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We are developing a rigorous framework for homogenization of laminated magnetic cores in the non-asymptotic case, when the
spatial period of the structure is not vanishingly small relative to the penetration depth. The asymptotic limit not being applicable,
the effective tensor may depend on the geometry of the core. Our model is valid for a realistic cylindrical geometry typical for
rotating electrical machines, and for any reasonable size and composition of the lamination lattice cell. In this paper, the model is
applied in the frequency domain under the assumption of linearity, but extensions to nonlinearity and hysteresis are discussed.
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1. INTRODUCTION AND FORMULATION

Omogenization of laminated cores is an old and im-

portant problem which has been extensively studied but
not yet completely solved. To eliminate eddy currents in the
bulk, thin insulation-coated laminations are typically used in
various electrical machines. Eddy currents are then confined
to the individual magnetic sheets, thereby reducing the losses.
To make analysis and computer simulation feasible in practice,
the fine structure of the laminations has to be “homogenized”
— i.e. replaced with an approximately equivalent homogeneous
material of the same size and shape.

The setup is schematically shown in Fig. [I] and can be
summarized as follows. One lamination is represented in the
cylindrical coordinates (r,z,6) as a rectangle Q = [rin, F'out] X
[-a/2,a/2], where a is the lattice size (spatial period) in
the z direction; the cos pf or sin pf variation of various field
components is assumed in the angular direction (p being the
number of pole pairs). Periodic boundary conditions link the
fields at z = +a/2; Dirichlet conditions approximate the field on
the rotor side of the airgap (r = ri,). Dirichlet-to-Neumann con-
ditions on the outer side of the core (r = ri,) represent the field
in the semi-infinite air strip. The magnetic field h(r,?) in the
original fine structure, and the respective “macroscale” field in
an equivalent homogeneous medium satisfy the standard eddy
current equations, with the displacement current neglected:

Vxe=-0b, Vxh=j, VXxE=-9,B, VxH=J (1)

under the standard notation for frequency, magnetic permeabil-
ity, and conductivity. Our focus is on the material relations:

j=ce, b=bMh); ®B,J) = MMHE) 2

Here M is the effective material tensor. While the fine-scale b-
h relation can be nonlinear, the respective coarse-scale relation
is assumed to be linearized, because otherwise the homoge-
nized model may become too complicated to be attractive in
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Fig. 1. Setup: homogenization problem for laminated structures in cylindrical
geometry.

practice. In partial compensation for that, the M tensor may in
general include the B-E and J-H coupling terms as additional
(albeit nonstandard) degrees of freedom.

The crux of homogenization is the optimization problem,
whose generic form is

M = argminy||F(H, J, M) — f(h, j)I| 3)

where F' and f are the chosen goal functions and || - || is an
appropriate norm. In our previous work on wave problems,
the goal functions represented the far-field pattern of waves
scattered from a periodic structure [10]—[12]]. In that case,
optimization (@) was facilitated by the availability of Bloch
wave bases on the fine scale and their plane wave counterparts
on the coarse scale. A semi-analytical procedure can therefore
be constructed. This route is, unfortunately, not available for
the eddy current problem under consideration. However, (3)
can be solved numerically, since the size of the material tensor



is relatively small, and since the absolute global minimum need
not necessarily be guaranteed.

Clearly, the optimal effective tensor depends, in general, on
the goal functions in (3). In wave problems, this manifests
itself in the “uncertainty principle” [[12]: non-asymptotic ho-
mogenization cannot in general predict, simultaneously and
accurately, reaction fields and losses. With this in mind, for
the lamination problem we explore goal functions containing
both fields and losses with adjustable weights.

II. PrRoPOSED APPROACH VS. EXISTING METHODS

A large number of semi-analytical [2], [3] and numerical
(multiscale) models [1]], [4]-[9] have been put forward, al-
though no hard demarcation line between these types of models
exists. In this paper, we draw on our experience in non-
asymptotic homogenization for wave problems [10]-[12] to
develop a homogenization procedure for laminated structures.

In the asymptotic case, when the cell size a is much smaller
than the penetration depth in the conducting sheet, classic
results on effective tensors of conductivity and permeability
apply. In practice, however, the penetration depth is often
comparable with the lamination thickness, and therefore a
non-asymptotic analysis is called for. This has been widely
recognized in the literature (see references above). Our non-
asymptotic model is intended to include as few simplification
assumptions as possible.

« Cylindrical geometry, typical for rotating electrical ma-
chines, is considered. In particular, a nontrivial field
transition layer near the air gap is accurately represented.

« For asymptotic homogenization, the effective tensors are
simple and virtually independent of the geometric fea-
tures. This is not necessarily so in the non-asymptotic
case, where these tensors may depend on the geometric
dimensions.

« The homogenization procedure always involves only one
lattice cell (one lamination), so the computational size of
the problem is always small.

III. NumEericAL EXAMPLE

As an illustrative example, the method was tested for the
geometry shown in Fig. [Tjusing a relative magnetic permeabil-
ity of 1000 and an electric conductivity o = 2.08 x 10°S /m.
The iron fill factor is chosen as 0.95; the angular harmonic
corresponds to p = 1. For a wide range of frequencies an
optimized material tensor was constructed taking into account
both the losses and the reaction field in the air gap. The results
are visualized in Fig. [2]

As expected, for low frequencies the tensor obtained by
classical homogenization is sufficient to give a good estimate of
the total losses. The optimized tensor yields near perfect results
even at high frequencies, where the assumptions of asymptotic
homogenization do not hold anymore.

IV. ConcLusioN

We are developing numerical models for non-asymptotic
homogenization of laminated magnetic cores. The approach
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Fig. 2. The relative errors in the calculated losses for the classical homoge-
nization (hom.) and the developed optimized tensor (opt.), depending on the
relative penetration depth.

borrows ideas from our non-asymptotic homogenization pro-
cedure in the wave case [10], [[11]. Homogenization is applied
to a realistic cylindrical geometry of the core, typical to rotating
electrical machines. The model is valid for any reasonable
size and composition of the lamination lattice cell. It has
been shown to give uniformly higher accuracy than the stan-
dard homogenization method and by varying the optimization
procedure it should be extendable to a far greater range of
applications. The overriding objective is to develop a practical
homogenization methodology relying on as few simplification
assumptions as possible.
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