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The A− V Formulation

We introduce the magnetic vector potential A with curlA = B and the
electric scalar potential V , satisfying

curlµ−1 curlA + iωσ(A−∇V ) = 0

div iωσ(A−∇V ) = 0,

with the parameters

µ . . . magnetic permeability,
σ . . . electric conductivity,
ω . . . angular frequency.
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The A− V Formulation

curlµ−1 curlA + iωσ(A−∇V ) = 0 (1)

div iωσ(A−∇V ) = 0 (2)

Multiply (1) with v ∈ H(curl), (2) with q ∈ H1.

This results in the weak formulation:

Find A ∈ H(curl), V ∈ H1, so that∫
Ω
µ−1 curlA · curl v + iωσ(A−∇V ) · (v −∇q) dΩ = 0

for all v ∈ H(curl), q ∈ H1.

Plus boundary conditions.
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Motivation for the Multi-Scale Finite Element Method

Problems of the classical FEM in a layered medium:

Each laminate has to be resolved individually.

High number of elements makes it computationally expensive.

The solution A−∇V has the following properties:

It varies only little from sheet to sheet.

It is an odd function in each laminate.

It is an even function along the sheet edges.
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The Multi-Scale Finite Element Method

We propose the following MSFEM expansion:

A−∇V ≈ A0 + A1φ1 +∇(w1φ1) + . . .

with A0,A1, · · · ∈ H(curl),w1, · · · ∈ H1.

This expansion is used in the weak formulation for the trial function and
the test function.

The shape functions φi are
splines.

Lobatto polynomials are used
in iron.
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The Multi-Scale Finite Element Method

Properties of the MSFEM expansion:

The new unknowns are defined on a coarse mesh which does not
resolve each single laminate.

A0 describes the overall field distribution.

A1,A3, . . . model the main magnetic flux in the lamination.

w1,w3, . . . consider the edge effect.

Any number of terms can be added to improve the accuracy.

Coefficients containing the shape functions φi are averaged analytically.
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The Hierarchical Error Estimator HEE

Consider the general problem:

Find u ∈ V , such that

a(u, v) = f (v)

for all v ∈ V with a bilinear form a and a linear form f .

Galerkin method: Choose a subspace Vh ⊂ V of finite dimension, find
uh ∈ Vh such that

a(uh, vh) = f (vh)

for all vh ∈ Vh.
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The Residuum

If V 1
h ⊂ V 2

h ⊆ V , then

a(u1
h, v

1
h ) = f (v1

h ) ∀v1
h ∈ V 1

h

a(u1
h, v

2
h ) 6= f (v2

h ) ∀v2
h ∈ V 2

h .

This defines the residuum:

r(v2
h ) = a(u1

h, v
2
h )− f (v2

h ) ∀v2
h ∈ V 2

h

Define χ as the solution of

a(χ, ṽ) = r(ṽ) ∀ṽ ∈ V 2
h \ V 1

h .

For specific V 1
h ,V

2
h the error ‖u1

h − u‖ can be estimated by ‖χ‖ on each
element.
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The HEE for MSFEM

For a mesh Ωh we define

Ti . . . the i th mesh element of Ωh.

Ppi (Ωh) . . . the space of element-wise polynomials of order pi on Ti .

N pi (Ωh) . . . the Nedelec space of order pi on Ti .

V pi
MS = N pi (Ωh)×N pi (Ωh)× Ppi+1(Ωh) . . . the finite element space for

the first order MSFEM.

Note: All used finite element spaces need to be hierarchical. This way
V 2
h \ V 1

h can be constructed efficiently.
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The HEE for MSFEM

The basic algorithm:

Build the space V pi
MS . In the beginning, set pi = 1 for all Ti .

Calculate the MSFEM solution uMS ∈ V pi
MS .

Build the space of higher order bubble functions Vb = V pi+1
MS \ V pi

MS .

Calculate χ ∈ Vb using the residuum of uMS in Vb.

If ‖χ‖Tj ≥ 1
4 max

i∈I
‖χ‖Ti , set pj = pj + 1 on Tj .

Repeat until ‖χ‖ ≤ tol .
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Numerical Example

A stack of laminates exited by a surface current density.

All dimensions in mm.

µr = 1, 000, σ = 2MS/m
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Numerical Example

‖B‖ in the cross-section. Finite element orders
(blue= 1, red= 9)

The algorithm correctly refines in areas of great variations.
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Estimated Errors

Using the proposed
hierarchical error
estimator yields an
increased rate of
convergence.

The results are very
similar for the 3rd

order MSFEM.
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Conclusions

A MSFEM formulation for the eddy current problem in 3D has been
presented.

A hierarchical error estimator has been applied to the MSFEM.

Numerical examples show a significant speed-up using the HEE.

Future work: Development of a HEE for MSFEM, which takes
account of ‖u − uMS‖.
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Thank you for your attention!
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