A Hierarchical Error Estimator for the MSFEM for the Eddy Current Problem in 3D

Markus Schöbinger, Joachim Schöberl and Karl Hollaus

TU WIEN

TECHNISCHE UNIVERSITÄT WIEN

FWF

Der Wissenschaftsfonds.

July 22, 2019
Overview

- Problem Formulation
- Multi-Scale Finite Element Method MSFEM
- Hierarchical Error Estimator HEE
- Numerical Results
- Conclusions
The $A - V$ Formulation

We introduce the magnetic vector potential \mathbf{A} with $\text{curl} \, \mathbf{A} = \mathbf{B}$ and the electric scalar potential V, satisfying

$$\text{curl} \, \mu^{-1} \text{curl} \, \mathbf{A} + i \omega \sigma (\mathbf{A} - \nabla V) = 0$$

$$\text{div} \, i \omega \sigma (\mathbf{A} - \nabla V) = 0,$$

with the parameters

μ . . . magnetic permeability,
σ . . . electric conductivity,
ω . . . angular frequency.
The $A - V$ Formulation

\[
\text{curl } \mu^{-1} \text{ curl } A + i\omega\sigma (A - \nabla V) = 0 \\
\text{div } i\omega\sigma (A - \nabla V) = 0
\]

(1)

(2)

Multiply (1) with $v \in H(\text{curl})$, (2) with $q \in H^1$.

This results in the weak formulation:

Find $A \in H(\text{curl})$, $V \in H^1$, so that

\[
\int_{\Omega} \mu^{-1} \text{ curl } A \cdot \text{ curl } v + i\omega\sigma (A - \nabla V) \cdot (v - \nabla q) \, d\Omega = 0
\]

for all $v \in H(\text{curl})$, $q \in H^1$.

Plus boundary conditions.
Motivation for the Multi-Scale Finite Element Method

Problems of the classical FEM in a layered medium:

- Each laminate has to be resolved individually.
- High number of elements makes it computationally expensive.

The solution $\mathbf{A} - \nabla V$ has the following properties:

- It varies only little from sheet to sheet.
- It is an odd function in each laminate.
- It is an even function along the sheet edges.
We propose the following MSFEM expansion:

$$\mathbf{A} - \nabla V \approx \mathbf{A}_0 + \mathbf{A}_1 \phi_1 + \nabla (w_1 \phi_1) + \ldots$$

with $\mathbf{A}_0, \mathbf{A}_1, \ldots \in H(\text{curl}), w_1, \ldots \in H^1$.

This expansion is used in the weak formulation for the trial function and the test function.

- The shape functions ϕ_i are splines.
- Lobatto polynomials are used in iron.
Properties of the MSFEM expansion:

- The new unknowns are defined on a coarse mesh which does not resolve each single laminate.
- A_0 describes the overall field distribution.
- A_1, A_3, \ldots model the main magnetic flux in the lamination.
- w_1, w_3, \ldots consider the edge effect.
- Any number of terms can be added to improve the accuracy.

Coefficients containing the shape functions ϕ_i are averaged analytically.
Consider the general problem:

Find \(u \in V \), such that

\[
a(u, v) = f(v)
\]

for all \(v \in V \) with a bilinear form \(a \) and a linear form \(f \).

Galerkin method: Choose a subspace \(V_h \subset V \) of finite dimension, find \(u_h \in V_h \) such that

\[
a(u_h, v_h) = f(v_h)
\]

for all \(v_h \in V_h \).
The Residuum

If $V^1_h \subset V^2_h \subseteq V$, then

$$a(u^1_h, v^1_h) = f(v^1_h) \quad \forall v^1_h \in V^1_h$$
$$a(u^1_h, v^2_h) \neq f(v^2_h) \quad \forall v^2_h \in V^2_h.$$

This defines the residuum:

$$r(v^2_h) = a(u^1_h, v^2_h) - f(v^2_h) \quad \forall v^2_h \in V^2_h$$

Define χ as the solution of

$$a(\chi, \tilde{v}) = r(\tilde{v}) \quad \forall \tilde{v} \in V^2_h \setminus V^1_h.$$

For specific V^1_h, V^2_h the error $\|u^1_h - u\|$ can be estimated by $\|\chi\|$ on each element.
The HEE for MSFEM

For a mesh Ω_h we define

T_i ... the i^{th} mesh element of Ω_h.

$P^{p_i}(\Omega_h)$... the space of element-wise polynomials of order p_i on T_i.

$N^{p_i}(\Omega_h)$... the Nedelec space of order p_i on T_i.

$V_{MS}^{p_i} = N^{p_i}(\Omega_h) \times N^{p_i}(\Omega_h) \times P^{p_i+1}(\Omega_h)$... the finite element space for the first order MSFEM.

Note: All used finite element spaces need to be hierarchical. This way $V^2_h \setminus V^1_h$ can be constructed efficiently.
The HEE for MSFEM

The basic algorithm:

- Build the space $V_{MS}^{p_i}$. In the beginning, set $p_i = 1$ for all T_i.

- Calculate the MSFEM solution $u_{MS} \in V_{MS}^{p_i}$.

- Build the space of higher order bubble functions $V_b = V_{MS}^{p_i+1} \setminus V_{MS}^{p_i}$.

- Calculate $\chi \in V_b$ using the residuum of u_{MS} in V_b.

- If $\|\chi\|_{T_j} \geq \frac{1}{4} \max_{i \in I} \|\chi\|_{T_i}$, set $p_j = p_j + 1$ on T_j.

- Repeat until $\|\chi\| \leq tol$.
Numerical Example

A stack of laminates exited by a surface current density.

- All dimensions in mm.
- $\mu_r = 1,000$, $\sigma = 2\text{MS/m}$
Numerical Example

∥B∥ in the cross-section.

Finite element orders (blue= 1, red= 9)

The algorithm correctly refines in areas of great variations.
Estimated Errors

- Using the proposed hierarchical error estimator yields an increased rate of convergence.
- The results are very similar for the 3rd order MSFEM.
Conclusions

- A MSFEM formulation for the eddy current problem in 3D has been presented.

- A hierarchical error estimator has been applied to the MSFEM.

- Numerical examples show a significant speed-up using the HEE.

- Future work: Development of a HEE for MSFEM, which takes account of $\|u - u_{MS}\|$.
Thank you for your attention!