MSFEM for a 2D1D Eddy Current Model Including Edge

Effects

Markus Schöbinger, Joachim Schöberl and Karl Hollaus
FШF
Der Wissenschaftsfonds.

April 10, 2018

Overview

- Main Ideas

Overview

- Main Ideas
- 2D1D for the A, V - Formulation
- 2D1D for the T, Φ - Formulation

Overview

- Main Ideas
- 2D1D for the A, V - Formulation
- 2D1D for the T, Φ - Formulation
- Numerical Results

Overview

- Main Ideas
- 2D1D for the A, V - Formulation
- 2D1D for the T, Φ - Formulation
- Numerical Results
- Conclusions

Main Ideas

In a rotating machine, each steel sheet is exposed to roughly the same field.
\Rightarrow It suffices to simulate a single sheet.
\Rightarrow Already a great reduction of computation cost.
Problems:

- Resolving the penetration depth requires a fine mesh at all boundaries.
- Thickness is small compared to the other dimensions.
- Air gap between sheets is small even compared to the thickness.
\Rightarrow Solving in three dimensions is expensive.

Main Ideas

Expand the 3D solution u in the form:

$$
u(x, y, z) \approx \sum_{i} u_{i}(x, y) \phi_{i}(z)
$$

$$
\Omega=\Omega_{2 D} \times\left[-\frac{d}{2}, \frac{d}{2}\right]
$$

- The shape functions are piecewise polynomials to treat the air gap.
- Gauss-Lobatto polynomials are used in iron.

The $A-V$ Formulation

We use the magnetic vector potential $\mathbf{A} \in H$ (curl) and the electric scalar potential $V \in H^{1}$, satisfying

$$
\begin{array}{r}
\operatorname{curl} \mu^{-1} \operatorname{curl} \mathbf{A}+i \omega \sigma(\mathbf{A}-\nabla V)=\mathbf{0} \\
\operatorname{div} i \omega \sigma(\mathbf{A}-\nabla V)=0
\end{array}
$$

using. . .
$\mu \ldots$ the magnetic permeability
$\sigma \ldots$ the electric conductivity
$\omega \ldots$ the angular frequency

The $A-V$ Formulation, reference problem

$$
\begin{array}{r}
\operatorname{curl} \mu^{-1} \operatorname{curl} \mathbf{A}+i \omega \sigma(\mathbf{A}-\nabla V)=\mathbf{0} \\
\operatorname{div} i \omega \sigma(\mathbf{A}-\nabla V)=\mathbf{0} \tag{2}
\end{array}
$$

Multiply (1) with $\mathbf{v} \in H$ (curl), (2) with $q \in H^{1}$.
Passing to the weak formulation:
Find $\mathbf{A} \in H$ (curl), $V \in H^{1}$ so that

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{A} \cdot \operatorname{curl} \mathbf{v}+i \omega \sigma(\mathbf{A}-\nabla V) \cdot(\mathbf{v}-\nabla q) d \Omega=0
$$

for all $\mathbf{v} \in H$ (curl), $q \in H^{1}$.
Boundary conditions depend on the given problem.

The 2D1D approach

Disregarding edge effects, $\mathbf{A}-\nabla V$ behaves as an odd function in z.

This motivates the ansatz

$$
\mathbf{A}-\nabla V \approx\binom{\phi_{1}(z) \mathbf{A}_{\mathbf{1}}(x, y)+\phi_{3}(z) \mathbf{A}_{\mathbf{3}}(x, y)+\phi_{5}(z) \mathbf{A}_{\mathbf{5}}(x, y)+\ldots}{0}
$$

with $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{3}}, \mathbf{A}_{\mathbf{5}}, \cdots \in H\left(\operatorname{curl}, \Omega_{2 D}\right)$.

The 2D1D approach

Disregarding edge effects, $\mathbf{A}-\nabla V$ behaves as an odd function in z.

This motivates the ansatz

$$
\mathbf{A}-\nabla V \approx\binom{\phi_{1}(z) \mathbf{A}_{\mathbf{1}}(x, y)+\phi_{3}(z) \mathbf{A}_{\mathbf{3}}(x, y)+\phi_{5}(z) \mathbf{A}_{\mathbf{5}}(x, y)+\ldots}{0}
$$

with $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{3}}, \mathbf{A}_{\mathbf{5}}, \cdots \in H\left(\operatorname{curl}, \Omega_{2 D}\right)$.
How to translate 3D boundary conditions to 2D?

The Unknown $\mathbf{A}_{\mathbf{1}}$

The first term has a special role:

$$
\int \phi_{1, z} d z \neq 0, \quad \int \phi_{1, z} d z=0, i>1
$$

\Rightarrow The first order term controls the total magnetic flux.
The higher order terms act as correctors without changing the total flux.
$\mathbf{A}_{\mathbf{1}}$ is either obtained from a physical model or by introducing a new scalar potential:

$$
\mathbf{A}_{\mathbf{1}}=\nabla u
$$

The Unknown \mathbf{A}_{1} : An Example

Assume the steel sheet to be aligned with the coordinate axes and Φ_{B} a given magnetic flux through the cross section S. We calculate:

$$
\begin{aligned}
\Phi_{B} & =\int_{S} \operatorname{curl} A \cdot d S \\
& =\int_{0}^{w} \int_{-\frac{d_{F e}}{2}}^{\frac{d_{F e}}{2}} \phi_{1, z} u_{x} d z d x \\
& =\int_{-\frac{d_{F e}}{2}}^{\frac{d_{F e}}{2}} \phi_{1, z} d z \int_{0}^{w} u_{x} d x \\
& =\int_{-\frac{d_{F e}}{2}}^{\frac{d_{F e}}{2}} \phi_{1, z} d z(u(w)-u(0))
\end{aligned}
$$

The B field
$\Rightarrow \Phi_{B}$ directly yields the boundary conditions for u.

Derivation of the 2D1D formulation

Use

$$
\underbrace{\mathbf{A}-\nabla V}_{\text {trial function }}=\binom{\phi_{1} \nabla u}{0}, \quad \underbrace{\mathbf{v}-\nabla q}_{\text {test function }}=\binom{\phi_{1} \nabla v}{0}
$$

in

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{A} \cdot \operatorname{curl} \mathbf{v}+i \omega \sigma(\mathbf{A}-\nabla V) \cdot(\mathbf{v}-\nabla q) d \Omega=0
$$

to get

$$
\int_{\Omega} \mu^{-1} \phi_{1, z}^{2}\left(\begin{array}{c}
-u_{y} \\
u_{x} \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
-v_{y} \\
v_{x} \\
0
\end{array}\right)+i \omega \sigma \phi_{1}^{2}\left(\begin{array}{c}
u_{x} \\
u_{y} \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
v_{x} \\
v_{y} \\
0
\end{array}\right) d \Omega=0
$$

Derivation of the 2D1D formulation

$$
\begin{gathered}
\int_{\Omega_{2 D}} \int_{-\frac{d}{2}}^{\frac{d}{2}} \mu^{-1} \phi_{1, z}^{2}\left(\begin{array}{c}
-u_{y} \\
u_{x} \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
-v_{y} \\
v_{x} \\
0
\end{array}\right) \\
\int_{\Omega_{2 D}} \nabla u \cdot \nabla v \underbrace{\int_{-\frac{d}{2}}^{\int_{2}^{2}} \mu^{-1} \phi_{1, z}^{2} d z}_{=: \overline{\mu^{-1} \phi_{1, z}^{2}}} \quad+i \omega \nabla \phi_{1}^{2}\left(\begin{array}{c}
u_{x} \\
u_{y} \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
v_{x} \\
v_{y} \\
0
\end{array}\right) d z d \Omega_{2 D}=0
\end{gathered}
$$

Final formulation: Find $u \in H^{1}\left(\Omega_{2 D}\right)$ so that

$$
\int_{\Omega_{2 D}}\left(\overline{\mu^{-1} \phi_{1, z}^{2}}+i \omega \overline{\sigma \phi_{1}^{2}}\right) \nabla u \cdot \nabla v d \Omega_{2 D}=0
$$

for all $v \in H^{1}\left(\Omega_{2 D}\right)$.

Derivation of the 2D1D formulation

For smaller penetration depths, higher order terms are needed:

$$
\begin{aligned}
\mathbf{A}-\nabla V & =\binom{\phi_{1} \nabla u+\phi_{3} \mathbf{A}_{3}+\phi_{5} \mathbf{A}_{5}}{0} \\
\mathbf{V}-\nabla q & =\binom{\phi_{1} \nabla v+\phi_{3} \mathbf{v}_{3}+\phi_{5} \mathbf{v}_{5}}{0}
\end{aligned}
$$

is used in

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{A} \cdot \operatorname{curl} \mathbf{v}+i \omega \sigma(\mathbf{A}-\nabla V) \cdot(\mathbf{v}-\nabla q) d \Omega=0
$$

The terms in the integrals are separated; similar calculations as above.

Derivation of the 2D1D formulation

Final problem:
Find $u \in H^{1}\left(\Omega_{2 D}\right)$, including boundary conditions and $\mathbf{A}_{3}, \mathbf{A}_{5} \in H_{0}\left(\right.$ curl, $\left.\Omega_{2_{D}}\right)$ so that

$$
\begin{aligned}
& \int_{\Omega_{2 D}}\left(\overline{\mu^{-1} \phi_{1, z}^{2}}+i \omega \overline{\sigma \phi_{1}^{2}}\right) \nabla u \cdot \nabla v+\overline{\mu^{-1} \phi_{3, z}^{2}} \mathbf{A}_{3} \cdot \mathbf{v}_{3} \\
& \quad+\overline{\mu^{-1} \phi_{3}^{2}} \operatorname{curl} \mathbf{A}_{3} \operatorname{curl} \mathbf{v}_{3}+\overline{\mu^{-1} \phi_{5, z}^{2}} \mathbf{A}_{5} \cdot \mathbf{v}_{5}+\overline{\mu^{-1} \phi_{5}^{2}} \operatorname{curl} \mathbf{A}_{5} \text { curl } \mathbf{v}_{5} \\
& \quad+\overline{\mu^{-1} \phi_{3} \phi_{5}}\left(\operatorname{curl} \mathbf{A}_{3} \operatorname{curl} \mathbf{v}_{5}+\operatorname{curl} \mathbf{A}_{5} \operatorname{curl} \mathbf{v}_{3}\right) \\
& \quad+i \omega \overline{\sigma \phi_{1} \phi_{3}}\left(\nabla u \cdot \mathbf{v}_{3}+\mathbf{A}_{3} \cdot \nabla v\right)+i \omega\left(\overline{\sigma \phi_{3}^{2}} \mathbf{A}_{3} \cdot \mathbf{v}_{3}+\overline{\sigma \phi_{5}^{2}} \mathbf{A}_{5} \cdot \mathbf{v}_{5}\right) \\
& \quad+i \omega\left(\overline{\sigma \phi_{3} \phi_{5}}\left(\mathbf{A}_{3} \cdot \mathbf{v}_{5}+\mathbf{A}_{5} \cdot \mathbf{v}_{3}\right)\right) d \Omega_{2 D}=0
\end{aligned}
$$

for all $v \in H_{0}^{1}\left(\Omega_{2 D}\right), \mathbf{v}_{3}, \mathbf{v}_{5} \in H_{0}\left(\operatorname{curl} \Omega_{2 D}\right)$.

$T-\Phi$ Formulation

We use the current vector potential $\mathbf{T} \in H$ (curl) and the magnetic scalar potential $\Phi \in H^{1}$, satisfying

$$
\begin{array}{r}
\text { curl } \rho \text { curl } \mathbf{T}+i \omega \mu(\mathbf{T}-\nabla \Phi)=\mathbf{0} \\
\operatorname{div} i \omega \mu(\mathbf{T}-\nabla \Phi)=0
\end{array}
$$

using. . .
$\rho \ldots$ the electric resistivity
$\mu \ldots$ the magnetic permeability
$\omega \ldots$ the angular frequency

The $T-\Phi$ Formulation, reference solution

$$
\begin{array}{r}
\operatorname{curl} \rho \operatorname{curl} \mathbf{T}+i \omega \mu(\mathbf{T}-\nabla \Phi)=\mathbf{0} \\
\operatorname{div} i \omega \mu(\mathbf{T}-\nabla \Phi)=\mathbf{0} \tag{4}
\end{array}
$$

Multiply (3) with $\mathbf{v} \in H$ (curl), (4) with $q \in H^{1}$.

Passing to the weak formulation:
Find $\mathbf{T} \in H$ (curl), $\Phi \in H^{1}$ so that

$$
\int_{\Omega} \rho \operatorname{curl} \mathbf{T} \cdot \operatorname{curl} \mathbf{v}+i \omega \mu(\mathbf{T}-\nabla \Phi) \cdot(\mathbf{v}-\nabla q) d \Omega=0
$$

for all $\mathbf{v} \in H$ (curl), $q \in H^{1}$.
Boundary conditions depend on the given problem.

The 2D1D approach

Expansion via even polynomials:

$$
\mathbf{T}-\nabla \Phi \approx\binom{\phi_{0}(z) \mathbf{T}_{\mathbf{0}}(x, y)+\phi_{2}(z) \mathbf{T}_{\mathbf{2}}(x, y)+\phi_{4}(z) \mathbf{T}_{4}(x, y)+\ldots}{0}
$$

with $\mathbf{T}_{\mathbf{0}}, \mathbf{T}_{\mathbf{2}}, \mathbf{T}_{\mathbf{4}}, \cdots \in H\left(\operatorname{curl}, \Omega_{2 D}\right)$.
Boundary conditions are obtained from the reference problem via

$$
\mathbf{T}_{\mathbf{0}}=\nabla u
$$

The 2D1D approach

Expansion via even polynomials:

$$
\mathbf{T}-\nabla \Phi \approx\binom{\phi_{0}(z) \mathbf{T}_{\mathbf{0}}(x, y)+\phi_{2}(z) \mathbf{T}_{2}(x, y)+\phi_{4}(z) \mathbf{T}_{4}(x, y)+\ldots}{0}
$$

with $\mathbf{T}_{\mathbf{0}}, \mathbf{T}_{\mathbf{2}}, \mathbf{T}_{\mathbf{4}}, \cdots \in H\left(\operatorname{curl}, \Omega_{2 D}\right)$.
Boundary conditions are obtained from the reference problem via

$$
\mathbf{T}_{\mathbf{0}}=\nabla u
$$

Important difference: $\mathbf{T}-\nabla \Phi$ behaves as an even function in z everywhere.
\Rightarrow Edge effects are treated correctly automatically.

Derivation of the 2D1D formulation

Similar to before:

$$
\mathbf{T}-\nabla \Phi=\binom{\phi_{0} \nabla u+\phi_{2} \mathbf{T}_{2}+\ldots}{0}, \mathbf{v}-\nabla q=\binom{\phi_{0} \nabla v+\phi_{2} \mathbf{v}_{2}+\ldots}{0}
$$

is used in

$$
\int_{\Omega} \rho \operatorname{curl} \mathbf{T} \cdot \operatorname{curl} \mathbf{v}+i \omega \mu(\mathbf{T}-\nabla \Phi) \cdot(\mathbf{v}-\nabla q) d \Omega=0
$$

which results, after separation of integrals, in the 2D system.
Boundary conditions are included by taking the lowest order term as a gradient.

Example: Rectangular Sheet with a Hole

- $I=30 \mathrm{~mm}$
- $w=6 \mathrm{~mm}$
- $d=0.5 \mathrm{~mm}$
- Fillfactor $=95 \%$
- $\mu=1,000 \mu_{0}$
- $\sigma=2.08 \cdot 10^{6} \mathrm{~S} / \mathrm{m}$

Example: Rectangular Sheet with a Hole, Boundary Conditions A, V - Formulation

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

```
-1.006e+01 0.000e+06 (1)
```

Reference solution, $\mathbf{A}-\nabla V$ (real part of x-component)

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

Reference solution, $\mathbf{A}-\nabla V$ (real part of x-component)

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

```
-1 . 1 日6e +61
0. \(010 \mathrm{e}+06\)
1. 1 日6e+01
```

Reference solution, $\mathbf{A}-\nabla V$ (real part of x-component)

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

Comparison of the eddy current losses over a large frequency range:

- Expected behavior: $P=C * f^{2}$ for low f $P=C * f^{1.5}$ for high f.
- Each expansion works well up to a "limit frequency".
- First order expansion continues quadratically.

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

Comparison of the eddy current losses over a large frequency range:

- For low frequencies, a low number of terms suffices.
- Each expansion works well up to a "limit frequency".
- A "base error" of 1% because of the edge effects.

Example: Rectangular Sheet with a Hole, Boundary Conditions T, Φ - Formulation

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

Reference solution, $\mathbf{T}-\nabla \Phi$ (real part of y-component)

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

Reference solution, $\mathbf{T}-\nabla \Phi$ (real part of y-component)

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

Reference solution, $\mathbf{T}-\nabla \Phi$ (real part of y-component)

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

Comparison of the eddy current losses over a large frequency range:

- For low frequencies, a low number of terms suffices.
- Higher frequencies require higher number of terms.
- Each expansion works nearly perfectly up to a "limit frequency".
- Three terms seem to suffice for the used frequencies.

Example: Rectangular Sheet with a Hole, $f=30 \mathrm{kHz}$

Comparison of the eddy current losses over a large frequency range:

- For low frequencies, a low number of terms suffices.
- Higher frequencies require higher number of terms.
- Each expansion works nearly perfectly up to a "limit frequency".
- The error stays below 1% using three terms.

Conclusions

- Two 2D1D formulations for the eddy current problem have been presented.

Conclusions

- Two 2D1D formulations for the eddy current problem have been presented.
- Using enough terms, the method works well over a high range of frequencies.

Conclusions

- Two 2D1D formulations for the eddy current problem have been presented.
- Using enough terms, the method works well over a high range of frequencies.
- Using the current vector potential, the edge effects can be resolved.

Conclusions

- Two 2D1D formulations for the eddy current problem have been presented.
- Using enough terms, the method works well over a high range of frequencies.
- Using the current vector potential, the edge effects can be resolved.
- To do: Considering nonlinear materials and hysteresis.

Thank you for your attention!

