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Main Ideas

In a rotating machine, each steel sheet is exposed to roughly the same
field.

⇒ It suffices to simulate a single sheet.

⇒ Already a great reduction of computation cost.

Problems:

Resolving the penetration depth requires a fine mesh at all boundaries.

Thickness is small compared to the other dimensions.

Air gap between sheets is small even compared to the thickness.

⇒ Solving in three dimensions is expensive.
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Main Ideas

Expand the 3D solution u in the
form:

u(x , y , z) ≈
∑
i

ui (x , y)φi (z)

x

y
z

l

w

d

1

Ω2D

Ω = Ω2D × [−d
2 ,

d
2 ]

The shape functions are
piecewise polynomials to treat
the air gap.

Gauss-Lobatto polynomials are
used in iron.
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The A− V Formulation

We use the magnetic vector potential A ∈ H(curl) and the electric scalar
potential V ∈ H1, satisfying

curlµ−1 curlA + iωσ(A−∇V ) = 0

div iωσ(A−∇V ) = 0

using. . .

µ . . . the magnetic permeability
σ . . . the electric conductivity
ω . . . the angular frequency
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The A− V Formulation, reference problem

curlµ−1 curlA + iωσ(A−∇V ) = 0 (1)

div iωσ(A−∇V ) = 0 (2)

Multiply (1) with v ∈ H(curl), (2) with q ∈ H1.

Passing to the weak formulation:

Find A ∈ H(curl), V ∈ H1 so that

∫
Ω
µ−1 curlA · curl v + iωσ(A−∇V ) · (v −∇q) dΩ = 0

for all v ∈ H(curl), q ∈ H1.

Boundary conditions depend on the given problem.
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The 2D1D approach

Disregarding edge effects, A−∇V behaves as an odd function in z .

This motivates the ansatz

A−∇V ≈
(
φ1(z)A1(x , y) + φ3(z)A3(x , y) + φ5(z)A5(x , y) + . . .

0

)
with A1,A3,A5, · · · ∈ H(curl,Ω2D).

How to translate 3D boundary conditions to 2D?
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The Unknown A1

The first term has a special role:

∫
φ1,z dz 6= 0,

∫
φ1,z dz = 0, i > 1

⇒ The first order term controls the total magnetic flux.

The higher order terms act as correctors without changing the total flux.

A1 is either obtained from a physical model or by introducing a new scalar
potential:

A1 = ∇u
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The Unknown A1: An Example

Assume the steel sheet to be aligned with the coordinate axes and ΦB a
given magnetic flux through the cross section S . We calculate:

ΦB =

∫
S

curlA · dS

=

∫ w

0

∫ dFe
2

− dFe
2

φ1,zux dz dx

=

∫ dFe
2

− dFe
2

φ1,z dz

∫ w

0
ux dx

=

∫ dFe
2

− dFe
2

φ1,z dz(u(w)− u(0))
The B field

⇒ ΦB directly yields the boundary conditions for u.
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Derivation of the 2D1D formulation

Use

A−∇V︸ ︷︷ ︸
trial function

=

(
φ1∇u

0

)
, v −∇q︸ ︷︷ ︸

test function

=

(
φ1∇v

0

)

in ∫
Ω
µ−1 curlA · curl v + iωσ(A−∇V ) · (v −∇q) dΩ = 0

to get

∫
Ω
µ−1φ2

1,z

−uyux
0

 ·
−vyvx

0

+ iωσφ2
1

ux
uy
0

 ·
vx
vy
0

 dΩ = 0
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Derivation of the 2D1D formulation

∫
Ω2D

∫ d
2

− d
2

µ−1φ2
1,z

−uyux
0

 ·
−vyvx

0

 +iωσφ2
1

ux
uy
0

 ·
vx
vy
0

 dz dΩ2D = 0

∫
Ω2D

∇u · ∇v
∫ d

2

− d
2

µ−1φ2
1,z dz︸ ︷︷ ︸

=:µ−1φ2
1,z

+iω∇u · ∇v
∫ d

2

− d
2

σφ2
1 dz︸ ︷︷ ︸

=:σφ2
1

dΩ2D = 0

Final formulation: Find u ∈ H1(Ω2D) so that

∫
Ω2D

(µ−1φ2
1,z + iωσφ2

1)∇u · ∇v dΩ2D = 0

for all v ∈ H1(Ω2D).
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Derivation of the 2D1D formulation

For smaller penetration depths, higher order terms are needed:

A−∇V =

(
φ1∇u + φ3A3 + φ5A5

0

)
V −∇q =

(
φ1∇v + φ3v3 + φ5v5

0

)
is used in

∫
Ω
µ−1 curlA · curl v + iωσ(A−∇V ) · (v −∇q) dΩ = 0.

The terms in the integrals are separated; similar calculations as above.
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Derivation of the 2D1D formulation

Final problem:

Find u ∈ H1(Ω2D), including boundary conditions and
A3,A5 ∈ H0(curl,Ω2D ) so that

∫
Ω2D

(µ−1φ2
1,z + iωσφ2

1)∇u · ∇v + µ−1φ2
3,zA3 · v3

+ µ−1φ2
3 curlA3 curl v3 + µ−1φ2

5,zA5 · v5 + µ−1φ2
5 curlA5 curl v5

+µ−1φ3φ5(curlA3 curl v5 + curlA5 curl v3)

+iωσφ1φ3(∇u · v3 + A3 · ∇v) + iω
(
σφ2

3A3 · v3 + σφ2
5A5 · v5

)
+iω

(
σφ3φ5(A3 · v5 + A5 · v3)

)
dΩ2D = 0

for all v ∈ H1
0 (Ω2D), v3, v5 ∈ H0(curl Ω2D).
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T −Φ Formulation

We use the current vector potential T ∈ H(curl) and the magnetic scalar
potential Φ ∈ H1, satisfying

curl ρ curlT + iωµ(T−∇Φ) = 0

div iωµ(T−∇Φ) = 0

using. . .

ρ . . . the electric resistivity
µ . . . the magnetic permeability
ω . . . the angular frequency
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The T −Φ Formulation, reference solution

curl ρ curlT + iωµ(T−∇Φ) = 0 (3)

div iωµ(T−∇Φ) = 0 (4)

Multiply (3) with v ∈ H(curl), (4) with q ∈ H1.

Passing to the weak formulation:

Find T ∈ H(curl), Φ ∈ H1 so that

∫
Ω
ρ curlT · curl v + iωµ(T−∇Φ) · (v −∇q) dΩ = 0

for all v ∈ H(curl), q ∈ H1.

Boundary conditions depend on the given problem.
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The 2D1D approach

Expansion via even polynomials:

T−∇Φ ≈
(
φ0(z)T0(x , y) + φ2(z)T2(x , y) + φ4(z)T4(x , y) + . . .

0

)
with T0,T2,T4, · · · ∈ H(curl,Ω2D).

Boundary conditions are obtained from the reference problem via

T0 = ∇u.

Important difference: T−∇Φ behaves as an even function in z
everywhere.

⇒ Edge effects are treated correctly automatically.
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Derivation of the 2D1D formulation

Similar to before:

T−∇Φ =

(
φ0∇u + φ2T2 + . . .

0

)
,V −∇q =

(
φ0∇v + φ2v2 + . . .

0

)
is used in

∫
Ω
ρ curlT · curl v + iωµ(T−∇Φ) · (v −∇q) dΩ = 0

which results, after separation of integrals, in the 2D system.

Boundary conditions are included by taking the lowest order term as a
gradient.
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Example: Rectangular Sheet with a Hole

x

y
z

l

w
d

1

l = 30 mm

w = 6 mm

d = 0.5 mm

Fillfactor = 95%

µ = 1, 000µ0

σ = 2.08 · 106 S/m
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Example: Rectangular Sheet with a Hole, Boundary
Conditions A,V - Formulation

x

y
z

l

w

d

A, V = 0

A = Ct

A = Ct

A, V = 0

1

reference solution

first term 2D1D
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Reference solution, A−∇V (real part of x-component)

A1

×
φ1

=
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Reference solution, A−∇V (real part of x-component)

× =

+

A3

×

φ3

=
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Reference solution, A−∇V (real part of x-component)

× =

+ × =

+

A5

×

φ5

=
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Comparison of the eddy current losses over a large frequency range:

Expected behavior:
P = C ∗ f 2 for low f
P = C ∗ f 1.5 for high f .

Each expansion works well up
to a “limit frequency”.

First order expansion continues
quadratically.
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Comparison of the eddy current losses over a large frequency range:

For low frequencies, a low
number of terms suffices.

Each expansion works well up
to a “limit frequency”.

A “base error” of 1% because
of the edge effects.
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Example: Rectangular Sheet with a Hole, Boundary
Conditions T ,Φ - Formulation

x

y
z

l

w

d

Φ = −C

Φ = C

T = 0 on

the bound-

aries of the

steel sheet

1

reference solution

first term 2D1D
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Reference solution, T−∇Φ (real part of y -component)

T0

×

φ0

=
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Reference solution, T−∇Φ (real part of y -component)

× =

+

T2

×
φ2

=
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Reference solution, T−∇Φ (real part of y -component)

× =

+ × =

+

T4

×

φ4

=
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Example: Rectangular Sheet with a Hole, f = 30 kHz

Comparison of the eddy current losses over a large frequency range:

For low frequencies, a low
number of terms suffices.

Higher frequencies require
higher number of terms.

Each expansion works nearly
perfectly up to a “limit
frequency”.

Three terms seem to suffice for
the used frequencies.

EMF 2018 Darmstadt April 10, 2018 24 / 26



Example: Rectangular Sheet with a Hole, f = 30 kHz

Comparison of the eddy current losses over a large frequency range:

For low frequencies, a low
number of terms suffices.

Higher frequencies require
higher number of terms.

Each expansion works nearly
perfectly up to a “limit
frequency”.

The error stays below 1% using
three terms.
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Conclusions

Two 2D1D formulations for the eddy current problem have been
presented.

Using enough terms, the method works well over a high range of
frequencies.

Using the current vector potential, the edge effects can be resolved.

To do: Considering nonlinear materials and hysteresis.
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Thank you for your attention!
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