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1 Introduction

Please note, that the work at hand is a work-in-progress preprint.
Perfectly matched layers (PML) are a popular method for treating acoustic resonance and

scattering problems in open domains (cf. [2, 13, 4]). The idea behind this method is the application
of a complex coordinate stretching to the unbounded exterior domain to generate exponentially
decaying outgoing solutions (complex scaling). Subsequently the exterior domain is truncated to
obtain a bounded one. Then the finite element method is applied to the complex scaled equation
on the now bounded domain.

PMLs are rather easy to implement in standard finite element codes but have the downside
that there are many method parameters to choose: The scaling function, truncation of the exterior
domain and the finite element discretization of the exterior. All this parameters have to be balanced
to ensure efficiency of the method.

A different approach to such problems is the use of Hardy space infinite elements (cf. [9]).
These infinite elements rely on a Laplace transformation in the unbounded spacial direction. Then
the resulting equation is discretized using ansatz functions in a certain Hardy space. Hardy space
infinite elements exhibit super-algebraic convergence in the number of unkowns. Moreover there are
only two method parameters: the number of Hardy Space unknowns and one method parameter.
On the downside Hardy space infinite elements are set in the unusual framework of the Laplace
domain and allow no straightforward way of dealing with inhomogeneous exterior domains.

In this work we show how Hardy space infinite elements can be interpreted as infinite elements
applied to the complex scaled equation. This interpretation omits the detour of the Laplace trans-
form. It thus allows us to apply numerical integration, enabling us to treat inhomogeneous exterior
domains as well. The remainder of the paper is organized as follows: In Section 2 we define the
problems in question and give a brief explanation of the method of complex scaling. In Section 3 we
explain the used tensor product exterior discretizations. The complex scaled infinite elements are
defined in Section 4 and their connection to Hardy space infinite elements is explained in Subsection
4.5. In Section 5 we develop some results concerning the approximation by our ansatz functions. We
conclude with a section consisting of numerical experiments to underline our theoretical findings.

2 Problem setting

Definition 2.1. For d ∈ {1, 2, 3} let Ω ⊂ Rd be an unbounded open domain such that Ω can
be splitted into a bounded interior part Ωint an unbounded exterior part Ωext and an interface Γ.
Ωint,Ωext,Γ should fulfill the following assumptions:
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(i) Ω = Ωint∪̇Γ∪̇Ωext,

(ii) there exists R > 0, such that Ωint = Ω ∩ BR(0), Ωext = Ω \ Ωint and Γ = {x ∈ Ω : ‖x‖ = R},
and

(iii) Ωext =
{(

1 + ξ
R

)
x̂ : x̂ ∈ Γ, ξ ∈ R≥0

}
.

Remark 2.2. Note, that these conditions imply that for each x ∈ Ωext∪Γ there exists a unique pair
(ξ, x̂) ∈ R≥0 × Γ, such that

x =

(
1 +

ξ

R

)
x̂. (1)

For the mapping defined by (1) we also write x(ξ, x̂) and ξ(x) , x̂(x) for the inverse mapping. In
the case d = 1, we have x̂ ∈ {−R,R}.

Definition 2.3 (Scattering and resonance problem). Let Ω = Ωint∪̇Γ∪̇Ωext be such that the con-
ditions above hold. Moreover, let p, f ∈ L2(Ω) such that p|Ωext ≡ 1 and suppf ⊂ Ωint. For a fixed
frequency ω ∈ C we call the problem: Find u ∈ C2(Ω) such that

−∆u(x)− ω2p(x)u(x) = f(x) , x ∈ Ω, (2)

u fulfills some b.c., x ∈ ∂Ω,

u is outgoing, ‖x‖ → ∞,

the Helmholtz scattering problem. The problem: Find ω ∈ C− := {z ∈ C : =z ≤ 0}, u ∈ C2(Ω)\{0},
such that

−∆u(x) = ω2p(x)u(x) , x ∈ Ω, (3)

u fulfills some b.c., x ∈ ∂Ω,

u is outgoing, ‖x‖ → ∞,

is called the Helmholtz resonance problem.

In the following we will focus on the resonance problem.

2.1 Radiation condition

We call a solution u of (3) or (2) outgoing if it can be written in Ωext (i.e. for all ξ ∈ R≥0, x̂ ∈ Γ)
as

u(x(ξ, x̂)) =


exp(iωx(ξ, x̂)), d = 1,∑∞

k=−∞ αkH
(1)
|k| (ω(R+ ξ)) Φk

(
1
R x̂
)
, d = 2,∑∞

k=0

∑mj
j=0 βk,jh

(1)
k (ω(R+ ξ))Yk,j

(
1
R x̂
)
, d = 3,

(4)

where H
(1)
k are the Hankel functions of the first kind, h

(1)
k the spherical Hankel functions of the

first kind, Φk the cylindrical harmonics and Yk,j the spherical harmonics.

Remark 2.4. This also implies that an outgoing solution has an analytic continuation to x(C,Γ).
In the following we will use the symbol u for the analytic continuation as well.
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2.2 Complex scaling

To incorporate (4) into our equation we use the technique of complex scaling. In this work we only
consider linear complex scalings of the form

τ(ξ) := σξ,

γ(x(ξ, x̂)) :=

{
x, x ∈ Ωint,

x(τ(ξ) , x̂) , x ∈ Ωext,

for a given σ ∈ C with =(σ) > 0. We denote the Jacobian of the scaling by

Jσ(x) = Jσ
(
(x1, . . . , xd)

T
)

:=

(
∂γi
(
(x1, . . . , xd)

T
)

∂xj

)
i=1,...,d,j=1,...,d

.

Due to the fact, that the spherical Hankel functions are of the form exp(i·) p(·) for some polynomials
p (cf. Definition 5.4) this gives for u of the form (4) that

lim
ξ→∞

u(γ(x(ξ, x̂))) = 0.

2.3 Weak formulation

Since, that the complex scaled solution u ◦ γ decays exponentially for ‖x‖ → ∞, it is also square
integrable and we can state a weak formulation of (2) using the following bilinear forms:

Definition 2.5. For f, g ∈ H1(Ωext) we define

mint(f, g) :=

∫
Ωint

p(x) f(x) g(x) dx,

sint(f, g) :=

∫
Ωint

∇f(x) · ∇g(x) dx,

mσ
ext(f, g) :=

∫
Ωext

f(x) g(x) det Jσ(x) dx,

sσext(f, g) :=

∫
Ωext

(
Jσ(x)−T ∇f(x)

)
·
(
Jσ(x)−T ∇g(x)

)
det Jσ(x) dx.

Problem 2.6. Find u ∈ H1(Ω) \ {0}, ω ∈ C−, such that

sint(u, v) + sσext(u, v) = ω2 (mint(u, v) +mσ
ext(u, v)) , (5)

for all v ∈ H1(Ω).

Remark 2.7. The weakly formulated Problem 2.6 assumes homogeneous Neumann boundary condi-
tions on ∂Ω. For Dirichlet or mixed boundary conditions the problem has to be adapted accordingly.
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2.4 Discrete formulation

Our goal is to discretize Problem 2.6. To this end we pick N ∈ N and a family of functions
BN := {b0, . . . , bN } ⊂ H1(Ω) and define the discrete space XN by

XN := span(BN ) ⊂ H1(Ω) .

Defining the mass- and stiffness matrix by

M := (mi,j)i,j=0,...,N , S := (si,j)i,j=0,...,N (6)

and
mi,j = mint(bi, bj) +mσ

ext(bi, bj) , si,j = sint(bi, bj) + sσext(bi, bj) (7)

respectively, we can formulate the discrete problem by

Problem 2.8. Find (ω,u) ∈ C− × CN \ {0}, such that

Su = ω2Mu.

The discrete Problem 2.8 can be solved using standard eigenvalue solvers. The task for the
remaining chapters will be to find a suitable basis BN .

3 Tensor product exterior discretizations

In this section we will exploit the inherent structure of the exterior domain to find a simple way of
discretizing it without having to mesh it explicitly. To simplify notation we will focus on the case
d = 3 only.

For the remainder of this chapter we will assume that ϕ : M → Γ is a diffeomorphism for some
open set M ⊂ R2.

Lemma 3.1. We can calculate the Jacobian of the coordinate transformation

Ψϕ :

{
R≥0 ×M → Ωext ∪ Γ,

(ξ, η) 7→
(

1 + ξ
R

)
ϕ(η) ,

its inverse, and its determinant by

DΨϕ(ξ, η) =

(
1

R
ϕ(η) ,

(
1 +

ξ

R

)
Dϕ(η)

)
,

(DΨϕ(ξ, η))−1 =

(
1
Rϕ(η)T

1

1+ ξ
R

Dϕ(η)†

)
,

|detDΨϕ(ξ, η) | =
(

1 +
ξ

R

)2√∣∣∣det
(
Dϕ(η)T Dϕ(η)

)∣∣∣,
where A† :=

(
ATA

)−1
AT is the pseudo inverse of a matrix A ∈ C3×2 with full rank.
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Proof. The Jacobian can be obtained by straightforward differentiation.
Its inverse can be easily verified using the facts that ϕ(η)T Dϕ(η) = 0 and Dϕ(η)†Dϕ(η) = I.
For obtaining the determinant we calculate

det
(
DΨT

ϕDΨϕ

)
= det

((
1
Rϕ(η)T(

1 + ξ
R

)
Dϕ(η)T

)(
1

R
ϕ(η) ,

(
1 +

ξ

R

)
Dϕ(η)

))

= det

(
1 0

0
(

1 + ξ
R

)2
Dϕ(η)T Dϕ(η)

)

=

(
1 +

ξ

R

)4

det
(
Dϕ(η)T Dϕ(η)

)
.

By taking the square root we obtain the desired result.

Definition 3.2. Let M ⊂ R2 and ϕ : M → Γ be a diffeomorphism. Then we define the surface
gradient on of a function f : Γ→ C by

∇̂f(ϕ(η)) :=
(
Dϕ(η)†

)T
∇η(f ◦ ϕ)(η) .

Remark 3.3. It can be shown that the surface gradient ∇̂ defined above is independent of the
specific embedding ϕ.

Theorem 3.4. Let f, g ∈ H1(Ωext) and f̆(ξ, x̂) := f(x(ξ, x̂)), ğ(ξ, x̂) := g(x(ξ, x̂)). Then the
exterior bilinear forms from Definition 2.5 can be rewritten in coordinates ξ, x̂ by

mσ
ext (f, g) = σ

∫
R≥0×Γ

f̆(ξ, x̂) ğ(ξ, x̂)

(
1 +

σξ

R

)2

d(ξ, x̂),

sσext (f, g) =
1

σ

∫
R≥0×Γ

∂f̆

∂ξ
(ξ, x̂)

∂ğ

∂ξ
(ξ, x̂)

(
1 +

σξ

R

)2

d(ξ, x̂),

+ σ

∫
R≥0×Γ

∇̂f̆(ξ, x̂) ∇̂ğ(ξ, x̂) d(ξ, x̂),

where integration over Γ of a function h : Γ→ C means integration by the surface measure i.e.∫
ϕ(M)

h(x̂) dx̂ :=

∫
M
h(ϕ(η))

√∣∣∣det
(
Dϕ(η)T Dϕ(η)

)∣∣∣ dη.
Proof. Using the determinant calculated in Lemma 3.1 and the fact that

γ(Ψϕ(ξ, η)) = Ψϕ(σξ, η) ,

we obtain

D(γ ◦Ψϕ)(ξ, η) = DΨϕ(σξ, η)

(
σ 0
0 Id2

)
,

(D(γ ◦Ψϕ)(ξ, η))−1 =

(
1
σ 0
0 Id2

)
(DΨϕ(σξ, η))−1 ,

detD(γ ◦Ψϕ)(ξ, η) = σ detDΨϕ(σξ, η) .
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After applying the transformation rule we immediately obtain the formula for mσ
ext.

For the formula for sσext we calculate

∇f(Ψϕ(ξ, η)) = (D(γ ◦Ψϕ)(ξ, η))−T ∇ξ,η (f ◦Ψϕ)(ξ, η)

=

(
1

σR
ϕ(η) ,

1

1 + ξσ
R

(
Dϕ(η)†

)T)( ∂f◦Ψϕ
∂ξ (ξ, η)

∇η(f ◦Ψϕ)(ξ, η)

)

=
1

σR
ϕ(η)

∂f̆

∂ξ
(ξ, ϕ(η)) +

1

1 + σξ
R

∇̂f̆(ξ, ϕ(η)) .

Plugging this into the integral and applying the transformation rule leads to the desired result.

3.1 Exterior spaces

Let

B̃N := {φj : j = 0, . . . ,M} ⊂ H1(R≥0) ,

B̂M := {bj : j = 0, . . . ,M} ⊂ H1(Γ) ,

be families of linearly independent functions. Then we define discrete spaces on R≥0 and Γ respec-
tively by

X̃N := span
(
B̃N
)
⊂ H1(R≥0) ,

and
X̂M := span

(
B̂M
)
⊂ H1(Γ) .

To discretize the exterior problem, we use a tensor product space of the form

X̃N ⊗ X̂M := span{φ(ξ) b(x̂) : φ ∈ B̃N , b ∈ B̂M}.
To obtain the entries of the mass and stiffness matrix defined in (6) and (7), we need to

evaluate the exterior bilinear forms for all basis functions. Since our basis functions are composed
of a radial and a tangential part, we can decompose the bilinear forms accordingly and obtain for
f̃ , g̃ ∈ H1(R≥0) and f̂ , ĝ ∈ H1(Γ)

mσ
ext

(
f̃ f̂ , g̃ĝ

)
= m̃σ

1

(
f̃ , g̃
)
m̂
(
f̂ , ĝ
)
,

sσext

(
f̃ f̂ , g̃ĝ

)
= s̃σ

(
f̃ , g̃
)
m̂
(
f̂ , ĝ
)

+ m̃σ
0

(
f̃ , g̃
)
ŝ
(
f̂ , ĝ
)
,

with

m̃σ
0

(
f̃ , g̃
)

= σ

∫ ∞
0

f̃(ξ) g̃(ξ) dξ,

m̃σ
1

(
f̃ , g̃
)

= σ

∫ ∞
0

(
1 +

σξ

R

)2

f̃(ξ) g̃(ξ) dξ,

s̃σ
(
f̃ , g̃
)

=
1

σ

∫ ∞
0

(
1 +

σξ

R

)2

f̃ ′(ξ) g̃′(ξ) dξ,

m̂
(
f̂ , ĝ
)

=

∫
Γ
f̂(x̂) ĝ(x̂) dx̂,

ŝ
(
f̂ , ĝ
)

=

∫
Γ
∇̂f̂(x̂) · ∇̂ĝ(x̂) dx̂.

6



A usual PML approach in this tensor product setting would be to truncate the set R≥0 to some
finite interval [0, T ] for T > 0 and to use

X̃N ⊂ H1
0 ([0, T ]) := {f ∈ H1(R≥0) : f(x) = 0, x ≥ T}.

Differing from this approach, we will choose basis functions with infinite support to omit truncation
and ensure faster convergence. Our requirements to the basis functions φj and the discrete space
X̃N are:

(R 1) The basis functions φj should be easy to evaluate numerically stable,

(R 2) the radial part of the solution should be well approximated by functions from X̃N ,

(R 3) it should be easy to couple the interior to the exterior problem,

(R 4) the integrals
∫
R≥0

p(ξ)φi(ξ)φj(ξ) dξ and
∫
R≥0

p(ξ)φ′i(ξ)φ
′
j(ξ) dξ should be easy to compute

(numerically), for polynomials p,

(R 5) the discretization matrices should be sparse, and

(R 6) the condition numbers of the discretization matrices should behave well for large N .

4 Infinite elements based on complex scaling

4.1 Interior and interface discretization

For discretizing the interior domain Ωint basically any discrete space Xint = span{bj : j = 0, . . . , L} ⊂
H1(Ωint) such that Xint|Γ := {f |Γ : f ∈ Xint} ⊂ H1(Γ) can be used. The trace space of this interior
discrete space is then used for the interface discretization (cf. 3), i.e.

X̂M := Xint|Γ = span{bj |Γ : j = 0, . . . , L} ⊂ H1(Γ) .

Remark 4.1. In our examples we will choose Xint as a standard high order conforming finite element
space. Since in this case all of the basis functions corresponding to inner nodes in Ωint will be zero
on the interface Γ, we expect the dimension of X̂M to be much smaller than the dimension of Xint.

4.2 Radial discretization

For the radial discretization we use the space of generalized Laguerre functions which we define as
follows:

Definition 4.2. For n ∈ N0 and m ∈ Z, we define the generalized Laguerre polynomials by

Ln,m(x) :=

n∑
k=0

(
n+m
n− k

)
(−x)k

k!
.

Further we define the generalized Laguerre functions by

φn,m(x) := exp(−x)Ln,m(2x). (8)

We will shorten notation by writing φn := φn,0 and Ln := Ln,0. Moreover we define the radial
discrete space by

X̃N := span {φn : n = 0, . . . , N} .
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We proceed to study whether the basis functions defined in Definition 4.2 satisfy our require-
ments (R 1)-(R 6). To this end, we state a few properties of the generalized Laguerre functions.

Lemma 4.3 (properties of the generalized Laguerre functions).

(i) For k, n ∈ N0, m ∈ Z the functions φn,m ∈ Hk(R≥0) and

(φn, φk)L2(R≥0) =
1

2
δn,k.

The functions
{

1√
2
φk, k ∈ N0

}
form a complete orthonormal system of L2(R≥0).

(ii) For n ∈ N,m ∈ Z,
φn,m−1 = φn,m − φn−1,m.

(iii) For k ∈ N0, x ∈ C
dk

dxk
φn,m(x) = (−1)kφn−k,m+k(x) .

(iv) For n ∈ N0,m ∈ Z, x ∈ C

Ln,m(x) =
exp(x)

xmn!

dn

dxn
(
exp(−x)xn+m

)
.

(v) For n, k, l ∈ N, p ∈ Πn and |l − k| > n

(pφl, φk)L2(R≥0) = 0.

(vi) For m ∈ Z, N ∈ N,
X̃N = span {φn,m : n = 0, . . . , N}

(vii) For j ∈ N0

φj(0) = δ0,j .

(viii) For k ∈ N≥2, x ∈ C

kφk(x) = (2k − 1− 2x)φk−1(x)− (k − 1)φk−2(x). (9)

8



(ix) For t, x ∈ C, |t| < 1

∞∑
k=0

Lk(x)tk =
exp
(
− tx

1−t

)
1− t .

Proof. All of the statements are easily checked by the reader and can be found e.g. in [1, Chapter 22]

Remark 4.4. Item (vii) of Lemma 4.3 shows, that only the first radial basis function has to be
coupled to an interior basis function i.e. (R 3) is fulfilled. Moreover items (i) and (v) together with
(iii) and (ii) tell us that the resulting matrices will be sparse ((R 5))

4.3 Coupling the interior and exterior problems

Since we want to create a conforming discrete space for the whole problem we need to couple our
interior and exterior discrete spaces in a manner such that the resulting space is a equivalent to a
subspace of H1(Ω). We achieve this by using

Y := {(uint, uext) : uint ∈ Xint, uext ∈ XN , uint|Γ = uext(0, ·)} .

With an embedding defined by

ι :


Y → H1(Ω)

ι((u, v))(x) :=

{
u(x) , x ∈ Ωint

v(ξ(x) , x̂(x)) , x ∈ Ωext

we have
ι(Y) ⊂ H1(Ω) .

To obtain a basis of Y we have to couple basis functions, such that the resulting functions are
continuous. This can be done by identifying an interior basis function bj with non-vanishing trace
on Γ with the exterior basis function bj ⊗ φ0.

Remark 4.5. Due to the tensor product structure of the exterior space the parts of S and M that
correspond to the exterior domain can be assembled by calculating the radial and interface part
seperately and tensorizing them appropriately.

4.4 Stable evaluation and numerical integration

The generalized Laguerre functions can be evaluated numerically stable by using the recursion given
in Lemma 4.3(viii). We use Gauss rules for (0,∞) with weighting function exp(−·) to obtain exact
quadrature rules for the Laguerre functions (see [18, Chapter 7.1.2]).

Remark 4.6. This enables us to also deal with inhomogeneous potentials in the exterior domain
which is not possible in a straightforward way using classical Hardy Space infinite elements.
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4.5 Comparison to the Hardy Space infinite element method

The Hardy space infinite element method introduced in [9] uses the so called pole condition [17, 16,
11] as radiation condition. In its standard form, this pole condition is equivalent to the radiation
condition underlying the complex scaling, which is equivalent to the radiation condition of Sec. 2.1
for certain domains of complex frequencies including positive frequencies (see [12] or more explicitly
for waveguides in [10, 8]).

The Hardy space infinite element method is a tensor product method as introduced in Sec. 3.
But since the pole condition characterizes radiating solutions of the Helmholtz equation by the
poles or singularities of their Laplace transform, the discretization in the radial direction is done
for the Laplace transformed function. The basis functions are elements of certain Hardy spaces such
that they satisfy the pole condition. In order to use these basis functions, the Helmholtz equation
has to be transformed into the Laplace domain leading to quite unusual variational formulations
in unusual Hilbert spaces. Nevertheless, it is a pure Galerkin method.

For a comparison with the complex scaled infinite elements of this paper, Section 4.2 of [9] is of
importance. In this section, the Hardy space variational formulation is related to a complex scaled
variational formulation via a Fourier transform. If the isomorphism Q defined there is applied to
the Hardy space basis functions from [9, Sec. 2.4], we arrive at the generalized Laguerre functions
of the preceding subsections. Hence, the discretization matrices of the Hardy space infinite element
method are exactly the same as those of the complex scaled infinite elements.

For the Helmholtz equation with homogeneous exterior domain the complex scaled infinite
element method is therefore exactly identical to the standard Hardy space infinite element method.
Only the functional setting and the theoretical justification is different. There are two situations,
where the two methods differ. If the exterior domain is inhomogeneous with coefficient functions
depending on the radius, the Hardy space infinite element method is complicated to use due to
the involved Laplace transform. Nevertheless, inhomogeneous exterior problems with dependencies
only on the surface variable can be solved with the pole condition framework as well (see [14]). On
the other hand, the two pole Hardy space method introduced in [6] uses a more complicated form
of the pole condition, which is not equivalent to a standard complex scaling radiation condition.
So e.g. for elastic waveguide problems with different signs of group and phase velocity, the Hardy
space infinite element method of [7] cannot be reinterpreted directly as a complex scaled infinite
element method.

For problems, where the two methods are essentially identical, the convergence results in [9, 5]
can be used for complex scaled infinite elements as well. Nevertheless, in the following section we
present more detailed approximation results for the infinite element method, which have not been
derived so far. They may help choosing appropriate method parameters in practice.

5 Convergence results

Since the error of a Galerkin approximation depends on the best approximation error of the solution,
we will derive estimates for the best approximation error in this section. In [18, Chapter 7.3] it is

shown that the error of interpolation by Laguerre functions is of order N−
1
2 , where N is the order

of Laguerre functions. Although this implies super algebraic convergence of our method, it does
not help us in choosing optimal parameters. Therefore, in this section we will derive estimates
depending on the method parameters σ and R and the frequency ω.
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5.1 Best approximation in one dimension

Theorem 5.1. For b ∈ C, <(b) > −1 and n ∈ N0,∫ ∞
0

exp(−bx)φn(x) dx =
(b− 1)n

(b+ 1)n+1
.

For <(b) > 0 and x ∈ R≥0, we have

exp(−bx) =
2

b+ 1

∞∑
k=0

(
b− 1

b+ 1

)k
φk(x).

Moreover, the L2(R≥0)-orthogonal projection onto X̃N of exp(−b·) is given by

ΠN exp(−b·) =
2

b+ 1

N∑
k=0

(
b− 1

b+ 1

)k
φk(·) .

Proof. It is easily shown by partial integration and induction over j, that for j ∈ N, j ≤ n+ 1∫ ∞
0

exp(−bx)φn(x) dx =

1

b+ 1

j−1∑
k=0

(
2

b+ 1

)k
L(k)
n (0) +

(
2

b+ 1

)j ∫ ∞
0

exp(−x(b+ 1))L(j)
n (2x) dx.

For j = n+ 1 we obtain∫ ∞
0

exp(−bx)φn(x) dx =
1

b+ 1

n∑
k=0

(
2

b+ 1

)k
L(k)
n (0)

4.3(viii)
=

1

b+ 1

n∑
k=0

(
− 2

b+ 1

)k
Ln−k,k(0)

=
1

b+ 1

n∑
k=0

(
− 2

b+ 1

)k (
n
k

)
=

1

b+ 1

(
1− 2

b+ 1

)n
=

(b− 1)n

(b+ 1)n+1
.

If <(b) > 0 we have exp(b·) ∈ L2(R≥0). Since {φk, k ∈ N0} is a complete orthogonal system of
L2(R≥0) , we have

exp(−bx) =

∞∑
k=0

(φk, exp(−b·))L2(R≥0)

(φk, φk)L2(R≥0)
φk(x) =

2

b+ 1

∞∑
k=0

(
b− 1

b+ 1

)k
φk(x) .

11



Corollary 5.2. For b ∈ C, <(b) > 0 and N ∈ N0

inf
uN∈X̃N

‖exp(−b·)− uN‖L2(R≥0) ≤ ‖(I −Πn) exp(−b·) ‖L2(R≥0) =
1√
2<b

∣∣∣∣b− 1

b+ 1

∣∣∣∣N+1

.

Proof.

‖(I −ΠN ) exp(−b·) ‖2
L2(R≥0)

=

∥∥∥∥∥ 2

b+ 1

∞∑
k=N+1

(
b− 1

b+ 1

)k
φk

∥∥∥∥∥
2

L2(R≥0)

=

∣∣∣∣ 2

b+ 1

∣∣∣∣2 ∞∑
k=N+1

∣∣∣∣b− 1

b+ 1

∣∣∣∣2k ‖φk‖2L2(R≥0)

= 2

∣∣∣∣(b− 1)N+1

(b+ 1)N+2

∣∣∣∣2 ∞∑
k=0

∣∣∣∣b− 1

b+ 1

∣∣∣∣2k
= 2

∣∣∣∣(b− 1)N+1

(b+ 1)N+2

∣∣∣∣2 1

1−
∣∣∣ b−1
b+1

∣∣∣2
=

∣∣∣∣b− 1

b+ 1

∣∣∣∣2N+2 1

2<b .

Remark 5.3. Because of the representation of the solutions in the exterior

uext(ξ) = exp(±iωR) exp(iωσξ)

for d = 1 Theorem 5.1 and Corollary 5.2 (with b = −iσω) state, that the approximation by Laguerre

functions in the L2-norm depends on the quantity
∣∣∣1+iωσ

1−iωσ

∣∣∣. It is exact if ωσ = i. In particular we

have for =(σω) > 0

inf
uh∈X̃N

‖ exp(iσω·)− uh‖L2(R≥0) ≤
1√

2=(σω)

∣∣∣∣1 + iσω

1− iσω

∣∣∣∣N+1

.

5.2 Best approximation of the zeroth spherical Hankel function

Definition 5.4. For n ∈ N0, the spherical Hankel functions of the first kind h
(1)
n can be defined by

hn(ξ) := − i
ξ

exp(iξ)h̃n(ξ),

with

h̃n(ξ) := (−i)n
n∑

m=0

im

m!(2ξ)m
(n+m)!

(n−m)!)
.

To simplify the notation we will omit the superscript (1) and simply write hn := h
(1)
n .
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Suppose we want to approximate

h0(ωR+ iξ) =
− exp(iωR) exp(−ξ)

−iωR+ ξ
,

using our basis functions φj . This would be the case if we applied a frequency dependent com-
plex scaling σ(ω) = i

ω (cf. [15]). Then the approximation error will be governed by the terms(
exp(−·)
a+· , φn

)
L2(R≥0)

, for a = −iωR. This motivates the following definition.

Definition 5.5. For a ∈ C \ R≤0 and n, k ∈ N0, we define

αn,k(a) :=

∫ ∞
0

exp(−ξ)
(a+ ξ)k

φn(ξ) dξ,

The following lemma shows, that the numbers αn,1(a) can be calculated by a simple integral.

Lemma 5.6. For a ∈ C \ R≤0 and n ∈ N0, we have

αn,1(a) =

∫ ∞
0

ξn exp(−ξ)
(2a+ ξ)n+1

dξ

The numbers αn,1(a) are the coefficients of the expansion of exp(−·)
a+· in the Laguerre functions φn

and therefore

exp(−ξ)
a+ ξ

= 2

∞∑
k=0

αk,1(a)φk(ξ).

Proof. It is easily shown by partial integration and induction in j, that for j ≤ n∫ ∞
0

tn exp(−t)
(2a+ t)n+1

dt =
(n− j)!
n!

∫ ∞
0

1

(2a+ t)n+1−j
dj

dtj
(exp(−t) tn) dt.

For j = n we obtain ∫ ∞
0

tn exp(−t)
(2a+ t)n+1

dt =
1

n!

∫ ∞
0

1

2a+ t

dn

dtn
(exp(−t) tn) dt

4.3(iv)
=

∫ ∞
0

1

2a+ t
exp(−t)Ln(t) dt

=

∫ ∞
0

2 exp(−t)
2a+ 2t

φn(t) dt = αn,1(a) .

The following theorem gives an asymptotic expansion of the terms αn,1(a) with respect to n.

Theorem 5.7 (asymptotic behavior of αn,1). For a ∈ C \ R≤0

αn,1(a) = exp
(
a− 2

√
2a(n+ 1)

) √
π

(2a(n+ 1))
1
4

(
1 +O

(
1√
n+ 1

))
, n→∞.

The symbols
√
z and z

1
4 for z ∈ C \ R≤0 assume their respective principal values (their image is

symmetric with respect to the positive real axis).
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Proof. Lemma 5.6 states that
αn,1(a) = n!U(n+ 1, 1, 2a) ,

where for n ∈ N0, a ∈ C \ R≤0

U(n+ 1,m, a) =
a1−m

n!

∫ ∞
0

tn exp(−t)
(a+ t)n+2−m dt.

The function U is called confluent hypergeometric function of the second kind. Using (10.3.39) and
(9.1.3) in [19] we obtain

n!U(n+ 1, 1, 2a) = 2 exp(a)

(
K0

(
2
√

2a(n+ 1)
)

+O
(

1√
n+ 1

))
,

for n→∞ and

Kn(z) =

√
π

2z
exp(−z)

(
1 +O

(
1

z

))
,

for |z| → ∞. All in all we obtain

αn,1(a) = n!U(n+ 1, 1, 2a)

=
√
π(2a(n+ 1))−

1
4 exp

(
a− 2

√
2a(n+ 1)

)(
1 +O

(
1√
n+ 1

))
,

for n→∞.

Using the lemma above we can now bound the best approximation error of h0(ωR+ i·) by
Laguerre functions.

Lemma 5.8. Let R > 0, N ∈ N and ω > 0. Then there exists c > 0 such that

inf
uN∈X̃N

‖h0(ωR+ i·)− uN‖L2(R≥0) ≤
c
√
π

(2ωR)
1
4

exp
(
−2
√
ωR(N + 1)

)
.

Proof.

‖(I −ΠN )h0(ωR+ i·)‖2
L2(R≥0)

=

∥∥∥∥(I −ΠN )(−1) exp(iωR)
exp(−·)
−iωR+ ·

∥∥∥∥2

L2(R≥0)

=
∞∑

n=N+1

|2αn,1(−iωR) |2‖φn‖2

≤ 2c

∞∑
n=N+1

∣∣∣exp
(
−iωR− 2

√
−2iωR(n+ 1)

)

×
√
π

(−2iωR(n+ 1))
1
4

∣∣∣∣∣
2

= cπ

√
2

ωR

∞∑
n=N+1

exp
(
−4
√
ωR(n+ 1)

)
√
n+ 1

.
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Since the summand is a decreasing function in n we can replace the sum with an integral and obtain

‖(I −ΠN )h0(ωR+ i·)‖2
L2(R≥0)

≤ cπ
√

2

ωR

∫ ∞
N+1

exp
(
−4
√
ωRt

)
√
t

dt

= 2cπ

√
2

ωR

∫ ∞
√
N+1

exp
(
−4
√
ωRs

)
ds

=
cπ√
2ωR

exp
(
−4
√
ωR(N + 1)

)
.

Theorem 5.9. Let ω, σ ∈ C with =(ωσ) > 0, and R > 0 and N ∈ N. Then there exist constants
C1, C2 > 0 such that the best approximation error of h0(ωR+ ωσ·) can be bounded by

inf
uh∈X̃N

‖h0(ωR+ ωσ·)− uN‖L2(R≥0) ≤ C1

∣∣∣∣1 + iσω

1− iσω

∣∣∣∣N+1

+ C2ε

(
N,

R

σ
,−iωσ

)
with

ε(N, a, b) := ‖(I −ΠN )
1

a+ ·ΠN exp(−b·) ‖L2(R≥0).

Proof.

‖(I −ΠN )h0(ωR+ ωσ·) ‖L2(R≥0) =‖(I −ΠN )
−i exp(iωR)

ωσ

exp(iωσ·)
R
σ + ·

‖L2(R≥0)

≤C2‖(I −ΠN )
1

R
σ + ·

(I −ΠN )exp(iωσ·)‖L2(R≥0)

+ C2 ‖(I −ΠN )
1

R
σ + ·

ΠNexp(iωσ·)‖L2(R≥0)︸ ︷︷ ︸
ε(N,Rσ ,−iωσ)

,

with C2 =
∣∣∣ exp(iωR)

ωσ

∣∣∣. The first term can be bounded by

‖(I −ΠN )
1

R
σ + ·

(I −ΠN )exp(iωσ·)‖L2(R≥0) ≤ 2C‖(I −ΠN )exp(iωσ·)‖L2(R≥0)

≤ 2C
1√

2=(ωσ)

∣∣∣∣1 + iωσ

1− iωσ

∣∣∣∣N+1

,

for some constant C > 0 (cf. Corollary 5.2).

To obtain a bound for the best approximation error of h0 in the space X̃N we need to find a
bound for the expression ε. Since for b ∈ C, a ∈ C \ R≤0

(I −ΠN )
1

a+ ·ΠN exp(−b·) =
∞∑

n=N+1

∫ ∞
0

1

a+ ξ

N∑
k=0

(1− b)k
(1 + b)k+1

φk(ξ)φn(ξ) dξφn(·) ,
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we need to know the asymptotic behavior of the expressions

βn,k(a) :=

∫ ∞
0

φn(x)φk(x)

a+ x
dx, (10)

for large n ∈ N. Thus, we state the following lemma.

Lemma 5.10. Let a ∈ C \ R<0, and βn,k given by (10). Then for n ≥ k there holds

βn,k(a) = αn,1(a)Lk(−2a). (11)

Proof. We prove by induction in k. For k = 0 we have

βn,0(a) = αn,1(a) = αn(a)L0(−2a),

and for k = 1, n ≥ 1

βn,1(a) =

∫ ∞
0

exp(−x)(1− 2x)

a+ x
φn(x) dx

= αn,1(a)− 2

∫ ∞
0

x+ a− a
a+ x

exp(−x)φn(x) dx

= αn,1(a)− δn,0 + 2aαn,1(a)

= (2a+ 1)αn,1(a) = L1(−2a)αn,1(a).

For n ≥ k we use the recursion (9) and write

βn,k(a) =

∫ ∞
0

φn(x)

a+ x

(
2k − 1− 2x

k
φk−1(x)− k − 1

k
φk−2(x)

)
dx =

=
2k − 1

k
βn,k−1(a)− k − 1

k
βn,k−2(a)− 2

k

∫ ∞
0

x+ a− a
a+ x

φn(x)φk−1(x) dx

=
2k − 1

k
βn,k−1(a)− k − 1

k
βn,k−2(a) +

2a

k
βn,k−1(a)

= αn,1(a)

(
2k − 1 + 2a

k
Lk−1(−2a)− k − 1

k
Lk−2(−2a)

)
= αn,1(a)Lk(−2a).

Now we are able to bound the term ε(N, a, b).

Lemma 5.11. For a ∈ C \ R≤0, b ∈ C,<(b) > 0 , there exists C > 0, such that

ε(N, a, b) ≤ C exp
(
−2<

√
2a(N + 1)

)
.

Proof. Since

ΠN exp(−bx) =
2

b+ 1

N∑
k=0

(
b− 1

b+ 1

)k
φk(x),
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we have

ε(N, a, b)2 =

∥∥∥∥∥
∞∑

n=N+1

4

b+ 1

N∑
k=0

(
b− 1

b+ 1

)k (
φn,

φk
·+ a

)
L2(R≥0)

φn

∥∥∥∥∥
2

L2(R≥0)

=

∥∥∥∥∥
∞∑

n=N+1

4

b+ 1

N∑
k=0

(
b− 1

b+ 1

)k
βn,k(a)φn

∥∥∥∥∥
2

L2(R≥0)

=
1

2

∞∑
n=N+1

∣∣∣∣∣ 4

b+ 1
αn,1(a)

N∑
k=0

(
b− 1

b+ 1

)k
Lk(−2a)

∣∣∣∣∣
2

.

Using the generating function of the Laguerre polynomials from Lemma 4.3 (ix) we have for some
constant C

N∑
k=0

(
b− 1

b+ 1
Lk(−2a)

)k
≤ C 1

1− b−1
b+1

exp

(
2a

b−1
b+1

1− b−1
b+1

)

= C
b+ 1

2
exp(a(b− 1)) ,

and thus

ε(N, a, b)2 ≤ 2C
∞∑

n=N+1

|αn,1(a) exp(a(b− 1))|2 .

Substituting the asymptotic behavior of αn,1 and repeating the arguments of the proof of Lemma
5.8 we find for some constant c ∈ R

∞∑
n=N+1

|αn,1(a)|2 ≤ c
∣∣∣∣exp(2a)

π√
2a

∣∣∣∣ 1

2<
√

2a
exp
(
−4<

√
2a(N + 1)

)
.

All in all this gives

ε(N, a, b) ≤ C̃ exp(<(ab))
√
π√

|2a|<
√

2a
exp
(
−2<

√
2a(N + 1)

)
.

Using Theorem 5.9 and Lemma 5.11 we have proven

Theorem 5.12. For R > 0, ω, σ ∈ C, =σω > 0, we can bound the approximation error of the
complex scaled zeroth spherical Hankel function by

inf
uN∈VN

‖h0(ω(R+ σx))− uN‖R≥0
≤ c1

∣∣∣∣1 + iσω

1− iσω

∣∣∣∣N+1

+ c2 exp

(
−2<

√
2R(N + 1)

σ

)
.
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5.3 Approximation of spherical Hankel functions with higher index

Theorem 5.13. For x ∈ C \ R≤0 and n ∈ N

Ln(−2x) =
exp(−x)

2
√
π

exp
(

2
√

2x(n+ 1)
)

(2x(n+ 1))
1
4

(
1 +O

(
1

(n+ 1)
1
2

))
(12)

Proof. See [3], (4).

Lemma 5.14.

|αn,k(x)| ≤ Ck,x
∣∣∣exp

(
−2
√

2x(n+ 1)
)∣∣∣ (n+ 1)−

3
4

+ k
2 , n→∞

Proof. We prove only the cases k = 1, 2, for k > 2 one can proceed similarly. From Theorem 5.7
we have

αn,1(x) =
√
π(2x(n+ 1))−

1
4 exp

(
x− 2

√
2x(n+ 1)

)(
1 +O

(
1√
n+ 1

))
Further we have

αn,k(x) =

∫ ∞
0

1

x+ t

exp(−t)φn(t)

(x+ t)k−1
dt

=

∫ ∞
0

1

x+ t
2

∞∑
j=0

αj,k−1(x)φj(t)φn(t) dt

= 2
∞∑
j=0

αj,k−1(a)βj,n(a)

= 2αn,1(a)
n∑
j=0

αj,k−1(a)Lj(−2a)︸ ︷︷ ︸
∗

+2Ln(−2a)
∞∑

j=n+1

αj,k−1(a)αj,1(a)︸ ︷︷ ︸
∗∗

.

For k = 2 term |(∗)| can be bounded∣∣∣∣∣∣
n∑
j=0

αj,1(a)Lj(−2a)

∣∣∣∣∣∣ ≤ C
n∑
j=0

∣∣∣(2x(j + 1))−
1
2

∣∣∣
≤ C

∫ n

0
(2|x|t)− 1

2 dt

= 2C(2|x|) 1
2n

1
2

≤ Ck,x(n+ 1)
1
2 .

For the term (∗∗) and k = 2 we have∣∣∣∣∣∣
∞∑

j=n+1

αj,1(a)2

∣∣∣∣∣∣ ≤ C
∞∑

j=n+1

∣∣∣exp
(

2x− 4
√

2x(j + 1)
)

(2x(j + 1))−
1
2

∣∣∣
≤ C

∫ ∞
n

∣∣∣exp
(

2x− 4
√

2x(t+ 1)
)

(2x(t+ 1))−
1
2

∣∣∣ dt
= C̃

∣∣∣exp
(

2x− 4
√

2x(n+ 1)
)∣∣∣ .
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All in all this gives

|αn,2(x)| ≤ Ck,x| exp
(
−2
√

2x(n+ 1)
)

(n+ 1)
1
4 .

Theorem 5.15. The approximation error of the complex scaled spherical Hankel functions can be
bounded by

inf
uN∈VN

‖hj(ω(R+ σx))− uN‖R≥0
≤ c1

∣∣∣∣1 + iσω

1− iσω

∣∣∣∣N+1

+ c2 exp

(
−2<

√
2R(N + 1)

σ

)
(N + 1)

j
2 .

Proof. We skip the technical details and give just a short sketch of the proof. Similar to Lemma
5.10 one can show that∫ ∞

0

1

(x+ t)j
φn(t)φk(t) dt = αn,1(x)Lk(−2x)− 2

k
αn,j−1(x).

Using this, the asymptotic of αn,k and similar ideas as in the proof of Theorem 5.9 and Lemma
5.11 lead to the desired result.

6 Numerical Experiments

In the following we illustrate our theoretical findings from the previous sections by numerical
examples. Figure 1 shows the approximation error of the complex scaled zeroth Hankel function h0

error(N) = ‖(I −ΠN )h0(ωR+ ωσ·)‖L2(R≥0) .

The results coincide nicely with the theoretical results from Theorem 5.12. In Figure 1a we can
observe the predicted exponential convergence until at N ≈ 35 the super-algebraic part ε takes
over, which is also illustrated in Figure 1b.

Figure 2 shows the approximation of Hankel functions with different indices and exhibits the
predicted behavior from Theorem 5.15. Figure 3 shows the condition numbers of the discretization
matrices of the bilinear forms

s̃σ + λnm̃
σ
0 − ω2m̃σ

1 ,

with respect to different infinite element orders N . These matrices correspond to discretizations of
the spherical Bessel equations with index λn = n(n+ 1) (cf. Section 6.1). The condition numbers
grow polynomially in N .

Figure 4 shows the convergence in the number of unknowns for one selected eigenvalue of the
separated problem (cf. Subsection 6.1). Again the convergence agrees with the predicted error
from the approximation results (the approximation error squared cf. [4]).

6.1 An example with inhomogeneous exterior

In this subsection we approximate the resonances of the Helmholtz equation on Ωext := Ω :=
R3 \B1(0) =

{
x ∈ R3 : ‖x‖ > 1

}
for a potential

p(x(ξ, x̂)) := (1 + ε̂p̂(x̂))(1 + ε̃p̃(ξ)),
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(a) exponential convergence
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(b) super-algebraic convergence

Figure 1: Approximation error of h0(ω(R + σ·)) with σ = 0.3 + 1i, ω = 13− 0.5i and different R.
The dashed lines mark the predicted convergence rates from Section 5.
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Figure 2: Approximation error of hj(ω(R + σ·)) with σ = 0.3 + 1i, ω = 13 − 0.5i, R = 0.3 and
different indices i. The dashed lines mark the predicted convergence rates from Section 5.
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Figure 3: condition numbers of the discretization matrices of s̃σ + λnm̃
σ
0 − ω2m̃σ

1 with parameters
σ = 1 + 1i, ω = 1− 0.5i, R = 1
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Figure 4: Errors of the eigenvalue ω ≈ 2.903916 + 1.201866i obtained by solving the separated
problem. The dashed lines mark the squared super-algebraic convergence rates from Section 5.
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with functions p̂ : Γ → R, p̃ : R≥0 → R. If we assume ε̂ to be zero, the equation can be separated
using an ansatz

u(x(ξ, x̂)) := ũn(ξ)Yn,j(x̂) .

Since the spherical harmonics Yn,j are eigenfunctions of the surface Laplacian and the according
bilinear form ŝ with the corresponding eigenvalues n(n + 1), this ansatz, combined with complex
scaling as before leads to the set of one dimensional eigenvalue problems

s̃σ(ũ, ṽ) + n(n+ 1)m̃σ
0 (ũ, ṽ) = ω2m̃σ

1 ((1 + ε̃)p̃ũ, ṽ) , n ∈ N0.

All three-dimensional experiments use the parameters N = 50, finite element mesh size h = 0.3
and polynomial order p = 4. For the one-dimensional expamples we used N = 200.

Figure 5 shows the eigenvalues of discretized separated problem for

p̃(ξ) :=
ξ2

0.1 + ξ4

n = 0, . . . , 5 and different choices of ε̃, as well as the eigenvalues of the full three-dimensional
simulation.

Figure 6 shows resonances of the same problem with an additional potential

p̂(x, y, z) = z,

and varying values of ε̂. Due to the disturbed symmetry, the multiple eigenvalues fan out. The res-
onances located close to the negative imaginary axis in Figures 5 and 6 are part of the discretization
of the essential spectrum (cf. [4]).

Figures 7 and 8 show selected eigenfunctions corresponding to the previously approximated
resonances. To visualize the eigenfunctions Ωext = B2(0) was chosen here.
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Figure 5: Inhomogeneous exterior problem with radial inhomogeneity. The lines mark the locations
of resonances for a given Bessel index n and varying ε̃, obtained by solving the separated problem.
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Figure 6: Inhomogeneous exterior problem with ε̃ = 1.5 and variable ε̂.

24



(a) ω ≈ 0.87− 0.50i (b) ω ≈ 1.47− 0.52i

Figure 7: Resonance functions corresponding to eigenvalues from Figure 5 with ε̃ = 0.5.

(a) ω ≈ 1.49− 0.52i (b) ω ≈ 1.50− 0.53i

Figure 8: Resonance functions corresponding to eigenvalues from Figure 6 with ε̂ = 0.5.
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