
INSTITUTE FOR ANALYSIS
AND SCIENTIFIC COMPUTING

WIEDNER HAUPTSTRASSE 8-10
1040 WIEN, AUSTRIA

DR.

PHILIP LEDERER
email: philip.lederer@tuwien.ac.at

Finite Element Methods in Computational Fluid Dynamics

Exercise 3 – January 2023

Example 3.1

Solve the convection-diffusion problem

−ε∆u+ b · ∇u = f (1)

with homogeneous Dirichlet boundary conditions on Ω = (0, 1) where b = (b1, b2) and the right
hand side

f = b1(y − eb2y/ε − 1

eb2/ε − 1
) + b2(x− eb1x/ε − 1

eb1/ε − 1
).

For ε > 0 the exact solution is given by

u = (x− eb1x/ε − 1

eb1/ε − 1
)(y − eb2y/ε − 1

eb2/ε − 1
). (2)

Use a standard conforming finite element method of order k = 1, 2, 3 and compare the L2-norm
error for the case b = (2, 1) and ε = 0.01 and levels of refinemend L = 0, 1, 2, 3 given by the
unstructured mesh produced by the function

import ngsolve.meshes as ngm

def GetMesh(L = 0):

mesh = ngm.MakeStructured2DMesh(quads = False, nx = 2,ny = 2)

for i in range(L+1):

mesh.Refine()

return mesh

for example

mesh = GetMesh(L = 0)

Example 3.2

Implement the streamline diffusion stabilization with the stabilization parameter α = h/|b|
(you can use the meshsize function of NGSolve for h) when convection dominates Ph ≥ 1 and
recalculate the errors as in the first example.

Example 3.3

Implement the upwind HDG method with interior penalty parameter α = 3 and order k = 1, 2, 3.
To define the upwind value use

b = ...

n = specialcf.normal(2)

uup = IfPos(b * n, u, uhat).

Recalculate the errors as in the first example. Do not forget to “glue” the element values to the
facet variables on the outflow boundary.

1

Example 3.4

Solve the lid driven cavity problem with the P2-bubble element: Find u, p such that

−ν∆u+ u · ∇u+∇p = 0 in Ω,

u = 0 on ∂Ω \ Γtop,

u = (u1, 0) on Γtop,

where Ω = (0, 1)2, Γtop = [0, 1]× {1} and

u1(x) =


1− 1

4(1− cos(x1−x
x1

π))2 for x ∈ [0, x1],

1 for x ∈ (x1, 1− x1),

1− 1
4(1− cos(x−(1−x1)

x1
π))2 for x ∈ [1− x1, 1],

with x1 = 0.1. Use the Newton and the Picard iterative method to solve the problem on the
mesh from the first example with the levels L = 0, 1, 2, 3 and the viscosity ν = 0.01, 0.002, 0.001.
Use the skew-symmetric version for the convection. Present a table with the number of itera-
tions of the methods for the different levels and different viscosities. You can stop the iteration

if
√
rkh · δU

k+1 ≤ 10−10, where δUk+1 = (uk+1, pk+1)− (uk, pk) and rkh = (rku,h, r
k
p,h).

Hints:

• You can use the IfPos coefficient function of NGSolve to implement u1.

• To evaluate the residual including the term c(ukh, u
k
h, vh) use the Apply function of a Bi-

linearForm

a = Bilinearform(...)

a += ... # include nonlinear term here

gfu = GridFunction(...)

r1 = gfu.vec.CreateVector()

returns the vector given by a substitution

of the TrialFunction u by gfu in the blf

a.Apply(gfu.vec, r1)

Example 3.5

Solve the benchmark problem “DFG flow around cylinder benchmark 2D-2, time-periodic case
Re=100” that can be found at http://www.featflow.de/en/benchmarks/cfdbenchmarking/

flow/dfg_benchmark2_re100.html. Use an arbitrary inf-sup stable finite element method (for
example the Taylor-Hood element) and implement the θ-scheme for arbitrary values θ ∈ [0, 1].
Calculate the drag and lift coefficients given by

cd = 20

∫
Γ◦

ν[((∇u)n) · τ]n[1]− pn[0] ds

cl = −20

∫
Γ◦

ν[((∇u)n) · τ]n[0]− pn[1] ds

where n and τ = (n[1],−n[0]) are the normal and tangential vector respectively and Γ◦ is the
boundary of the obstacle within the time interval t ∈ [0, 5]. To evaluate L2 functions (such as
the gradient of your approximation) use the NGSolve function

bndgrad = BoundaryFromVolumeCF(...)

2

http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html
http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html

Compare your results for different time steps and different θ with the values presented on the
benchmark homepage (you can download them there). As initial velocity you can use a Stokes
solution. To solve the nonlinear systems you can use the Newton and Picard solver from the
previous examples. For this first derive the linearized sytem for the update (δu, δp) and modify
you solver appropriately.

Hints:

1. You can use the navierstokes.py tutorial of NGSolve as starting point.

2. Your linearized problem of the update now includes the mass matrix.

3. If your forces are not accurate enough try to decrease the meshsize at Γ◦ and increase the
order of approximation. Always curve the mesh with the same order as you use for your
approximation.

3

