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Abstract

We consider the propagation of electromagnetic
waves in dispersive waveguides in time domain.
To treat the unbounded domains numerically we
use so-called perfectly matched layers (PMLs).
It is known (see [1]) that standard PMLs for
such problems can lead to unstable solutions due
to the possible occurrence of backward propa-
gating waves. Here we adopt stabilized PMLs
which have been designed to cope with the dis-
persive e�ects, following [?,?]. Despite the fact
that the use of PMLs is very popular, only very
few and recent results (e.g., [?,?]) on their con-
vergence in time domain (which requires consid-
ering non-constant damping functions) are avail-
able. Continuing the work done in [?] we con-
sider general dispersive materials and study sta-
bility and convergence of the new PMLs.
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1 Introduction and problem setting

We look for the solution (E, H) of the TM sys-
tem of Maxwell's equations in a half-closed wave-
guide R+ × (0, ℓ), ℓ > 0,

∂tD − curlH = 0,

∂tB + curlE = 0.
(1)

The above system is equipped with initial con-
ditions, supported in Ω = (0, R) × (0, l), and
homogeneous (e.g. Neumann) boundary condi-
tions. We consider materials given by the con-
stitutive relations

D = L−1
(
ε(s)Ê

)
, B = L−1

(
µ(s)Ĥ

)
, (2)

where L is the Laplace transform and Ĥ = L(H),
Ê = L(E). We assume that the dielectric per-
mittivity and magnetic permeability of the med-
ium ε, µ : C+ → C satisfy the following: η ∈
{ε, µ} is analytic for s such that Res > 0, and

� Re(sη(s)) > 0 for Res > 0;

� η(s) = η(−s̄) (time-reality);

� limr→+∞ η(r) = 1 (non-dispersivity for
high frequencies).

Functions satisfying all these conditions will be
called admissible. These assumptions cover the
frequently considered cases of Drude and Lorentz
materials (also with dissipation).

In the Laplace domain, problem (??) can be
written as the dispersive Helmholtz equation

s2ε(s)µ(s)Ĥ −∆Ĥ = 0. (3)

2 Waves in dispersive media

A decomposition into transversal modes ϕj cor-
responding to the eigenvalues λ2

j of the transver-

sal Laplacian allows to represent Ĥ as

Ĥ(x, y) =
∞∑
j=0

Ĥj(x)ϕj(y),

where Ĥj for x > R (i.e., outside of the support
of the initial conditions) are given by

Ĥj(x) = Ĥj(R) exp (−κj(s)(x−R)) ,

κj(s) =
√
s2µ(s)ε(s) + λ2

j .

Let us for the moment assume that ε and µ are
meromorphic functions in C, purely real on iR.
Then radiating waves with frequency s = iω,
ω ∈ R, fall into one of the following classes:
1) forward propagating waves, where µ(iω) >
0, ε(iω) > 0; 2) backward propagating waves,
where µ(iω) < 0 and ε(iω) < 0; note that in this
case, the group velocity and the phase velocity
have opposite signs; 3) evanescent waves, where
µ(iω)ε(iω) < 0.

3 PMLs for dispersive media

Because (??) is posed in an unbounded domain,
its numerical simulation requires a truncation
of the computational domain. Due to the pres-
ence of backward propagating waves, the classi-
cal, Bérenger's PMLs are unstable. We thus em-
ploy the stabilized PML method of [1], adapted
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(a) Convergence in di�erent regimes
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(b) Convergence of propagating waves at di�erent times

Figure 1: Exponential convergence with respect to σ

to the dispersive nature of the problem. It is
based on the change of variables

x̃ = x+
1

sζ(s)

∫ x

R
σ(x′)dx′. (4)

Here σ > 0 is a damping parameter and ζ :
C+ → C is introduced to compensate for insta-
bilities due to presence of backward propagating
waves. Note that the classical PML corresponds
to the choice ζ ≡ 1. It was shown in [4] that if
the function ζ is such that ζ, as well as µε/ζ are
admissible, then the respective PML system is
stable for σ = const > 0. For Lorentz materi-
als, this condition is equivalent to the necessary
and su�cient stability conditions of [?]. Obvi-
ous simple choices include ζ = µ, ε.

Subsequently, the unbounded part x > R of
the waveguide is truncated to a �nite computa-
tional domain of length L and equipped with a
homogeneous boundary condition on the trun-
cation boundary.

As a result, we obtain the following PML
system, written in the Laplace domain:(

1 +
σ

sζ(s)

)
s2ε(s)µ(s)Ĥ − ∂x

(
1 +

σ

sζ(s)

)−1

∂xĤ

− ∂y

(
1 +

σ

sζ(s)

)
∂yĤ = 0, (5)

posed in (0, R+L)×(0, ℓ), equipped with initial
and boundary conditions. This system has to be
rewritten in the time domain by inverting the
Laplace transform.

4 Main convergence result

LetHσ solve the time-domain equivalent of (??),
and H be the exact solution. Then the PML er-
ror Eσ(T ) = ∥H −Hσ∥L2(0,T ;L2(Ω)) satis�es

Eσ(T ) ≤ C exp
(
−4σ̄L2T−1

)
Ed(T ),

where the constant C depends on µ, ε, ζ and
polynomially on T and (L+R)−1. The quantity
Ed is the energy of the initial conditions and
σ̄ = L−1∥σ∥L1(R,R+L) is the average damping.

Notably this bound is in accordance with the
bounds for non-dispersive materials from [?,?].
Let us remark that to prove this result we used
similar techniques as in [?].

5 Numerical experiments

We conduct numerical experiments using a �rst
order formulation of the time-domain version of
(??) and high-order DG �nite elements with ex-
plicit time-stepping. Figure ?? shows that the
errors decay exponentially fast with respect to
σ. Figure ?? shows the expected deterioration
of the convergence for larger times.
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