation (4) in the next section). From the equiv-
alences in the theorem we see that it is of great interest to know whether
an operator A generates a C0-semigroup. If it does, the associated abstract
Cauchy problem is well posed � in particular, there exists a unique solution
and this solution can be written down in terms of the semigroup generated
by A. Even if we cannot obtain an explicit expression for (T (t))t≥0 (and
hence the solution), semigroup theory helps us to obtain useful information
about the qualitative behaviour of solutions, e.g. regularity and asymptotic
behaviour, from the knowledge of the generator A alone.

Remark. If X is �nite dimensional or, more generally, if X is arbitrary and
A : X → X is bounded, then the abstract Cauchy problem (ACP) is always
well posed, i.e. A generates a C0-semigroup (T (t))t≥0:

T (t) = exp(At) ≡
∞∑
n=0

Antn

n!
, t ≥ 0.

The �interesting� ACPs are therefore those where the operator A is un-
bounded.

Before having a closer look at the interplay of C0-semigroups and their
generators in Section 2.3 we discuss some general properties of C0-semigroups:

2.2 Some properties of C0-semigroups

In the previous section we de�ned the generatorA of a C0-semigroup (T (t))t≥0

as

Ax = lim
t↘0

T (t)x− x
t

, D(A) = {x ∈ X
∣∣ lim
t↘0

T (t)x− x
t

exists}. (4)

It is one of the standard results of semigroup theory (see e.g. [Eng00]) that
this operator is densely de�ned and closed. From Theorem 2.4 it follows
that the semigroup is uniquely determined by its generator; in other words,
if (T (t))t≥0 and (S(t))t≥0 are di�erent semigroups then their generators must
di�er as well.

We now summarize some of the basic results concerning C0-semigroups.
The details and proofs can, for instance, be found in [Eng00].

We �rst turn to a result that is in some sense a generalization of the
classical fundamental theorem of calculus to Banach-space valued functions,
where the Riemann integral of a continuous function f : [a, b]→ R is replaced
by the Bochner integral of the continuous function f : [a, b]→ X:∫ b

a
f(t)dt := lim

n→∞

n−1∑
i=0

f(x
(n)
i )[x

(n)
i+1 − x

(n)
i ], x

(n)
i := a+ i

b− a
n

. (5)
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2.3 Generators of C0-semigroups

From the de�nition it immediately follows that

S

∫ b

a
f(t)dt =

∫ b

a
Sf(t) for S ∈ B(X).

We will use this property in subsequent chapters.5

Theorem 2.5. Let (T (t))t≥0 be a C0-semigroup with generator A. The

following holds:

(i) If x ∈ D(A) then T (t)x ∈ D(A) ∀t ≥ 0 and

AT (t)x = T (t)Ax = lim
h↘0

T (t+ h)x− T (t)x

h
.

(ii) T (t)x− T (s)x =
∫ t
s T (r)Axdr =

∫ t
s AT (r)xdr = A

∫ t
s T (r)xdr.

The second important result we bring here is the following estimate for
the growth of a C0-semigroups:

Theorem 2.6. For every C0-semigroup (T (t))t≥0 there exists constantsM >
0, ω ∈ R, such that:

‖T (t)‖ ≤Meωt ∀t ≥ 0. (6)

Therefore, the following de�nition makes sense:

De�nition 2.7. The in�mum of all numbers ω ∈ R such that (6) is satis�ed
for some M > 0 is called the growth bound of the semigroup (T (t))t≥0.
(We also allow growth bounds −∞.)

If the growth bound ω0 is negative, i.e. if there exists ω < 0 such that (6)
is satis�ed, the semigroup is called exponentially stable. If in (6) we can
take ω = 0 the semigroup is called bounded. Finally, if we can takeM = 1,
ω = 0, the semigroup is called contractive (or a contraction semigroup).

2.3 Generators of C0-semigroups

In Section 2.1 we saw that knowing whether a certain operator A generates
a C0-semigroup provides a great deal of information about the solutions of
the corresponding ACP. One of the cornerstones of semigroup theory is the
following characterization of the generators of C0-semigroups:

5Note, however, that this does not imply result (ii) in Theorem 2.5 since A might be
unbounded.
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2.3 Generators of C0-semigroups

Theorem 2.8 (Hille-Yoshida). An operator A is the generator of a C0-

semigroup (T (t))t≥0 satisfying

‖T (t)‖ ≤Meωt,

where M > 0, ω ∈ R, if and only if

• A is closed and densely de�ned.

• For all λ > ω it holds that λ ∈ ρ(A) and

‖Rλ(A)n‖ ≤ M

(λ− ω)n
∀λ > ω, n ∈ N.

The Hille-Yoshida Theorem is often inconvenient to use because ‖Rλ(A)n‖
can be hard to determine. For the special case of contraction semigroups
there is a simpler characterization, the Lumer-Phillips Theorem. We �rst
de�ne the notion of dissipativity:

De�nition 2.9. An operator A on a Banach space X is called dissipative if
for every x ∈ D(A) with ‖x‖ = 1 there exists x′ ∈ X ′, ‖x′‖ = 1, such that

x′(x) = 1 and Rex′(Ax) ≤ 0.

Remark. In the de�nition above, ifX is a Hilbert space then for x ∈ D(A), ‖x‖ =
1, the only x′ ∈ X ′ satisfying ‖x′‖ = 1 and x′(x) = 1 is the functional
x′ = (x, ·). Therefore, A is dissipative if and only if Re(Ax, x) ≤ 0 for all
x ∈ D(A).

Theorem 2.10 (Lumer-Phillips). Let X be a Banach space and let A be a

densely de�ned operator on X. Then A generates a contraction semigroup

if and only if A is dissipative and there exists λ > 0 such that ran(A−λ) = X.

Finally, we consider a special class of contraction semigroups, C0-semi-

groups of unitary operators. Such semigroups will play a role in the study
of some PDEs in Section 4, namely the wave equation and the Schrödinger
equation.

In Section 2.1 we mentioned that the C0-semigroup generated by a bounded
operator A is given by by T (·) = exp(A ·). For a self-adjoint but possibly un-
bounded operator iA the expression etA = e−it(iA) can be given meaning via
the functional calculus for (unbounded) self-adjoint operators. This obser-
vation motivates the following interesting proof of Stone's Theorem, which
di�ers from the one usual found in texts on C0-semigroups:

7



2.3 Generators of C0-semigroups

Theorem 2.11 (Stone). Let X be a Hilbert space. An operator A on X is

the generator of a C0-semigroup of unitary operators on X if and only if A
is skew-adjoint6.

We use the following lemma to show self-adjointness of iA:

Lemma 2.12. A densely de�ned operator A on a Hilbert space X is self-

adjoint if A is symmetric and ran(A− λ) = X for some λ ∈ C\R.

Proof. The proof is based on the fact that ker(B−λ) = {0} if B is symmetric
and λ ∈ C\R ([Blü10]). Moreover, we observe that if B,D are operators,
B ⊂ D, B is surjective and D is injective, then B = D. Let λ ∈ C\R be
such that A− λ is surjective. The results just mentioned applied to

(A− λ,D(A)) ⊂ (A∗ − λ,D(A∗))

imply that D(A) = D(A∗), hence A = A∗.

Proof of Stone's Theorem. First assume that A generates a C0-semigroup (U(t))t≥0 of
unitary operators. Because

(U(t)x− x
t

, y
)

=
(
x,
U(t)−1y − y

t

)
=
(
U(t)x,

y − U(t)y

t

)
, t > 0

we see that (Ax, y) = −(x,Ay) for all x, y ∈ D(A). Therefore, iA is symmetric. Moreover,
the Hille-Yoshida Theorem implies that 1 ∈ ρ(A), hence i ∈ ρ(iA). From Lemma 2.12 it
follows that iA is self-adjoint.

Conversely, let iA be self-adjoint. Then B := (−iA,D(A)) is self-adjoint as well and
has a spectral measure E associated with it. The candidate for the semigroup generated
by A is the family of operators U(t) := eAt = eiBt, t ∈ R, in other words the spectral
integral of the (bounded!) functions ft : s 7→ eits with respect to E. Since f 7→

∫
fdE is

an isometric ∗-homomorphism from Cb(R) to B(X), the operators U(t) are unitary and
form a semigroup. Moreover, the semigroup is strongly continuous because the functions
ft are uniformly bounded and for tn ↘ 0 we have ftn → 1 pointwise, hence T (tn) =∫
ftndE →

∫
1dE = 1 in τs.

It remains to show that the generator of the C0-semigroup (U(t))t≥0 is indeed A.
From the relation∣∣∣(U(t)x− x

t
−Ax, y

)∣∣∣ ≤ ∫ ∣∣eits − 1

t
− is

∣∣dµx,y(s), x ∈ D(A), y ∈ X

and the fact that
∣∣ eits−1

t
− is

∣∣ t↘0−−−→ 0 uniformly in s it follows that the generator Ã of

(U(t))t≥0 is an extension of A, A ⊂ Ã. This implies A∗ ⊃ (Ã)∗. By the �rst step of the
proof iÃ is self-adjoint. Therefore, D((Ã)∗) = D(Ã). By assumption, iA is self-adjoint as
well, hence D(A) = D(A∗) ⊃ D((Ã)∗) = D(Ã). Therefore, A = Ã.

Remark. Since a C0-semigroup is uniquely determined by its generator, the
proof shows that the semigroup (U(t))t≥0 generated by a skew-adjoint oper-
ator is given by U(t) = eAt, t ≥ 0.

6An operator A is called skew-adjoint if (iA,D(A)) is self-adjoint.
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2.4 Standard Examples

2.4 Standard Examples

Two standard examples of C0-semigroups are given by the translation and
multiplication semigroups on appropriate spaces of functions. They will serve
as an illustration of some of the concepts developed in subsequent chapters.
Here we de�ne the semigroups and write down their generators; for details
and proofs see [Eng00].

Example 2.13 (Translation semigroup). The (right) translation semigroup
(T (t))t≥0 de�ned by

T (t)f = f(·+ t), f ∈ X,

where X = Cub(R) or X = Lp(R), 1 ≤ p < ∞ is a C0-semigroup. Its
generator A is given by di�erentiation,

Af = f ′, f ∈ D(A),

where the domain D(A) is one of the following:

(a) X = Cub(R):

D(A) = {f ∈ Cub(R)
∣∣ f is di�erentiable and f ′ ∈ Cub(R)}.

(b) X = Lp(R), 1 ≤ p <∞:

D(A) = {f ∈ Lp(R)
∣∣ f is absolutely continuous and f ′ ∈ Lp(R)}.

Remark. Note that we chose X = Cub(R) instead of X = C0(R) or X =
Cb(R) because the translation semigroup on these spaces would not be strongly
continuous.

Example 2.14 (Multiplication semigroup). Let Ω be a locally compact Haus-
dor� space and consider the multiplication semigroup (T (t))t≥0 given by

T (t)f = eqtf, f ∈ X,

where either

(a) X = C0(Ω) for some locally compact Hausdor� space Ω and q ∈ C(Ω),
or

(b) X = Lp(Ω, µ), where (Ω,Σ, µ) is a σ-�nite measure space, 1 ≤ p < ∞,
and q is a measurable function.

9



3. Mean ergodic semigroups

In both cases the generator is given by

Af = qf, f ∈ D(A) = {f ∈ X
∣∣ qf ∈ X}.

The semigroup (T (t))t≥0 is bounded if and only if q ≤ 0 (a.e.). We will
need the condition of boundedness to apply some of the theorems derived
in subsequent chapters; therefore, we make the additional assumption that
q ≤ 0 (a.e.).

3 Mean ergodic semigroups

De�nition 3.1. Let (T (t))t≥0 be a a strongly continuous semigroup. For
r > 0 we de�ne the Cesàro means C(r) ∈ B(X) as

C(r) :=
1

r

∫ r

0
T (s)ds : x 7→ 1

r

∫ r

0
T (s)xds.

If the limit limr→∞C(r) exists in the strong operator topology, the semi-
group (T (t))t≥0 is called mean ergodic.

Let (T (t))t≥0 be a mean ergodic semigroup. We expect that P :=
limr→∞C(r), the �time average� of the semigroup, will itself not change
with time: T (t)P = P for all t ≥ 0. This is indeed the case:

T (t)Px = lim
r→∞

T (t)
1

r

∫ r

0
T (s)xds = lim

r→∞

1

r

∫ r

0
T (s+ t)xds =

= lim
r→∞

1

r

∫ r+t

t
T (s)xds = lim

r→∞

1

r

∫ r+t

0
T (s)xds− 1

r

∫ t

0
T (s)xds.

The second term tends to zero whereas the �rst converges to

lim
r→∞

r + t

r

1

r + t

∫ r+t

0
T (s)xds = lim

r→∞
C(r + t)x = Px.

Therefore, T (t)Px = Px for all x ∈ X, as expected.

The result just derived implies that P is a projection: We have C(r)Px =
Px for all r > 0, x ∈ X, so by letting r → ∞ we see that P 2 = P . The
operator P is therefore called the mean ergodic projection associated
with (T (t))t≥0. In the following lemma we identify the range and kernel of
P :

Lemma 3.2. Let P be the mean ergodic projection associated with the mean

ergodic semigroup (T (t))t≥0. Then P is a bounded projection with

ranP = �x(T (t))t≥0, kerP =
[
{x− T (t)x

∣∣x ∈ X, t ≥ 0}
]
.

10



3. Mean ergodic semigroups

In particular, we have the following decomposition:

X = �x(T (t))t≥0 ⊕
[
{x− T (t)x

∣∣x ∈ X, t ≥ 0}
]
. (7)

Proof. We have already seen that P is a projection. Moreover, P is bounded
as the τs-limit of bounded operators on a Banach space (this follows from
the Banach-Steinhaus Theorem).

The equality ranP = �x(T (t))t≥0 holds because for all t ≥ 0 we have
PT (t) = P , hence ranP ⊃ �x(T (t))t≥0, and T (t)P = P , so ranP ⊂
�x(T (t))t≥0.

We prove that kerP = M , where M :=
[
{x − T (t)x

∣∣x ∈ X, t ≥ 0}
]
.

The relation kerP ⊃ M is clear, and because kerP is closed kerP ⊃ M .
To see that kerP ⊂ M assume there exists z ∈ kerP\M . Then by the
Hahn-Banach theorem we �nd f ∈ X ′ such that

{0} = Ref(M) < Ref(z).

Because Imf(y) = −Re(if(y)) = −Ref(y) = 0 for all y ∈ M , we have
f(M) = {0}, so

f = f ◦ T (t) for all t ≥ 0.

This implies f = f ◦ P . Therefore f(z) = f(Pz) = 0, which contradicts our
choice of f .

The spaces �x(T (t))t≥0 and
[
{x− T (t)x

∣∣x ∈ X, t ≥ 0}
]
in Equation (7)

can be formulated in terms of the generator A:

Lemma 3.3. For a C0-semigroup (T (t))t≥0 with generator A it holds that:

(i) �x(T (t))t≥0 = kerA

(ii)
[
{x− T (t)x

∣∣x ∈ X, t ≥ 0}
]

= ranA.

Proof.

(i) This is clear from the de�nition of A and the fact that T (t)x − x =∫ t
0 T (s)Axds.

(ii) The inclusion �⊂� follows from T (t)x− x = A
∫ t

0 T (s)xds ∈ ranA, the

other follows from Ax = limt↘0
T (t)x−x

t ∈
[
{x− T (t)x

∣∣x ∈ X, t ≥ 0}
]
.

11



3.1 Criteria for mean ergodicity

3.1 Criteria for mean ergodicity

We just saw that for a mean ergodic semigroup (T (t))t≥0 the underlying
Banach space can be decomposed as in (7). The converse is true as well if
the semigroup satis�es a certain growth condition:

Proposition 3.4. A C0-semigroup (T (t))t≥0 on a Banach space X satisfy-

ing

lim
t→∞

‖T (t)‖
t

= 0 (8)

is mean ergodic if and only if

X = �x(T (t))t≥0 +
[
{x− T (t)x

∣∣x ∈ X, t ≥ 0}
]
.

Proof. Because of Lemma 3.2 we only need to show that (T (t))t≥0 is mean
ergodic if the decomposition formula for X holds. If this is the case the set

G := �x(T (t))t≥0 +M, (9)

where M :=
[
{x − T (t)x

∣∣x ∈ X, t ≥ 0}
]
, is dense in X. We show that for

all z ∈ G the limit limr→∞C(r)z exists: Let

z = u+
n∑
i=1

(
xi − T (ti)xi

)
∈ G

with u ∈ �x(T (t))t≥0, xi ∈ X, ti ≥ 0. Since C(r)u = u for all r > 0 we only
need to show that limr→∞C(r)(x− T (t)x) exists for x ∈ X, t ≥ 0:

C(r)(x− T (t)x) =
1

r

∫ r

0

(
T (s)x− T (t+ s)x

)
ds =

=
1

r

∫ r

0
T (s)xds− 1

r

(∫ r+t

0
T (s)xds−

∫ t

0
T (s)xds

)
=

= −1

r

∫ r+t

r
T (s)xds+

1

r

∫ t

0
T (s)xds.

Clearly, the second term goes to 0 as r →∞, and so does the �rst:

∥∥∥1

r

∫ r+t

r
T (s)xds

∥∥∥ ≤ 1

r

∫ r+t

r
‖T (s)x‖ds ≤

≤ ‖x‖
(

sup
r≤s≤r+t

‖T (s)‖
s

)1

r

∫ r+t

r
sds.

The expression in brackets goes to 0 by assumption, while the remaining
terms are bounded. Therefore limr→∞C(r)z = u.

12



3.1 Criteria for mean ergodicity

To show mean ergodicity of (T (t))t≥0 we need the existence of limr→∞C(r)x
for all x ∈ X. This is a simple consequence of the Banach-Steinhaus theo-
rem. The family (C(r))r>0 of bounded operators is pointwise bounded on the
dense set G ⊂ X, hence uniformly bounded on X: µ := supr>0 ‖C(r)‖ <∞.
Hence, for x ∈ X and any sequence rn →∞ the di�erence

‖C(rn)x− C(rm)x‖ ≤ ‖(C(rn)− C(rm))(x− z)‖+ ‖C(rn)z − C(rm)z‖ ≤
≤ 2µ‖x− z‖+ ‖C(rn)z − C(rm)z‖

becomes arbitrarily small if we choose z ∈ G su�ciently close to x and
n,m su�ciently large. Because X is complete, this implies the existence of
limr→∞C(r)x.

Note that in the proposition above the condition limt→∞
‖T (t)‖
t = 0 can-

not be omitted. A counterexample is provided by the simplest non-trivial
semigroup there is:

Example 3.5. Consider the semigroup (T (t))t≥0 on C de�ned by T (t)x = etx.
Clearly, this semigroup is not mean ergodic:

C(r)x =
1

r

∫ r

0
esxds =

er − 1

r
x→∞

for all x ∈ C\{0}. However, the decomposition (7) holds because {x −
T (t)x

∣∣x ∈ C, t ≥ 0} = C.

For C0-semigroups which satisfy the �growth condition�, Equation (8),
the previous Proposition allows us to deduce a convenient method for testing
mean ergodicity:

Proposition 3.6. A C0-semigroup (T (t))t≥0 on a Banach space X satisfy-

ing limt→∞
‖T (t)‖
t = 0 is mean ergodic if and only if the �xed space

�x(T (t))t≥0 = kerA

separates the dual �xed space

�x(T (t)′)t≥0 = kerA′.

Proof. The �xed space �x(T (t))t≥0 separates �x(T (t)′)t≥0 i� the following
implication holds:[

f ∈ �x(T (t)′)t≥0 and f |�x(T (t))t≥0
= 0
]
⇒ f = 0.

Let G be the subspace of X de�ned in Equation (9). Then the condition
above is equivalent to[

f ∈ X ′ and f |G = 0
]
⇒ f = 0.

13



3.2 Examples Revisited I

By the Hahn-Banach theorem this is in turn equivalent to X\G = ∅, i.e.

X = G = �x(T (t))t≥0 +M = �x(T (t))t≥0 +M.

Proposition 3.4 now yields the desired result.

Remark. The relation �x(T (t)′)t≥0 = kerA′ in the proposition above does
not follow from Lemma 3.3 (i) applied to the semigroup (T (t)′)t≥0. This
is because (T (t)′)t≥0 (the so-called adjoint semigroup) need not be strongly
continuous [Eng00]. Rather, the relation is a consequence of Lemma 3.3 (ii),
because

�x(T (t)′)t≥0 = {x′ ∈ X ′
∣∣x′(T (t)y) = x′(y) ∀y ∈ X, t ≥ 0} =

= {x′ ∈ X ′
∣∣ �x(T (t))t≥0 ⊂ kerx′},

kerA′ = {x′ ∈ X ′
∣∣x′(Ay) = 0∀y ∈ X, t ≥ 0} =

= {x′ ∈ X ′
∣∣ ranA ⊂ kerx′}.

3.2 Examples Revisited I

We apply the criterion above to analyze the translation and multiplication
semigroups introduced in Section 2.4 for their mean ergodicity:

Example 3.7 (Translation semigroup). Let (T (t))t≥0 be the translation semi-
group on X de�ned in Example 2.13, T (t)f = f(·+ t).

(a) X = Lp(R), 1 < p <∞ :
Clearly, �x(T (t))t≥0 = {0}. Identifying Lp(R)′ and Lq(R), where 1/p+
1/q = 1, we have

�x(T (t)′)t≥0 = {g ∈ Lq(R)
∣∣ ∫ gf =

∫
gf(·+ t)∀f ∈ Lp(R), t ≥ 0} =

= {g ∈ Lq(R)
∣∣ g = g(· − t) for all t ≥ 0} = {0}.

By Proposition 3.6, (T (t))t≥0 is mean ergodic. We will see later on
(Corollary 3.11) that this holds for any bounded semigroup on a re�exive
Banach space.

(b) X = L1(R):
Here we are dealing with a non-re�exive space, so the result just men-
tioned cannot be applied. Indeed, the semigroup (T (t))t≥0 turns out not
to be mean ergodic:

�x(T (t)′)t≥0 = {g ∈ L∞(R)
∣∣ ∫ gf =

∫
gf(·+ t) ∀f ∈ Lp(R), t ≥ 0} =

= {g ∈ L∞(R)
∣∣ g = g(· − t) for all t ≥ 0} =

= {g ∈ L∞(R)
∣∣ g is constant a.e.} = [{1}].

Since �x(T (t))t≥0 = {0} as above, (T (t))t≥0 is not mean ergodic.

14



3.2 Examples Revisited I

(c) X = Cub(R) :
In this case the dual space X ′ cannot be described in a simple way
(reference???????) and Proposition 3.6 is therefore inconvenient to use.
However, we directly see that (T (t))t≥0 is not mean ergodic on Cub(R)
by constructing a function f ∈ Cub(R) for which

lim
r→∞

C(r)f = lim
r→∞

1

r

∫ r

0
f(·+ s)ds

does not exist: Let f be a function that is +1 on [1, 101 − 1], −1 on
[101, 102−1], +1 on [102, 103−1] etc. and linear on the intervals between.
Then for rn = 10n we have

1

rn

∫ rn

1
f(s)ds =

∑n−1
i=0 (−1)i(10i+1 − 1− 10i)

10n
=

= 9

n−1∑
i=0

(−1)i10i−n −
n−1∑
i=0

(−1)i−n =

= 9(−1)n
n∑
j=1

(−1)j10−j −
n−1∑
i=0

(−1)i−n.

The series
∑n

j=1(−1)j10−j converges to a non-zero value as n → ∞.
Therefore the expression above (and hence C(rn)f) is divergent.

Example 3.8 (Multiplication semigroup). Now we have a look at the multi-
plication semigroup (T (t))t≥0 de�ned in Example 2.14, T (t)f = etqf .:

(a) X = Lp(Ω, µ), 1 ≤ p <∞ :
The �xed space is

�x(T (t))t≥0 = {f ∈ Lp(Ω, µ)
∣∣ f = eqtf a.e. ∀t ≥ 0} =

= {f ∈ Lp(Ω, µ)
∣∣ f = 1[q=0]f a.e. } '

' Lp([q = 0], µ|[q=0])

and the dual �xed space is

�x(T (t)′)t≥0 = {g ∈ Lq(Ω, µ)
∣∣ ∫ gf =

∫
geqtf for all f ∈ Lp(Ω, µ), t ≥ 0} =

= {g ∈ Lq(Ω, µ)
∣∣ g = 1[q=0]g a.e. } '

' Lq([q = 0], µ|[q=0]).

Therefore, �x(T (t))t≥0 separates �x(T (t)′)t≥0 and the semigroup is mean
ergodic by Proposition 3.6.
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3.2 Examples Revisited I

(b) X = C0(Ω) :
The �xed space is

�x(T (t))t≥0 = {f ∈ C0(Ω)
∣∣ f |[q 6=0] = 0}.

Identifying C0(Ω)′ with the space of regular complex Borel measures on
Ω, we can write the dual �xed space as

�x(T (t)′)t≥0 = {µ ∈ C0(Ω)′
∣∣ ∫

Ω
fdµ =

∫
Ω
etqfdµ for all f ∈ C0(Ω), t ≥ 0} =

= {µ ∈ C0(Ω)′
∣∣µ([q 6= 0]) = 0}.

(10)

To see why the last equation holds, let νt ∈ C0(Ω)′ be the Borel measure
νt : A 7→

∫
A(1− etq)dµ. The �rst line in (10) implies that νt(f) = 0 for

all f ∈ C0(Ω), t ≥ 0, hence νt = 0∀t ≥ 0. In particular,

|νt|(Ω) =

∫
Ω

(1− etq)d|µ| = 0.

If µ([q 6= 0]) 6= 0 then from the regularity of µ it follows that there exists
a compact set K ⊂ [q 6= 0] such that µ(K) 6= 0; hence∫

K
(1− etq)d|µ| ≥ min

K
(1− etq) |µ|(K) > 0,

a contradiction. We conclude that µ([q 6= 0]) = 0. The converse impli-
cation is obvious.

We now turn to the question of whether �x(T (t))t≥0 separates �x(T (t)′)t≥0.
This means that for µ ∈ C0(Ω)′ we have the implication[
µ([q 6= 0]) = 0 and

(
µ(f) = 0∀f ∈ C0(Ω) with f |[q 6=0] = 0

)]
⇒ µ = 0.

We show that this is equivalent to [q = 0] being an open set: If [q =
0] is open any function g ∈ C0(Ω) can be written as the sum of C0-
functions g = g1[q 6=0] + g1[q=0] and a measure µ ∈ C0(Ω)′ with the
property on the left therefore satis�es µ(g) = 0∀g ∈ C0(Ω), hence µ = 0.
Conversely, assume the implication above is true. Then for s ∈ [q = 0]
the measure µ := δs satis�es µ 6= 0, µ([q 6= 0]) = 0, therefore there
exists f ∈ C0(Ω) with f |[q 6=0] = 0 such that µ(f) = f(s) 6= 0. The
set U := [f 6=] ⊂ [q = 0] therefore de�nes an open subset of [q = 0]
containing s. Since s was arbitrary we conclude that [q = 0] is open.

In summary, we see that the multiplication group on C0(Ω) is mean
ergodic if and only if [q = 0] is open. Because q is continuous by as-
sumption, the multiplication group for Ω = R is only mean ergodic if
[q = 0] is ∅ or R, i.e. if q < 0 or q = 0.
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3.3 Mean ergodicity of relatively weakly compact semigroups

3.3 Mean ergodicity of relatively weakly compact semigroups

The original de�nition of mean ergodicity requires convergence of C(rn) in
the strong operator topology for all sequences rn → ∞. Actually, a much
weaker condition is su�cient if the already familiar condition regarding the
growth of the semigroup is satis�ed:

Proposition 3.9. A C0-semigroup (T (t))t≥0 on a Banach space X satisfy-

ing limt→∞
‖T (t)‖
t = 0 is mean ergodic if and only if for all x ∈ X there exists

a sequence rn → ∞ such that (C(rn)x)n∈N converges in the weak topology

of X.

Proof. We only need to show the �if� part. By Proposition 3.6, we can do
so by showing that for f ∈ �x(T (t)′)t≥0, f 6= 0, there exists z ∈ �x(T (t))t≥0

such that f(z) 6= 0. Let f ∈ �x(T (t)′)t≥0 and let x ∈ X, f(x) 6= 0. The
idea is to substitute x by a certain �time average� z of x, which we hope will
be �independent of time�, z ∈ �x(T (t))t≥0, while at the same time the value
f(x) does not change (the latter is plausible because f ∈ �x(T (t)′)t≥0).

Let z := w-limn→∞C(rn)x, which, by assumption, exists for some se-
quence rn →∞.

Step 1: We show that z ∈ �x(T (t))t≥0. In the proof of Proposition 3.4
we saw that limr→∞C(r)(T (t)x− x) = 0 for all t ≥ 0, x ∈ X. In particular,

w-limn→∞C(rn)T (t)x = w-limn→∞C(rn)x.

The left-hand side is equal to T (t)z (because the norm continuous operator
T (t) is also weakly continuous7), while the right-hand side equals z. There-
fore, T (t)z = z for all t ≥ 0.

Step 2: We show that f(z) = f(x). Since f ∈ �x(T (t)′)t≥0 and f is
linear and continuous, f(y) = f(x) for all y ∈ K := co {T (t)x

∣∣ t ≥ 0}. From
the de�nition of the Bochner integral (5) it is clear that C(rn) ∈ K for all
n ∈ N. Therefore, z is in the weak closure of K, which coincides with K
because K is convex. Hence, z ∈ K and f(z) = f(x).

The last proposition implies mean ergodicity of an important class of
C0-semigroups, relatively weakly compact semigroups:

De�nition 3.10. A C0-semigroup (T (t))t≥0 onX is called relatively weakly
compact if for all x ∈ X the set

{T (t)x
∣∣ t ≥ 0}

is relatively weakly compact in X.

7The proof is simple: If B ∈ B(X) then for x′ ∈ X ′ also x′ ◦ B ∈ X ′. Therefore, if

yn
τw→ y we have x′(Byn) = (x′◦B)yn → (x′◦B)y = x′(By) for all x′ ∈ X ′, i.e. Byn

τw→ By.
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3.3 Mean ergodicity of relatively weakly compact semigroups

Note that relatively weakly compact semigroups are bounded, since every
weakly compact subset in a normed space is bounded (this can be seen by
applying the Banach-Steinhaus theorem to the family of functionals (f 7→
f(x))x∈X on X ′). Therefore, the condition ‖T (t)‖

t → 0 is satis�ed and we can
apply the previous proposition to obtain the following:

Corollary 3.11. All relatively weakly compact semigroups on X are mean

ergodic. In particular, if X is re�exive, every bounded semigroup on X is

mean ergodic.

Proof. Let (T (t))t≥0 be a relatively weakly compact semigroup and let x ∈
X. By the Krein-Smulian Theorem, the closed convex hull K of the weakly
compact set {T (t)x

∣∣ t ≥ 0} is weakly compact. By the Eberlein-Smulian
Theorem,K is weakly sequentially compact. Therefore, the sequence (C(n)x)n∈N
has a weakly convergent subsequence (C(rn)x)n∈N. Hence by Proposition 3.9
the semigroup is mean ergodic.

For a re�exive space every bounded subset is relatively weakly compact
by Alagolu's Theorem. The second part of the corollary is therefore a direct
consequence of the �rst.

Remark. A bounded semigroup can have negative growth bound or growth
bound zero. In the �rst case (the case of an exponentially stable semigroup)
the semigroup is always mean ergodic no matter what the underlying space
X, since ‖T (t)‖ ≤ Me−ωt for some ω > 0 implies that limr→∞

∫ r
0 T (t)dt

exists even in the uniform operator topology, hence ‖C(r)‖ → 0. Exponen-
tially stable semigroups are therefore examples of so-called uniformly mean

ergodic semigroups which we will study in more detail in Section 5.
For semigroups with growth bound zero Corollary 3.11 implies mean

ergodicity if X is re�exive. If this is not the case the semigroup need not be
mean ergodic � the translation semigroup on L1(R) or Cub(R) is such an
example (Example 2.13 (ii),(iii)).

As an application of Corollary 3.11 we derive a result that is closely
related to the famous von Neumann mean ergodic theorem [Gre08]. The
latter states that for a probability space (Ω,Σ, µ) and an ergodic measure-
preserving transformation φ on Ω, the �time averages� 1

n

∑n−1
j=0 f ◦ φj , n ∈ N

of any function f ∈ L2(Ω) converge to the �space average�
∫

Ω fdµ:

1

n

n−1∑
j=0

f ◦ φj
L2(Ω)

−−−→
∫

Ω
fdµ as n→∞.

Example 3.12. We prove a continuous version of this result: Let (Ω,Σ, µ) be
a probability space and let φ be a bijective measure-preserving transforma-
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3.4 A mean ergodic theorem for semigroups of a�ne operators

tion on Ω. Then for all f ∈ L2(Ω) it holds that

1

r

∫ r

0
f ◦ φtdt

L2(Ω)

−−−→
∫

Ω
fdµ as r →∞.

The powers φt are to be understood in terms of the functional calculus for
the unitary operator U : f 7→ f ◦ φ on L2(Ω): f ◦ φt := U t =

∫ 2π
0 eitsdE(s)

where E is the spectral measure satisfying U =
∫ 2π

0 eisdE(s).
Let T (t) = U t for t ≥ 0. The family (T (t))t≥0 is a bounded C0-semigroup

on L2(Ω). Let A be its generator. By Corollary 3.11

lim
r→∞

C(r)f = Pf for all f ∈ L2(Ω),

where C(r) are the Cesàro means of the semigroup (T (t))t≥0 and P is the
projection onto kerA with kernel ranA. Because the operator T (t), t ≥ 0,
are unitary the generator A is skew-adjoint by Stone's Theorem. Therefore
kerA = (ranA∗)⊥ = (ranA)⊥, i.e. P is an orthogonal projection. The range
of P is

ranP = �x(T (t))t≥0 = {f ∈ L2(Ω)
∣∣ f ◦ φ = f a.e.}.

In the case of an ergodic transformation φ, the only φ-invariant functions
are the constant functions on Ω.8 Therefore, the projection of f ∈ L2(Ω)
onto ranP = [{1}] is the constant function Pf = (

∫
Ω f · 1) · 1 =

∫
Ω f . This

proves the claim.

3.4 A mean ergodic theorem for semigroups of a�ne opera-

tors

Although our primary interest is in semigroups of linear operators we present
here a simple result related to semigroups of a�ne operators. Such semi-
groups arise naturally in the study of inhomogeneous partial di�erential
equations (or, more generally, inhomogeneous abstract Cauchy problems),
see Section 4.2.1 and 4.1.2 for examples.

Formally, a C0-semigroup of a�ne operators on a Banach space X is a
family (S(t))t≥0 of bounded a�ne operators on X satisfying the functional
equations (FE) and the condition that

R+ → X : t 7→ S(t)x

8Let f ∈ L2(Ω) be a φ-invariant function and let x0 ∈ Ω. Consider the set

M(x0) := {x ∈ Ω
∣∣ f(x) = f(x0)},

where we use the same symbol f to denote the equivalence class f ∈ L2(Ω) and an arbitrary
(but �xed) representative of f . Clearly, the set M(x0) is φ-invariant, M(x0) = φ(M(x0)).
In particular, µ(M(x0)) = µ(φ(M(x0))) and because φ is ergodic this implies µ(M(x0)) ∈
{0, 1}. But since Ω =

⋃
x0∈Ω M(x0) there exists y0 ∈ Ω such that µ(M(y0)) = 1, hence

f = f(y0) a.e.
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4. Applications to partial di�erential equations

is continuous for all x ∈ X. Clearly, if (S(t))t≥0 is a C0-semigroup of a�ne
operators then the operators

T (t)x := S(t)x− S(t)0, x ∈ X, t ≥ 0 (11)

form a C0-semigroup of linear operators. The following theorem given in [Liu05]
establishes a relationship between the convergence of the Cesàro means of
(S(t))t≥0 and (T (t))t≥0:

Theorem 3.13. Let (S(t))t≥0 be a semigroup of a�ne operators on X and

let (T (t))t≥0 be the associated semigroup of linear operators de�ned in (11).
If (S(t))t≥0 has a common �xed point x∗ ∈ X and if (T (t))t≥0 is mean

ergodic, then the Cesàro means

C̃(r)x :=
1

r

∫ r

0
S(t)xdt, r > 0, x ∈ X

converge for all x ∈ X. The limit is given by

lim
r→∞

C̃(r)x = Px+ (I − P )x∗,

where P is the mean ergodic projection associated with (T (t))t≥0.

Proof. The assertion follows from the simple fact that

C̃(r)x := C(r)(x− x∗) + C̃(r)x∗,

where C(r) : y 7→ 1
r

∫ r
0 T (t)ydt are the Cesàro means associated with (T (t))t≥0.

The �rst term in the equation above converges to P (x−x∗) whereas the sec-
ond is equal to x∗ for all r > 0.

4 Applications to partial di�erential equations

In the previous sections the focus was on the mathematical properties of
mean ergodic semigroups. We now apply the results derived to some of the
�classical� partial di�erential equations occurring in physics: the heat, wave
and Schrödinger equation.

For the entire section let Ω be a bounded domain in Rn. The PDEs just
mentioned involve the Laplacian ∆ as a di�erential operator. When writing
the equations in the form of ACPs we need to consider ∆ as an operator on
some appropriate Banach space. In Sections 4.1 and 4.2 the PDEs are for
functions on R × Ω; the Banach space for the ACP is L2(Ω) and ∆ is the
operator

∆ : D(∆)→ L2(Ω) : f 7→ ∆f, D(∆) := H2(Ω) ∩H1
0 (Ω).
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4.1 The heat equation

The choice of D(∆) as a subset of H1
0 (Ω) re�ects the fact that we are inter-

ested in solutions which �vanish� at the boundary ∂Ω.
In Section 4.3 we are interested in functions on R×Rn; the Banach space

for the ACP will be L2(Rn) and

∆ : D(∆)→ L2(Rn) : f 7→ ∆f, D(∆) := H2(Rn).

4.1 The heat equation

Physically, the heat equation describes how a given temperature distribution
u0 in a volume Ω ⊂ R3 evolves with time when left to itself: the change in
energy inside a subset9 U ⊂ Ω (which is up to a material-speci�c constant∫
U u
′), equals the energy �owing into U (which is, again up to a constant,∫

∂U ∇u =
∫
U ∆u): ∫

U
u′ =

∫
U

∆u

If heat sources exists inside Ω such that for every point x ∈ Ω and time t a
certain amount f(x, t) of heat per time and volume is produced, the energy
created by the sources has to be added to the energy �owing into U :∫

U
u′ =

∫
U

∆u+

∫
U
f(x, ·)dx. (12)

Since U was an (almost) arbitrary subset of Ω, Equation (12) implies

u′(t) = ∆u(t) + f(·, t) for all t ≥ 0, (13)

which is the inhomogeneous heat equation. We make the (idealized)
assumption that the temperature outside Ω is zero; therefore the boundary
condition for continuous temperature distribution u, i.e. u ∈ C(Ω), is

u|∂Ω = 0.

4.1.1 The homogeneous heat equation

We �rst study the homogeneous problem, Equation (13) with f = 0. More
precisely, we look at the following ACP on X := L2(Ω):

u′(t) = ∆u(t), t ≥ 0

u(0) = u0 ∈ H2(Ω) ∩H1
0 (Ω),

(14)

where, as mentioned at the beginning of this section, ∆ is the Laplacian with
domain D(∆) := H2(Ω) ∩H1

0 (Ω). Intuition tells us that the temperature of

9Of course, U must have all mathematical properties we need: it must be open and
∂U ∈ C1.
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4.1 The heat equation

a system whose surroundings are very cool will decay to a very low value as
well. We analyze the asymptotic behaviour mathematically:

In a �rst step we show that the operator

Aλ := (∆ + λ,D(∆))

generates a contraction semigroup on X for all λ ∈ R below a certain positive
constant ω. To do so, we verify the conditions of the Lumer-Phillips Theorem
(Theorem 2.10) for Aλ: Clearly, D(Aλ) is dense in X. Moreover, if λ ≤ 1

Cp

Re(Aλu, u) =

∫
∆uu+ λ|u|2 = −‖∇u‖2 + λ‖u‖2 ≤ (− 1

Cp
+ λ)‖u‖2 ≤ 0

for all u ∈ D(Aλ). Here, Cp > 0 is the Poincaré constant:

(u, v) ≤ Cp(∇u,∇v) for all u, v ∈ H1
0 . (15)

It remains to show that Aλ−µ is onto for some µ > 0. In other words, setting
λ̃ = λ− µ, we have to show that for all f ∈ L2(Ω) the elliptic problem

∆u+ λ̃u = f (16)

has a solution u ∈ D(Aλ) = H2(Ω) ∩H1
0 (Ω). This is a well-known result of

the theory of PDEs and we only sketch the argument:

Equation (16) is equivalent to

(∇u,∇v)− λ̃(u, v) = −(f, v) for all v ∈ H1
0 .

We interpret the left hand side as a sesquilinear form a(u, v). It follows from the Poincaré
inequality (15) that for λ̃ < 1

Cp
this form is a scalar product on H1

0 that is equivalent to

the usual scalar product on H1
0 . Therefore, H

1
0 endowed with the scalar product a(·, ·) is

a Hilbert space and using Riesz' representation theorem we conclude that the problem

a(u, v) = −(f, v) for all v ∈ H1
0

has a solution u ∈ H1
0 (Ω). The �nal step is to show that u ∈ H2(Ω), which would establish

that the elliptic problem (16) has a solution for all λ̃ < 1
Cp

and hence that A− µ is onto

for all µ > 0. We will not prove this (non-trivial) fact here, but refer to the literature on

partial di�erential equations, e.g. [Eva98].

In conclusion, Aλ generates a contraction semigroup on L2(Ω) for all
λ ≤ 1

Cp
=: ω. In particular, since ω > 0, the operator A0 = ∆ generates

a contraction semigroup (T (t))t≥0, the so-called heat semigroup. Since
(T (t)eωt)t≥0 is the semigroup generated by ∆ + ω we see that

‖T (t)‖ ≤ e−ωt, (17)

i.e. (T (t))t≥0 is exponentially stable. In particular, (T (t))t≥0 is mean ergodic
and the Cesàro means C(r) tend to 0 in the norm topology on B(L2(Ω)), see
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4.1 The heat equation

the remark after Corollary 3.11.

Finally, using Theorem 2.4, we reformulate our results in a more explicit
way:

Theorem 4.1. Let Ω ⊂ Rn is a bounded domain with boundary ∂Ω ∈ C2

and let u0 ∈ H2(Ω) ∩H1
0 (Ω). Then the heat equation

u′ = ∆u on R+

u(0) = u0.
(18)

considered as a Banach-space valued initial value problem on L2(Ω) has a

unique solution u : R+
0 → H2(Ω) ∩ H1

0 (Ω), which decays exponentially in

L2(Ω):
‖u(t)‖L2(Ω) ≤ e−ωt‖u0‖L2(Ω) for all t ≥ 0,

where ω is a positive constant.

Remark. To see that the heat semigroup is mean ergodic we would only have
needed to show that the operator A = ∆ (as opposed to all operators A =
∆ + λ, λ ≤ ω) generates a contraction semigroup and apply Corollary 3.11.
This would have made the argumentation above simpler, but the general
result (17) on the asymptotics of the heat semigroup is more interesting
from a mathematical and physical point of view.

Finally, we remark that semigroup theory yields a number of other in-
teresting facts about the solutions of the heat equation (or, more gener-
ally, equations of the form (14) where ∆ is replaced by any strongly elliptic
second-order di�erential operator with su�ciently smooth coe�cients). In
particular, if ∂Ω ∈ C∞ then the solution u : R+

0 → H2(Ω) of (14) is in�nitely
often di�erentiable on R+ and u(t) ∈ C∞(Ω) for all t > 0. [?] However, the
focus of our discussion is on asymptotic behaviour, so we will not elaborate
on these aspects.

4.1.2 The inhomogeneous heat equation

At the beginning of this section we derived the inhomogeneous heat equa-
tion (13), where the function f : Ω × R → R takes into account the heat
produced by sources in Ω. If this heat production is constant in time we
intuitively expect that the temperature distribution u will converge to a
time-independent function. This is indeed the case:

Theorem 4.2. Let u : R+
0 → H2(Ω)∩H1

0 (Ω) be the solution of the inhomo-

geneous heat equation

u′ = ∆u+ f on R+

u(0) = u0,
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4.2 The wave equation

considered as an abstract Cauchy problem in the Banach space L2(Ω), where
Ω ⊂ Rn is a bounded domain, ∂Ω ∈ C2, u0 ∈ H2(Ω)∩H1

0 (Ω) and f ∈ L2(Ω).
Then

‖u(t)− w‖ ≤ e−ωt‖u0‖L2(Ω) for all t ≥ 0,

where w is the solution of the stationary heat equation:

0 = ∆w + f.

Proof. First, note that w is well-de�ned because ∆ generates an exponen-
tially stable semigroup and therefore 0 ∈ ρ(∆) by the Hille-Yoshida Theorem.
Let v := u− w. We have to show that limt→∞ v = 0. Computing

v′ = u′ = ∆(u− w) + ∆w + f = ∆v

we see that v solves the homogeneous heat equation and the assertion there-
fore follows immediately from Theorem 4.1.

4.2 The wave equation

Consider the second-order abstract Cauchy problem

u′′ = ∆u on R+

u(0) = u0 ∈ H2(Ω) ∩H1
0 (Ω)

u′(0) = v0 ∈ L2(Ω)

(19)

on the Hilbert space L2(Ω). We can rewrite (19) as a �rst-order ACP on
X := H1(Ω)× L2(Ω)10:

U ′ = AU on R+

U(0) =

(
u0

v0

)
∈ D(A),

(20)

where A is the operator

A : D(A)→ X :(
u
v

)
7→
(

0 I
∆ 0

)(
u
v

)
=

(
v

∆u

)
with domain D(A) := (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω) ⊂ X.

10At �rst glance it would seem more natural to consider the space L2(Ω) × L2(Ω)
instead of X. However, demanding more regularity in the �rst component will be useful
for de�ning a convenient scalar product on X. Note that we do not lose any classical
solutions of (19) by making this restriction.
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4.2 The wave equation

If we choose an appropriate scalar product on X the space X becomes a
Hilbert space and A becomes a skew-symmetric operator11 on X. We set((u1

u2

)
,

(
v1

v2

))
X

:= (∇u1,∇u2) + (v1, v2),

where (·, ·) denotes the usual scalar product on L2(Ω). With this de�nition

(AU, V )X =
(( u2

∆u1

)
,

(
v1

v2

))
X

= (∇u2,∇v1) + (∆u1, v2) =

= (∇u2,∇v1)− (∇u1,∇v2) = −(U,AV )X for all U, V ∈ D(A).

Therefore, A is skew-symmetric and hence iA is symmetric. This motivates
us to show that iA is even self-adjoint: By Lemma 2.12 it su�ces to show
that ran(A− λ) = X for some λ ∈ C\(iR). This is equivalent to saying that
for all (f1, f2)T ∈ X the set of equations

u2 − λu1 = f1, ∆u1 − λu2 = f2

has a solution (u1, u2)T ∈ D(A). Replacing u2 in the second equation by
f1 + λu1 we see that this is satis�ed if

∆u1 − λ2u1 = f2 + λf1 (21)

has a solution u1 ∈ H2(Ω) ∩ H1
0 (Ω). In the previous section, Section 4.1,

we saw that ρ(∆) ⊃ [0,∞). Therefore, Equation (21) has a solution for
all λ ∈ R, which proves that iA is self-adjoint. By Stone's Theorem, A
generates a C0-semigroup (T (t))t≥0 of unitary operators. A consequence
is that the semigroup (T (t))t≥0 is mean ergodic (Corollary 3.11). We will
discuss this and other properties in more detail below for the general case of
the inhomogeneous wave equation.

4.2.1 The inhomogeneous wave equation

In physical applications one often has to deal with the inhomogeneous wave
equation

u′′ = ∆u+ f on R+

u(0) = u0 ∈ H2(Ω) ∩H1
0 (Ω)

u′(0) = v0 ∈ L2(Ω),

(22)

where f ∈ L2(Ω) is the source function (or driving force). A simple exam-
ple is that of a vibrating string in the Earth's gravitational �eld. For small

11We call a densely de�ned operator A on a Hilbert spaceX skew-symmetric if (x,Ay) =
−(Ax, y) ∀x, y ∈ D(A), in other words if iA is symmetric.
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4.2 The wave equation

displacements from the horizontal the motion of the string is approximately
described by an inhomogeneous wave equation with the gravitational force as
a source function. Intuitively, we expect that the mean displacement of the
string over time will equal the displacement of a motionless string subject to
the gravitational force. Using the theory of mean ergodic semigroups it will
not be di�cult to prove this mathematically (see Theorem 4.3 below).

As in the homogeneous case we can replace the second-order ACP (22)
by a �rst-order problem on X = H1(Ω)× L2(Ω):

U ′ = AU + F on R+

U(0) =

(
u0

v0

)
∈ D(A),

(23)

where A is de�ned as in Section 4.1 and F := (0, f)T .

Knowing that the solutions of the homogeneous problem can be described
by a C0-semigroup of unitary operators we easily obtain the following prop-
erties for the solutions of the general inhomogeneous equation:

Theorem 4.3. The inhomogeneous wave equation (22) considered as an

ACP on the Hilbert space L2(Ω) has a unique solution u : R+
0 → L2(Ω). The

solution has the following properties:

(a) The �energy� function

E(t) :=

∫
Ω

(|u(t)|2 + ‖∇u(t)‖2 + |u′(t)|2), t ≥ 0

is constant.

(b) The �mean value� of the solution satis�es

lim
r→∞

1

r

∫ r

0
u(t)dt = φ in H1(Ω),

where φ is the solution of the stationary equation

0 = ∆φ+ f.

Proof. We de�ne the C0-semigroup of a�ne operators (T̃ (t))t≥0 by

T̃ (t)U0 := T (t)(U0 +A−1F )−A−1F.

Note that A−1 exists because ranA = X as shown in Section 4.1 and kerA =
{0} since (v,∆u)T = 0 for (u, v)T ∈ D(A) implies (u, v)T = 0. A simple
calculation shows that the function U : R+

0 → X de�ned by

U(t) := T̃ (t)U0,
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4.3 The Schrödinger equation

is a solution of (23). Because the homogeneous problem has a unique solution
(Theorem 2.4) the solution of the inhomogeneous problem is unique as well.

We now show properties (a) and (b):

(a) Since T (t) is unitary T̃ (t) is isometric. Therefore E(t) = ‖U(t)‖X =
‖T̃ (t)U0‖X = ‖U0‖X is constant.

(b) Clearly, Φ := −A−1F is a stationary point for all T̃ (t), t ≥ 0. Since
�x(T (t))t≥0 = kerA = {0} the mean ergodic projection of (T (t))t≥0 is 0.
Therefore, by Theorem 3.13 the Cesàro means 1

r

∫ r
0 U(t)dt of (T̃ (t))t≥0

satisfy

lim
r→∞

1

r

∫ r

0
U(t)dt = Φ

where the limit is in X = H1(Ω)×L2(Ω). In particular, 1
r

∫ r
0 u(t)dt→ φ

in H1(Ω), where φ is the �rst component of Φ, i.e. ∆φ = −f .

4.3 The Schrödinger equation

In quantum mechanics, the state of a system at a given time t is described
by a wave function ψ(t) ∈ X := L2(Rn). The time evolution of ψ starting
from some state ψ0 is given by the Schrödinger equation

ψ′ = −iHψ,
ψ(0) = ψ0

(24)

where the (densely de�ned) operator H is the Hamiltonian of the system.

For a single particle the typical form of H is

H = −∆ +MV , D(H) = H2(Rn) (25)

whereMV is the multiplication operator with the real function V ∈ L∞(Rn)
(the �potential�) and ∆ is the Laplacian with domain H2(Rn). Physically, H
can be interpreted as the operator corresponding to the total energy of the
particle, while−∆ corresponds to the kinetic andMV to the potential energy.

Before discussing the mathematical properties of H we remark on what
we should expect from a physical point of view: If −iH generates a C0-
semigroup of operators (U(t))t≥0, these operators represent the �time evolu-
tion� of the system, mapping the initial state ψ0 to the state ψ(t) at some
later time t > 0. Time evolution should be bijective: To a state ψ(t) there
should correspond a unique state ψ0 which is mapped to ψ(t) under U(t).
Moreover, the physical interpretation of |ψ(t)|2 is that of a probability den-
sity function for the position of the particle at time t: The probability that
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4.3 The Schrödinger equation

the particle is in the measurable set U ⊂ Rn is
∫
U |ψ(t)|2. Since the particle

must be �somewhere� at all times,
∫
Rn |ψ(t)|2 = ‖ψ(t)‖ = 1 for all t ≥ 0.

In conclusion, we expect the time evolution operators U(t) to be unitary
or, equivalently (Theorem 2.11), the Hamiltonian H to be self-adjoint. We
verify this for the special form of H given in (25):

Theorem 4.4. The Hamiltonian H for a single particle in a potential V ∈
L∞(Rn) (Equation (25)) is self-adjoint. In particular, for all ψ0 ∈ D(H) =
H2(Rn) the corresponding Schrödinger equation (24) has a unique solution

ψ : R+
0 → L2(Rn) and ψ satis�es ‖ψ(t)‖ = ‖ψ(0)‖ for all t > 0.

Proof. From the de�nition of distributional derivatives it follows that

(u,∆v)L2(Rn) = (∆u, v)L2(Rn) for all u ∈ C∞c (Rn), v ∈ H2(Rn).

By density of C∞c (Rn) ⊂ H2(Rn) (with respect to the usual H2-norm), this
holds for all u, v ∈ H2(Rn). Therefore, ∆ is symmetric. From the de�nition
of the adjoint of an operator it follows that

D(∆∗) = {u ∈ L2(Rn)
∣∣D(∆)→ C : v 7→ (u,∆v)L2(Rn) is bounded} =

= {u ∈ L2(Rn)
∣∣∆u ∈ L2(Rn)}

where in the last line we have used Riesz' Representation Theorem. Applying
the Fourier transform F , which is a unitary operator on L2(Rn), to the set
above, it is not di�cult to show that D(∆∗) equals H2(Rn) ≡ D(∆)12;
hence ∆ = ∆∗. Because the multiplication operator (MV , D(∆)) with the
real potential V ∈ L∞(Rn) is bounded and symmetric, the Hamiltonian
(−∆ +MV , D(∆)) is self-adjoint as well.

In particular, it follows from Corollary 3.11 that the semigroup generated
by −iH is mean ergodic. Therefore, the limit of the time averages of wave
functions 1

r

∫ r
0 ψ(t)dt exists in L2(Rn). If the potential V is zero (i.e., the

12For a multi-index α ∈ Nn0 de�ne the following function on Rn:

mα : Rn → R : x 7→ xα1
1 · · ·x

αn
n .

If u ∈ L2(Rn) such that ∆u ∈ L2(Rn) then F∆u = −
∑n
i=1 m2eiFu ∈ L2(Rn). Since

|mα(x)| ≤ |
n∑
i=1

m2ei(x)| =
n∑
i=1

x2
i for all α ∈ Nn0 , |α| ≤ 2, x ∈ ([−1, 1]n)c

this implies mαFu ∈ L2(Rn) for all ∀α ∈ Nn0 , |α| ≤ 2. Therefore,

(u,Dαv)L2(Rn) = (Fu, i|α|mαFv)L2(Rn) = (i|α|mαFu,Fv)L2(Rn) =

= (F−1i|α|mαFu, v)L2(Rn) for all v ∈ Cc(R
n), |α| ≤ 2.

This shows that Dαu ∈ L2(Rn) for all |α| ≤ 2, hence u ∈ H2(Rn).
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5. Uniformly mean ergodic semigroups

particle is �free�), then kerH = ker ∆ = {0}, which implies

lim
r→∞

1

r

∫ r

0
ψ(t)dt = 0 in L2(Rn). (26)

This corresponds to the intuitive idea that the particle travels freely through
space and has no preferred location: The �common part� of wave functions
at di�erent times t1, t2, i.e. the overlap

∫
Rn ψ(t1)∗ψ(t2), becomes arbitrarily

small. The connection with the mean ergodic property (26) is shown in the
following proposition:

Proposition 4.5. Let ψ be the solution of the Schrödinger equation (24) for
a free particle, i.e. with Hamiltonian H = −∆. Then there exists a sequence

of non-negative numbers tn →∞ such that the net of overlaps∫
Rn
ψ(tn)∗ψ(tm), n,m ∈ N

has 0 as an accumulation point.

Proof. If the assertion were wrong there would exist T > 0 and ε > 0 such
that

(ψ(t1), ψ(t2))L2(Rn) > ε ∀t1, t2 > T.

Let r > T . The integral of the continuous function ψ : R+
0 → L2(Rn) is∫ r

T
ψ(t)dt = lim

n→∞

n−1∑
i=0

ψ
(
T +

r − T
n

i
)r − T

n
.

Because the sequence in the last equation converges in L2(Rn), the squared
norm is

∥∥∫ r

T
ψ(t)dt

∥∥2
= (r − T )2 lim

n→∞

1

n2

∥∥∥ n−1∑
i=0

ψ
(
T +

r − T
n

i
)∥∥∥2

=

= (r − T )2 lim
n→∞

1

n2

n−1∑
i=0

n−1∑
j=0

(
ψ
(
T +

r − T
n

i
)
, ψ
(
T +

r − T
n

j
))

L2(Rn)
>

> (r − T )2ε.

But limr→∞
1
r2

∥∥ ∫ r
0 ψ(t)dt

∥∥2
= 0 by Equation (26), a contradiction.

5 Uniformly mean ergodic semigroups

In this section we discuss a di�erent form of mean ergodicity, which requires
convergence of the Cesàro means C(r) = 1

r

∫ r
0 T (t)dt not in the strong but

in the uniform operator topology on X:
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5.1 Characterization of uniformly mean ergodic semigroups

De�nition 5.1. A C0-semigroup T (t)t≥0 on a Banach space X is called uni-
formly mean ergodic if the limit limr→∞C(r) exists in the operator norm.

In this section we only consider bounded C0-semigroups. In the remark
after Corollary 3.11 we have already mentioned that a bounded semigroup
can either be exponentially stable, i.e. has negative growth bound, or has
growth bound zero. In the �rst case we saw that the semigroup is always
uniformly mean ergodic, in the second case it can be uniformly mean ergodic,
mean ergodic but not uniformly mean ergodic or not mean ergodic at all (see
Example 5.4).

5.1 Characterization of uniformly mean ergodic semigroups

The main result of this section, Theorem 5.3, is a characterization of bounded
uniformly mean ergodic semigroups. Among others, we will see that a
bounded semigroup is uniformly mean ergodic if and only if

lim
λ↘0

λR(λ,A)

exists in the operator norm. Note that the expression above makes sense
since (0,∞) ⊂ ρ(A) for any bounded semigroup by the Hille-Yoshida The-
orem. The result implies that semigroups whose generator is invertible, i.e.
0 ∈ ρ(A) (which is the case for all exponentially stable semigroups), are
uniformly mean ergodic.

Another criterion for uniform mean ergodicity, which will also be proved
in Theorem 5.3, is that ranA is closed. Since a uniformly mean ergodic semi-
group is mean ergodic and therefore X = kerA+ ranA by Theorem 3.4, we
see that for uniformly mean ergodic semigroups we have the decomposition

X = kerA+ ranA. (27)

Conversely, if this relation holds, then X = kerA + ranA; hence, the semi-
group is mean ergodic. Because in this case the sum kerA+ ranA is direct,
we conclude from

kerA⊕ ranA = kerA⊕ ranA

that ranA = ranA, so the semigroup is uniformly mean ergodic. In sum,
Theorem 5.3 implies that a bounded C0-semigroup is uniformly mean er-
godic if and only if (27) holds.

Lemma 5.2 and Theorem 5.3 are both collections of properties that are
equivalent to uniform mean ergodicity. For the proof it is convenient to bring
them separately:
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5.1 Characterization of uniformly mean ergodic semigroups

Lemma 5.2. Let (T (t))t≥0 be a bounded C0-semigroup with generator A and

Cesàro means C(r), r > 0. For an operator B on X we denote by B| the part

of B in ranA, i.e. the operator

B| : D(B|)→ ranA : x 7→ Bx,

D(B|) := {x ∈ D(B) ∩ ranA
∣∣Bx ∈ ranA}.

The following statements are equivalent:

(a) ‖C(r)|‖ → 0.

(b) A| is invertible, i.e. 0 ∈ ρ(A|).

(c) ranA is closed in X,

Proof. (c)⇒ (a). If y = Ax, x ∈ X, then

rC(r)y =

∫ r

0
T (s)Axds = T (r)x− x.

Because (T (t))t≥0 is bounded this implies

sup
r>0
‖rC(r)y‖ <∞ for all y ∈ ranA.

Since ranA is closed by assumption it follows from the Banach-Steinhaus
Theorem that the operators (rC(r)|)r>0 are uniformly bounded, hence

lim
r→∞

‖C(r)|‖ = 0.

(a)⇒ (b). The range of A| equals ranA; therefore σ(A|) = σp(A|) ∪ σc(A|).
If 0 ∈ σc(A|) the inverse (A−1

| , ranA) is a well-de�ned operator on ranA, but
it cannot be continuous, because from the closedness of A it would follow
that ranA| is closed

13. Therefore, there exists a sequence (xn)n∈N in D(A|)
such that Axn → 0 but ‖xn‖ = 1, ∀n ∈ N. The same is true in the case
0 ∈ σp(A|). So if 0 /∈ ρ(A|) we conclude that

‖C(r)xn − xn‖ =
∥∥∥1

r

∫ r

0

(
xn +

∫ s

0
T (t)Axndt

)
ds− xn

∥∥∥ ≤
≤ 1

r

∫ r

0

∫ s

0
‖T (t)Axn‖dtds ≤ ‖Axn‖ sup

t≥0
‖T (t)‖r

2
,

hence limn→∞C(r)xn − xn = 0. Therefore ‖C(r)|‖ ≥ 1 ∀r > 0, which
contradicts property (a).

(b)⇒ (c). If A| is invertible then ranA| = ranA = ranA.

13Let (Axn)n∈N be a sequence in ranA with limit y ∈ X. If (A−1
| , ranA) is continuous

then xn = A−1(Axn) → A−1(y) ∈ D(A). But if (xn)n∈N converges to an element in
D(A) and (Axn)n∈N converges to y ∈ X, the closedness of A implies y ≡ limn→∞Axn =
A(limn→∞ xn) ∈ ranA, hence ranA = ranA.
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Theorem 5.3. For a bounded C0-semigroup (T (t))t≥0 with generator A the

following properties are equivalent:

(a) (T (t))t≥0 is uniformly mean ergodic.

(b) limλ↘0 λR(λ,A) exists in the operator norm.

(c) ranA is closed in X.

Proof. (a)⇒ (b). Let P be the mean ergodic projection associated with
(T (t))t≥0. For λ ∈ ρ(A), x ∈ X, y ∈ D(A) we have R(λ,A)x = y if and only
if

x = (A− λ)y = (A− λ)(I − P )y + λPy,

i.e. if and only if (I − P )y = R(λ,A)(I − P )x and Py = 1
λPx. Therefore,

we can write the resolvent R(λ,A) of A as

R(λ,A) = R(λ,A|)(I − P ) +
1

λ
P,

where, as before, A| is the part of A in ranA = kerP . Since (T (t))t≥0 is
uniformly mean ergodic Lemma 5.2 implies that 0 ∈ ρ(A|) and therefore λ 7→
R(λ,A|) is analytic in a neighborhood of 0. In particular, limλ↘0 λR(λ,A)
exists (and is equal to P ).

(b)⇒ (c). Let x ∈ D(A), y = Ax. Then for λ > 0

λR(λ,A)y = λ(A− λ+ λ)R(λ,A)x = λ[x+ λR(λ,A)x],

hence limλ↘0 λR(λ,A)y = 0 for all y ∈ ranA. Since λR(λ,A) converges in
norm this implies

lim
λ↘0
‖λR(λ,A)|

ranA‖ = 0.

From the identity AR(λ,A) = λR(λ,A) + I and the result above it follows
that AR(λ,A)| is invertible for su�ciently small λ > 0. In particular,

ranA = ran(AR(λ,A)|) ⊂ ranA.

(c)⇒ (a). From Lemma 5.2 it follows that limr→∞ ‖C(r)|‖ = 0. Therefore, it
su�ces to show that X = kerA+ ranA. Also by Lemma 5.2, A| is invertible.
Hence, for x ∈ D(A) there exists y ∈ D(A|) = D(A) ∩ ranA such that
Ay = Ax. Writing x = (x − y) + y we see that D(A) ⊂ kerA + ranA.
Because D(A) is dense in X, it follows that X = kerA+ ranA.

5.2 Examples Revisited II

We apply Theorem 5.3 to discuss the mean ergodic properties of the already
familiar translation and multiplication semigroups:

32



5.2 Examples Revisited II

Example 5.4. Exponentially stable C0-semigroups are always uniformly mean
ergodic. The interesting case is when the semigroup has growth bound 0, as
is the case for the translation and multiplication semigroups introduced in
Example 2.13 and 2.14.

(a) The translation semigroups on L1(R) and Cub(R) are not mean ergodic
(see Example 3.7), hence not uniformly mean ergodic.

(b) The multiplication semigroup

T (t)f = etqf

on C0(R) where q ∈ C0(R), q < 0, is mean ergodic (see Example 3.8), but
not uniformly mean ergodic: For n ∈ N let hn be a continuous function
satisfying

1[−n,n] ≤ hn ≤ 1[−n−1,n+1].

Then Ahn = qhn ∈ ranA and limn→∞Ahn = q ∈ C0(R). But q /∈ ranA
(because 1 /∈ C0(R)); therefore ranA is not closed and by Theorem 5.3
the semigroup is not uniformly mean ergodic.

(c) The translation semigroup on Lp(R), 1 < p < ∞ is mean ergodic (see
Example 3.7), but not uniformly mean ergodic: De�ne the function

g(x) = sin
(1

x

)
1[ 1

π
,∞)(x).

Note that g /∈ Lp(R). Let a1 < a2 < · · · be the zeroes of g. The functions
gn := g1[1,an], n ≥ 1, are elements ofD(A) = {f ∈ Lp(R)

∣∣ f is absolutely continuous and f ′ ∈
Lp(R)}. Their images

fn(x) := Agn(x) = − 1

x2
cos
(1

x

)
1[ 1

π
,an](x) ∈ ranA.

converge in Lp(R):

f(x) = lim
n→∞

fn(x) = − 1

x2
cos
(1

x

)
1[ 1

π
,∞)(x) ∈ Lp(R).

But f /∈ ranA, because the only absolutely continuous functions gC
satisfying g′C = f are given by gC := g +C,C ∈ R, which are not in Lp,
hence not in D(A).

(d) The multiplication semigroup

T (t)f = etqf

on Lp(Ω, µ), 1 ≤ p < ∞ where q < 0 is a measurable function, is mean
ergodic (see Example 3.8). If 1

q ∈ L
∞(Ω, µ) then (T (t))t≥0 is uniformly
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5.3 Generators with compact resolvent

mean ergodic, because f = q 1
qf = A1

qf ∈ ranA for all f ∈ Lp(Ω, µ),
hence ranA = Lp(Ω, µ) is closed.

If q < 0 is an arbitrary measurable function the semigroup need not be
uniformly mean ergodic: For instance, if (Ω, µ) = (R, λ) and q ∈ Lp(R)
then gn = q1[−n,n] ∈ ranA and limn→∞ gn = q ∈ Lp(R) exists, but
limn→∞ gn /∈ ranA (because 1 /∈ Lp(R)).

The examples above show that a C0-semigroup with growth bound zero
can be uniformly mean ergodic (d), mean ergodic but not uniformly mean
ergodic (b, c) or not mean ergodic at all (a).

5.3 Generators with compact resolvent

We apply the theorem above to prove uniform mean ergodicity of a special
class of semigroups.

De�nition 5.5. We say that an operator A with ρ(A) 6= ∅ has compact
resolvent if there exists λ ∈ ρ(A) such that the resolvent R(λ,A) is compact.

Note that A has compact resolvent if and only if R(λ,A) is compact for
all λ ∈ ρ(A). This follows from the resolvent identity

R(λ,A)−R(µ,A) = (λ− µ)R(λ,A)R(µ,A), λ, µ ∈ ρ(A)

and the fact R(λ,A)R(µ,A) is compact if R(λ,A) is.

Corollary 5.6. Let (T (t))t≥0 be a bounded C0-semigroup. If the generator A
of (T (t))t≥0 has compact resolvent then (T (t))t≥0 is uniformly mean ergodic.

Proof. Let λ > 0. From the theory of compact operators we know that
ran(R(λ,A) + µ) is closed for all µ 6= 0, in particular for µ = 1

λ . Therefore,
the identity 1

λAR(λ,A) = R(λ,A)+ 1
λ implies that ran(AR(λ,A)) = ranA is

closed as well. By Theorem 5.3, the semigroup (T (t))t≥0 is uniformly mean
ergodic.

Clearly, compactness of the resolvent of A is not necessary for uniform
mean ergodicity: On any Banach space X the operator A = 0 generates a
uniformly mean ergodic semigroup, but does not have compact resolvent if
X is in�nite dimensional.

Corollary 5.6 is useful in the context of partial di�erential equations:
The natural domain of many di�erential operators on L2(Ω) (for instance
the operator ∆ appearing in Section 4.1) is a subset of some Sobolev space
Hk(Ω), k > 1. The Rellich-Kondrachov Theorem together with Corollary 5.6
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5.3 Generators with compact resolvent

and Lemma 5.7 below implies that the semigroup generated by such an
operator is uniformly mean ergodic (Corollary 5.8 below):

Lemma 5.7. Let A be an operator on X with domain D(A) and ρ(A) 6= ∅.
On D(A) we de�ne the norm

‖x‖A := ‖x‖+ ‖Ax‖, x ∈ D(A).

Then A has compact resolvent if and only if the canonical injection

ι : (D(A), ‖ · ‖A) ↪→ X (28)

is compact.

Proof. We formulate the two properties in a more explicit way: Let λ ∈ ρ(A).
The operator A has compact resolvent if and only if the set

M1 := {(A− λ)−1(x)
∣∣x ∈ X, ‖x‖ < 1} =

= {y ∈ D(A)
∣∣ ‖(A− λ)y‖ < 1}

is precompact in X. The function ι is compact if and only if the set

M2 := {x ∈ D(A)
∣∣ ‖x‖A < 1}

is precompact in X. The proof is complete if we can show that ‖ · ‖A and
‖(A− λ)(·)‖ are equivalent norms on D(A). This can be veri�ed easily:

‖(A− λ)x‖ ≤ ‖Ax‖+ |λ|‖x‖ ≤ max{1, |λ|}‖x‖ ≤ max{1, |λ|}‖x‖A

and

‖x‖A = ‖x‖+ ‖Ax‖ ≤ ‖x‖+ ‖(A− λ)x‖+ |λ|‖x‖ ≤

≤
(

1 + (1 + |λ|)‖(A− λ)−1‖
)
‖(A− λ)x‖.

Corollary 5.8. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with smooth

boundary, ∂Ω ∈ C1. Let A be a closed operator on Hk(Ω), k ≥ 0, with

domain D(A) ⊂ Hk+1(Ω). If ρ(A) 6= ∅ then A has compact resolvent.

The proof is based on the Rellich-Kondrachov Theorem, which we recall
below (for a proof see e.g. [Ngô] and [Eva98]):

Theorem 5.9 (Rellich-Kondrachov). Let Ω ⊂ Rn and k ∈ N0 be as above.

Then the Sobolev space Hk+1(Ω) is compactly embedded in Hk(Ω).
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5.3 Generators with compact resolvent

Proof of Corollary 5.8. We show that the inclusion map ι de�ned in (28) is
compact. We can write ι as the composition of the inclusion maps ι′ and ι′′

given below:

ι : (D(A), ‖ · ‖A)
ι′′
↪→ Hk+1(Ω)

ι′
↪→ Hk(Ω).

From the Rellich-Kondrachov Theorem it follows that ι′ is compact. More-
over, ι′′ is closed: If xn → x in (D(A), ‖ · ‖A) and xn → y in Hk+1(Ω),
then the sequence (xn)n∈N converges to both x and y in Hk(Ω) because
‖ · ‖Hk(Ω) ≤ ‖ · ‖A and ‖ · ‖Hk(Ω) ≤ ‖ · ‖Hk+1 ; hence x = y. Since A is
closed, (D(A), ‖ · ‖A) is a Banach space. By the Closed Graph Theorem ι′′

is bounded and therefore ι = ι′ ◦ ι′′ is compact. From Lemma 5.7 it follows
that A has compact resolvent.

Example 5.10. From Corollary 5.8 it follows immediately that whenever the
operator (∆ + λ,H2(Ω)∩H1

0 (Ω)) generates a C0-semigroup, this semigroup
is uniformly mean ergodic. In particular, the heat semigroup (λ = 0) is
uniformly mean ergodic, but this is clear anyway because it is exponentially
stable (Equation (17)).

The semigroup associated with the wave equation, Equation (20), is uni-
formly mean ergodic as well. This can be seen directly from Equation (21),
which implies that for all λ ∈ ρ(A) ⊃ R the resolvent of the generator A can
be written as the product Rλ(A) = Rλ(A)1 ×Rλ(A)2, where

Rλ(A)1 : (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω)→ L2(Ω)
Rλ2 (∆)
→ H1(Ω) :(

f1

f2

)
7→ f2 + λf1 =: g 7→ Rλ2(∆)(g)

and

Rλ(A)2 : (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω)→ H1(Ω)
ι→ L2(Ω) :(

f1

f2

)
7→ f1 + λu1 =: u2 7→ u2

are compositions of a compact and a continuous operator, hence compact.
Alternatively, the compactness of Rλ(A) can be seen from the fact that
D(A) = (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω) ⊂ H2(Ω)×H1(Ω) is compactly embedded

in X = H1(Ω) × L2(Ω) and a similar argumentation as in the proof of
Corollary 5.8.
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