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Starting with the motivating example of Stone’s representation theorem
that allows one to represent Boolean algebras as subalgebras of the poweral-
gebra of a sufficiently large set, we ask the question of whether it is possible
to generalize this to a relationship between lattice theory and topology. This
can be done by considering special lattices called locales, which are, in a sense,
a suitable algebraic model for a topological space. Every topological space is
a locale and we can assign to each locale a topological space, which one can
consider as the set of ”points” of that lattice. We will make this precise in
the form of an adjunction between the category of topological spaces and the
category of locales, which is the main point of this paper.
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1 Introduction

The concept of a “point” in a continuum has always been a mysterious one. In a naive
example, one could say that a point in euclidean space corresponds in the real world
to a directed measurement with a ruler, from a certain fixed starting point to another.
One would have to object that no matter how precise the measurement, we would still
not reach the point itself, we would just get close. By refining the measurement, i.e.
using a more precise ruler, we could still get closer to the point we are trying to measure,
yet the point itself will never be reached. As such, a point in space might actually be
nothing more than a series of increasingly precise measurements. In today’s mathematics,
specifically analysis and topology, the starting point is always the set of points. Only
after the existence of points has been assumed, we assign a notion of “nearness” (as a
topology) or “distance” (as a metric space) to the set of points. Now there is a way to
turn this logic the other way around, but in order to establish the mathematics behind
it, we have to go back in history for a few years.

Stone’s representation theorem goes back to the 1930s and was motivated by his study
of the spectral theory of operators on a Hilbert Space. The idea is to associate to each
boolean algebra B a set of “points” X, where a point is defined to be an ultrafilter in B.
One can then find the boolean algebra as a subalgebra of the power algebra 2X . Let us
state the theorem:

Theorem 1.1. Stone’s Representiation Theorem (classical version) For every
boolean algebra B, there is a set X and an injective boolean algebra homomorphism from
B into 2X .

Viewing B as a sub-boolean algebra of 2X , we can generate the topology T on X with
B as sub-basis. It turns out that B is already a basis of T and every element b ∈ B is a
clopen subset of T (since B is closed under complements). Therefore, (X, T ) is totally
disconnected. One can further show that it is compact and Hausdorff. Such a space is
called a Stone Space. Let K be a clopen subset of X. Since K is open, it can be written
as a union of elements bi of B. It is a closed subset of the compact space X, therefore
itself compact, hence a finite number of such bi’s suffices. Therefore K is already in B.
Since for any topological space the set of clopen sets forms a boolean algebra, it must
be equal to B, that means we can recover B from T . This process is an example of a
duality.

Theorem 1.2. Stone’s Representiation Theorem (categorical version) The
category of boolean algebras and boolean algebra homomorphisms is dual to the category
of Stone spaces and continuous functions between them.

Now back to our discussion of “points”. In the example of Stone’s Theorem, a point was
identified with an ultrafilter. We can view this filter as an algebraic model of our intuitive
notion of a series of increasingly precise measurements of a point. The question arises:
Is it possible to extend this analogy between certain topological spaces and algebraic
structures to all of topology by weakening the requirements from boolean algebras to a
certain type of lattice? It turns out that we can.
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The most general type of lattice that can still be considered topological is a complete
lattice satisfying a certain distributivity law called a locale. A locale is the same thing as
a complete Heyting-Algebra, a model for intuitionistic logic generalizing classical boolean
logic. The only difference lies in their treatment of morphisms, i.e. generalized continuous
functions. We will later on prove that topological spaces are adjoint to locales, which
reduces to an equivalence on the rather large subcategories of sober spaces and spatial
locales. The category of sober spaces includes all Hausdorff spaces as well as spaces
arising from the Zariski topology on the spectrum of any commutative ring. Many types
of Stone dualities, including the aforementioned Stone Representation Theorem reduce
to special cases of this equivalence.

Almost any topological concept can be translated into localic terms. Products, quo-
tients, subobjects, and in general limits and colimits all exist.1 Compactness, regularity
and a variety of separation axioms can be easily formulated, with almost the same prop-
erties as for topological spaces.

Now why should the reader care? The best answer can probably be found in Johnstone’s
Paper “The Point of Pointless Topology” dating 1983, [9]. There are differences between
topological spaces and locales. One example is that products are generally bigger (for
sober spaces, in general, there exists only a surjection from their localic product to their
topological product). John Isbell argues that those deficiencies are actually a feature,
stating that the localic product is, in general, better behaved than the topological one [6].
A Tychonoff-theorem exists for compact regular locales, whose proof neither requires the
axiom of choice nor the law of the excluded middle. The same applies for a version of the
Stone-Czech compactification and a variety of other analogues to point-set theorems. The
subcategories of Compact Hausdorff Spaces and Compact Regular Locales can be proven
equivalent, but any such proof requires one to invoke a choice principle (most commonly a
version of the prime ideal theorem), cf. [15]. Further, there is a close connection between
the theory of locales and topos theory. Locales can be formulated in any topos, which
allows one to do topology in any mathematical setting where the axiom of choice and/or
law of the excluded middle is missing. An example of a frequently encountered topos
is the category of sheaves over a topological space X. Much information about X can
be gained by looking at the behaviour of its topos of sheaves. Besides the usefulness
of being able to do topology in this setting, there is another argument for locales. The
assignment from X to the sheaves over X, Sh(X), gives a functor into the quasi-category
of all topoi, yet has the shortcoming of not being an embedding. Restricting to sober
spaces, this functor suddenly becomes an embedding that further extends naturally to
the full category of locales, cf. [8], [13]. Another interesting and quite recent result is
that with the use of locale theory, it is possible to have an isometry-invariant measure
on Rn with its localic structure, for which all subsets are measurable, a result that is
impossible in classical topology, cf. [16].

A thorough discussion of this would go far beyond the scope of this paper, but we had
the feeling it at least had to be mentioned. The most complete account on how topology
is done with locales, without the use of deep category theory, is currently found in Picado
and Pultr’s wonderful book, [15]. Another good introduction is Johnstone’s Stone Spaces,

1Limits in point-set topology are better known as inverse limits, colimits as direct limits.
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[7].
We will need some categorical terminology to describe the main points of the paper.

The reader familiar with the concept of natural transformations and adjoint functors
can skip the next section. Note that although the author tried to keep this paper self-
contained, the treatment is rather short and terse. We refer the reader to [2], [1] and
[12] (in roughly ascending order of difficulty and generality).

2 Category Theory

One thing to keep in mind is that, historically, the main reason that category theory was
invented is to study functors, and the main reason functors were invented is to study
natural transformations and adjoints. As usual, in mathematics, by defining things we
are doing it backwards.

Definition A category A consists of a class O, sometimes also denoted Ob(A), whose
members are called A-objects, together with a set hom(A,B) for each pair of A-objects
A and B, whose elements are referred to as A-morphisms from A to B [the statement

f ∈ hom(A,B) is usually written as A
f−→ B], such that:

1. for each A-Object, there exists a morphism A
idA−−→ A, called A-identity on A,

2. for all morphisms A
f−→ B and B

g−→ C there is a morphism A
g◦f−−→ C, called the

composite of f and g,

with the following conditions:

1. composition is associative, i.e. h ◦ (g ◦ f) = (h ◦ g) ◦ f , whenever both sides of this
equation are well-defined,2

2. A-Identities act as identities with respect to composition, i.e. for A
f−→ B we have

idB ◦ f = f = f ◦ idA,

3. the sets hom(A,B) are pairwise disjoint.

We call A small if O is a set. If O is a finite set and all hom-sets are finite, we call A
finite.

Example The following are categories with which most mathematicians are familiar:

• The category Set with objects sets and as morphisms functions between them.

• The category Vec of vectorspaces over a field K, with linear maps between them.

• For those with knowledge in functional analysis: The subcategory CommC∗−Alg
of Vec with objects commutative C∗-Algebras and as maps *-algebra homomor-
phisms. It is a proper subcategory in both objects as well as morphisms. We will
use this category later for an example of (non-obvious) duality.

2This is already the case if either side is well-defined.
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• The category Top of topological spaces with continuous maps as morphisms, as
well as the (full) subcategory HComp of compact Hausdorff Spaces.

Example (Important!) A category P having only at most one morphism between any

two objects is called a partially ordered class. Writing A ≤ B whenever A
f−→ B we can

infer that ≤ is a relation on Ob(P ) with the properties:

1. A ≤ A,

2. if A ≤ B and B ≤ A then A = B,

3. if A ≤ B and B ≤ C then A ≤ C.

The first statement is the same as the existence of identities, the second follows from
only having at most one morphism in between two objects, and the last is simply the
composition of morphism. Conversely, any class with a relation fulfilling those properties
can be viewed as a category that is a partially ordered class. We will call a small, partially
ordered class a partially ordered set, or short poset.3

Definition A morphism A
f−→ B is called an isomorphism, iff there exists a morphism

B
g−→ A s.t. idA = g ◦ f and idB = f ◦ g. We call g the Inverse of f and write f−1.

This notation is justified since, if inverses exist, they are unique. [Let g, h be both inverses
to f . Then g = (h ◦ f) ◦ g = h ◦ (f ◦ g) = h by associativity.]

Definition A (covariant) functor F : A → B is a mapping that assigns to everyA-object

A a B-object F (A) and every A-morphism A
f−→ A′ a B-morphism F (A)

F (f)−−→ F (A′) s.t.

1. F (idA) = idF (A)

2. F (f ◦ g) = F (f) ◦ F (g).

Slightly trivial:

Proposition 2.1. Every category A has an identity functor idA defined in the obvious
way.

Proposition 2.2. The composition of two functors F and G (again) defined in the ob-
vious way is a functor.

Proof. 1. GF (idA) = G(idF (A)) = idGF (A) and
2. GF (f ◦ g) = G(F (f) ◦ F (g)) = GF (f) ◦GF (g).

3Readers already familiar with posets might object that this definition is rather bizarre. The reason for
this is that a lot of concepts from lattice theory have generalizations to arbitrary categories. Since we
will be using these generalizations anyway there is no need in proving things twice. We will simply
view posets as special cases. A more traditional account can be found in [5].
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Proposition 2.3. Functors preserve isomorphisms.

Proof. Let A
f−→ B be an isomorphism, then

idF (A) = F (idA) = F (f−1 ◦ f) = F (f−1) ◦ F (f) (1)

idF (B) = F (f) ◦ F (f−1) is proved the same way, which means F (f−1) = F (f)−1.

Remark Taking the conglomerate of all categories as elements and viewing functors in
between them as morphisms gives something that has the formal structure of a category,
but is not one due to set theoretical difficulties (The “class” of all classes doesn’t exist).
Typically one speaks of CAT as the quasi-category of categories and functors in between
them. If we want to view functors as morphisms in a category, it is usually convenient to
consider the category Cat of small categories.

Example A functor F : P → Q between two partially ordered classes is also called a
monotone map. This is justified by

A ≤ B =⇒ F (A) ≤ F (B). (2)

Similarly, any map between two partially ordered classes with this property is a functor.
The class of posets together with monotone mappings between them is a (full) subcat-

egory of Cat. We will denote it by Pos.

Important categorical concepts are those of products, terminal objects, coproducts and
initial objects. All of these are special cases of the following definition:

Definition A diagram in a category A is a functor D : I → A with codomain A. The
domain I is also called the scheme of the diagram. We call a diagram small (finite) iff
its scheme is small (finite).

Given a diagram D we can define the comma category A ↓ D as follows:

An object of A ↓ D is an A-Object A together with A-Morphisms A
fi−→ D(i) for all

I-Objects i, such that for each I-Morphism i
d−→ j

A

D(i) D(j)

fi

fj

d

commutes. It is also said to be a natural source for D.
A morphism in A ↓ D between two natural sources (A

fi−→ D(i)), (B
gi−→ D(i)) is an

A-morphism A
f−→ B such that
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A B

D(i)

f

fi
gi

commutes for all i.
A limit of D is a natural source (L

li−→ D(i)), s.t. for any other natural source (A
fi−→ Di)

there exists a unique (A ↓ D)−morphism A
f−→ L.

Definition A terminal object is a limit over the empty diagram. Explicitely, an object
1 is terminal, if for each object A there is a unique morphism A→ 1.

Proposition 2.4. Terminal objects are unique up to unique isomorphism. Explicitly, if
1 and 1′ are terminal, the single morphism 1→ 1′ is also an isomorphism.

Proof. There exist unique morphisms 1
l−→ 1′ and 1′

r−→ 1. The composition r ◦ l is a
morphism 1 → 1. Since 1 is terminal, and id1 is already a morphism 1 → 1, r ◦ l = id1.
Doing the same with 1′ gives l ◦ r = id1′ .

Proposition 2.5. If limits over a diagram D exist, they are unique up to unique isomor-
phism in A ↓ D.

Proof. A limit over D is the same as a terminal object in A ↓ D.

Example If a terminal object exists, it will usually be denoted by 1 (it is unique up
to unique isomorphism anyway). For A-objects Xi, the product

∏
i∈I Xi [also denoted

X1 × X2 if we have only two objects] is the limit over the diagram i 7→ Xi, with I
viewed as a category whose set of objects is I and the only morphisms are the identity
morphisms.

Definition For any category A, we define the dual category Aop to be the category
consisting of the same objects as A, homAop(A,B) := homA(B,A) for all A,B and
f ◦op g := g ◦ f .

Remark The process of dualizing is simply reversing the directions of arrows in all dia-
grams. Any statement SAop concerning objects Xi in the category Aop can be translated
into a logically equivalent statement Sop

A concerning Xi in the category A.
As a simple example: In the category Vec of vectorspaces over a field K, a vector v in

a vectorspace V is nothing else than a morphism K v−→ V . A dual vector v∗ is a morphism

V
v∗−→ K. The composition K v∗◦v−−→ K gives a scalar.

Moreover, for any property P concerning categories we get a corresponding dual prop-
erty, by stating P in the dual category. If a property P holds for any category, then
so does its dual property. This is nothing deep per se, but allows a more economical
treatment of categories.
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Definition F : A → B is a contravariant functor iff F : A → Bop is a functor. Colimits,
coproducts and initial objects are defined as dual notions to limits, products and terminal
objects. We will denote an initial object with 0. The coproduct of objects Xi is denoted∐

i∈I Xi, or X1 +X2 in the case of two objects.

Definition A category is called (co-) complete if all small diagrams have (co-) limits.
A category is called finitely (co-) complete if all finite diagrams have (co-) limits.

Example Examples of complete categories are abundant. In fact Set, Top, Vec,
CommC∗ − Alg, HComp and Pos are complete and cocomplete. As a counter ex-
ample, consider the category Field of fields with field homomorphisms (that is, unital
ring-homorphisms). Since field homomorphisms exist only between fields with the same
characteristic, neither an initial nor a terminal object can exist.

Example Returning to our example of partially ordered classes: If a terminal object 1
in a partially ordered class exists, it is unique and we will call it greatest element. Dually,
an initial object 0 is called smallest element. The product of objects Xi is also called
meet, or infimum, and the coproduct is also called join, or supremum. A poset is called a
lattice if products and coproducts for every pair of objects exist, bounded if both terminal
and initial objects exist and a complete lattice, if it is complete and cocomplete. A lattice
homomorphism is a monotone map that preserves joins and meets for any two objects.
It is further called bounded if it preserves terminal and initial objects (and therefore in
general finite joins and meets).

Next we want to introduce natural transformations. A natural transformation can
be thought of as a morphism between functors with same domain and codomain. The
simplest motivating example is the following:

Consider the category Vec. The operation V 7→ V ∗ and (V
f−→ W ) 7→ (W ∗ f∗−→ V ∗) is a

contravariant functor ∗ : Vec→ Vec, also called the dual functor. There is no “natural”
map from a vector space V into it’s dual V ∗ (apart from the zero map), since such a map
would require the choice of a basis. But there is a natural map ιV into the double dual
V ∗∗ given by v 7→ (v∗ 7→ v∗(v)). ι can be considered as a function from the objects of
Vec to morphisms in Vec. Restricting ourselves to the class of vector spaces where ιV is
an isomorphism gives the full subcategory FinVec of finite-dimensional vector spaces.

Definition Let F,G : A → B be functors. A natural transformation τ from F to G
is a mapping that assigns to each A-object A a B-morphism FA

τA−→ GA such that the
following naturality square

FA GA

FA′ GA′

τA

Ff Gf

τA′
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commutes. We will write F
τ−→ G.

A natural transformation whose components τA are all isomorphisms is called natural
isomorphism.

Definition An adjoint situation F a G consist of a pair of functors B F−→ A, A G−→ B and
a pair of natural transformations, idB

η−→ GF (called unit) and FG
ε−→ idA (called counit)

s.t. the counit and unit triangles4

GY GFGY FX FGFX

GY FX

ηGY

idGY

GεY

FηX

idFX

εFX

commute for all A-objects X and B-objects Y . We call F left adjoint to G and G right
adjoint to F . An adjoint situation is called an equivalence of A and B if both η and ε
are natural isomorphims. A duality is an equivalence between A and Bop.

Example The Stone-Czech compactification βX for a topological space X is a compact,
Hausdorff space and a continuous map X

ιX−→ βX with the following universal property:

Given any continuous map X
f−→ K with K compact, there exists a unique continuous

map f ′ s.t.

X βX

K

ιX

f
f ′

commutes. Assuming the axiom of choice, one can prove that such a compactification
always exists. [14]

Let U be the inclusion functor of CHaus into Top. Using the universal property, we

can lift any morphism X
f−→ Y in Top to a morphism βX

βf−→ βY , which makes β a
functor, and idTop

ι−→ Uβ a natural transformation. Since for every compact, Hausdorff
space K, βK is uniquely isomorphic to it (simply lift idK), we also get a natural equiva-
lence βU → idCHaus. We leave it to the reader to check that the triangle identities hold.
Altogether, this gives β a U with unit ι. Stated in different terms, CHaus is a reflexive
subcategory of Top.

Example For every unital commutative C∗-algebra A its Gelfand space MA, consist-
ing of all unital C∗-Alg-morphisms A

m−→ C, m 6= 0, is a compact, Hausdorff space in

the w∗-topology. Any C∗-Alg-morphism A
f−→ B gives a continuous map MB

Mf−−→ MA

4also called triangle or zigzag identities, the latter refers to their picture when written as string diagrams.
We refer the reader to [3] for an extremely lucid introductory account.
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by precomposition, CommC∗ − Alg
M−→ CHaus is thus a contravariant functor. The

canonical injection a 7→ (m 7→ m(a)) turns out to give an isomorphism A
ηA−→ C(MA,C).

A bit more difficult to prove is that for any space X, MC(X,C) is already isomorphic to the
Stone-Czech compactification of X, with ιX given by the evaluation map x 7→ (f 7→ f(x))
(note the formal similarity in both cases). Since C(−,C) is also a contravariant functor,
we get a duality between CommC∗ − Alg and CHaus, given by M a C(−,C). The
correspondence can be further extended to include non-unital commutative C∗-algebras
and locally compact Hausdorff spaces, but care must be given to restrict the morphisms
to proper continuous maps and non-degenerate *-homomorphisms accordingly. [17]

Remark An adjoint situation between two posets is also called a Galois connection.

3 Locales and Frames

Let us consider a topology (X, T ) and its lattice Ω(X) of open sets, with set inclusion ⊆
as its relation ≤. Since both ∅ as well as X are elements of T , Ω(X) is bounded. Further,
it is complete, since for any collection of open sets Ui the union

⋃
Ui is their supremum∐

Ui and (
⋂
Ui)
◦ is their infimum

∏
Ui. We also have an extended law of distributivity

(
∐

Ui)×O =
∐

(Ui ×O) (3)

since
⋃
Ui ∩ O is already open. Note that for the dual version in general we only have

the canonical inclusion (
∏
Ui) +O ⊆

∏
(Ui +O), not equality.

Furthermore, if we have a continuous function f : (X, T )→ (Y,O) we have an induced
map Ω(f) : O → T by the rule Ω(f)(U) := f−1[U ]. Since forming pre-images is stable
under arbitrary unions and intersections, and the arbitrary union and finite intersection
of open sets are open, we get a bounded lattice homomorphism that preserves arbitrary
joins.

We will use those properties as the basic ingredients for our theory:

Definition A frame is complete lattice L such that equation 3 is true for all L-objects
Ui and O. A frame homomorphism is a bounded lattice homomorphism that preserves
arbitrary joins. We denote the resulting category of frames and frame homomorphisms
by Frm. The category of locales Loc is defined as the dual to Frm, i.e. Loc = Frmop.

The relationship between locales and frames is rather trivial, every locale is a frame and
vice versa, just the direction of the mappings is reversed. The reason for this distinction
is to mimic the behaviour of Top, as we just saw that the corresponding frame homo-
morphism to a continues map goes the opposite direction. The general motto “Algebra
is dual to topology” applies again.

3.1 The functor Ω

Now, continuing on the previous remarks, every topological space can be considered a
frame, and every continuous map can be considered a (in the opposite direction) frame
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homomorphism, as we just saw. Forming inverse images reverses composition. We,
therefore, have a (contravariant) functor Ω : Top → Frm [or, equivalently, a covariant
functor Lc : Top→ Loc]. Note that this is not an embedding, since, for example, if we
choose the indiscrete topology on two sets of different cardinality, the resulting spaces
cannot be homeomorphic, yet will give the same locale. Let us summarize:

Ω : Top → Frm (4)

(X, T ) 7→ Ω(X) := (T,⊆) (5)

f : X → Y 7→ Ω(Y )
Ω(f)−−→ Ω(X), Ω(f)[U ] := f−1[U ] (6)

3.2 The functor pt and the natural transformation Σ

There are two (equivalent) ways to define points in a frame. Since we cannot talk about
“elements” of a frame, it is useful to consider the following: A point in a topological space
X is the same as a map ({•}, {∅, {•}}) x−→ X. Now the topology of {•} corresponds to
the lattice 2 := (0 ≤ 1). Dualizing, we can define a point in a frame L as a map L

x−→ 2
[alternatively seen as a localic map P → L, with P = 2].

The other way to characterize a point is motivated like this: We can associate to every
point x ∈ X in a topological space its neighbourhood filter U(x) consisting of all open
sets U with x ∈ U . U(x) has the following properties:

1. ∅ 6∈ U(x)

2. if U1, U2 ∈ U(x), then U1 ∩ U2 ∈ U(x),

3. if U1 ∈ U(x) and U1 ≤ U2 then U2 ∈ U(x),

4. if
⋃
Ui ∈ U(x), then ∃i : Ui ∈ U(x).

Definition A subset F ⊂ L of a frame L is called completely prime filter, short c.p.filter,
if

1. 0 6∈ F , and F is not empty,

2. if a, b ∈ F , then a× b ∈ F ,

3. if a ∈ F and a ≤ b then b ∈ F ,

4. if
∐
ai ∈ F , then ∃i : ai ∈ F .

We will refer to these properties in the following as (1), (2), (3) and (4).

Proposition 3.1. (Frame homomorphisms reflect c.p.filter) If L
f−→M is a frame homo-

morphism and F ⊂M a c.p.filter , then f−1[F ] is also a c.p.filter.

Proof. 1. f preserves initial objects and F obeys (1),

2. f preserves finite meets and F obeys (2),
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3. f is monotone and F obeys (3),

4. f preserves arbitrary joins and F obeys (4).
The details are left to the reader.

Our two notions of points are equivalent:

Proposition 3.2. For every frame homomorphism L
x−→ 2 the subset F = x−1{1} is

a c.p.filter. Conversely, given a c.p.filter F , there is exactly one frame homomorphism
L

x−→ 2 with F = x−1{1} .

Proof. The first part is a special case of 3.1. Given any c.p.filter F, define a map L
x−→ 2

by

x(a) :=

{
1 if a ∈ F
0 if a 6∈ F (7)

(3) guarantees that this is a monotone map, (1) and (2) provide that the map preserves
finite infima, and (4) provides that it preservers arbitrary suprema.

We are now ready to define the set of points of a locale L:

pt(L) := {c.p.filter in L} (8)

We want to introduce a compatible topology on pt(L). Consider the function

ΣL : L→ P (pt(L)) (9)

ΣL(a) := { F is a c.p.filter in L |a ∈ F} (10)

Proposition 3.3. The following properties hold for Σ

1. ΣL(0) = ∅; ΣL(1) = pt(L) ,

2. ΣL(a× b) = ΣL(a) ∩ ΣL(b),

3. ΣL(
∐
ai) =

⋃
ΣL(ai).

Proof. 1. No c.p.filter contains 0, and since no c.p.filter is empty, 1 is element in each
c.p.filter.

2. If a c.p.filter contains both a and b then it contains a×b by (2). On the other hand,
if a× b is element of a c.p.filter, then so is a and b by (3).

3. If at least one ai is in a c.p.filter, then so is
∐
ai by (3). On the other hand, if

∐
ai

is in a c.p.filter, then by (4) there’s at least one ai also in it.

We therefore see that (pt(L), {ΣL(a)|a ∈ L}) is a topological space.5

If L
f−→ M is a frame homomorphism, then pt(f)[F ] := f−1[F ] is a well-defined map

pt(M)
pt(f)−−−→ pt(L) by 3.1. We will show it is continuous as well:

5This construction mimics the Zariski-topology on the spectrum of a ring. The set pt(L) is sometimes
also called spectrum of the lattice L.
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Proposition 3.4. For a frame homomorphism L
f−→M , pt(f)−1[ΣL(a)] = ΣM(f(a)).

Proof.

pt(f)−1[ΣL(a)] = {F | pt(f)[F ] ∈ ΣL(a)} =
{
F | f−1[F ] ∈ ΣL(a)

}
= (11){

F | a ∈ f−1[F ]
}

= {F | f(a) ∈ F} = ΣM(f(a)) (12)

Since forming preimages reverses composition, we now know that pt is a contravarient
functor:

pt : Frm → Top (13)

L 7→ pt(L) (14)

f : L→M 7→ pt(M)
pt(f)−−−→ pt(L), pt(f)[F ] := f−1[F ] (15)

The transformation Σ, which sends the lattice L to the mapping L
ΣL−→ Ω ◦ pt(L) has

an important role as well. Proposition 3.3 not only showed that pt(L) is a topological
space, it also showed that ΣL is a frame homomorphism. 3.4 not only showed that for

L
f−→M , pt(f) is continuous, it also showed the equation:

(Ω ◦ pt(f)) ◦ ΣL(a) = ΣM ◦ f(a) (16)

Σ is therefore a natural transformation:

idFrm
Σ−→ Ω ◦ pt. (17)

3.3 The neighbourhood-filter U as a natural transformation

We already observed in the previous section that for a topological space (X, T ) and an
element x ∈ X the neighbourhood filter UX(x) is a c.p.filter in T .

Proposition 3.5. UX : X → pt(Ω(X)) is continuous.

Proof. Let U ⊂ X be open.

U−1
X [ΣU ] = {x ∈ X | UX(x) ∈ ΣU} = {x ∈ X | U ∈ UX(x)} = U. (18)

Proposition 3.6. idTop
U−→ Ω ◦ pt is a natural transformation.

Proof. Let X
f−→ Y be a continuous map, then:

ptΩ(f) ◦ UX(x) = Ω(f)−1[UX(x)] = {O open in Y | f−1[O] ∈ UX(x)} = (19)

= {O open in Y | f(x) ∈ O} = UY (f(x)). (20)
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3.4 The main theorem

By going to the category Loc, we can interpret Ω and pt as covariant functors. We have
to remember to reverse the direction of Σ : Ωpt→ idLoc as well.

Theorem 3.7. Ω and pt form an adjoint situation between Top and Loc = Frmop,
Ω a pt with unit U and counit Σ.

Proof. We still have to show the counit and unit triangles.
1. Let L be a frame and F a c.p.filter/point in L:

pt(ΣL)(Upt(L)(F )) = Σ−1
L [Upt(L)(F )] =

{
a ∈ L | ΣL(a) ∈ Upt(L)(F )

}
= (21)

= {a ∈ L | F ∈ ΣL(a)} = {a ∈ L | a ∈ F} = F (22)

2. Let X be a topological space, and O an open subset of X:

Ω(UX)(ΣΩ(X)(O)) = U−1
X [ΣΩ(X)(O)] =

{
x ∈ X|UX(x) ∈ ΣΩ(X)(O)

}
= (23)

= {x ∈ X|O ∈ UX(x)} = {x ∈ X|x ∈ O} = O (24)

Without showing the proof here, using this adjunction, it’s not hard to show that a lo-
cale comes from a topological space (i.e. the locale is spatial) iff it is isomorphic with the
locale coming from it’s space of points. One can restrict the adjunction to the subcate-
gories of sober spaces and spatial locales to obtain an equivalence. [15] Further restrictions
give the other known stone dualities, including Stone’s representation theorem.
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