TECHNISCHE

Finite Element Methods in Computational Fluid Dynamics

Exercise 4 - Jan. 2023

Example 4.1

Derive the transport equation for the turbulent kinetic energy $K=\frac{1}{2}\left\langle\underline{u}^{\prime} \cdot \underline{u}^{\prime}\right\rangle$. The solution should be:

$$
\frac{\partial K}{\partial t}+\langle\underline{u}\rangle \cdot \nabla K=-\left\langle\underline{u}^{\prime} \otimes \underline{u}^{\prime}\right\rangle \nabla\langle\underline{u}\rangle-\nu\left\langle\nabla \underline{u}^{\prime}: \nabla \underline{u}^{\prime}\right\rangle-\nabla\left\langle p^{\prime} \underline{u}^{\prime}\right\rangle-\operatorname{div}\left(\frac{1}{2}\left\langle\left(\underline{u}^{\prime} \cdot \underline{u}^{\prime}\right) \underline{u}^{\prime}\right\rangle+\nu \nabla K\right)
$$

Hint:

- Begin with inserting the Reynolds decomposition of \underline{u} and p into the Navier-Stokes equations and subtract it from the RANS equations.
- Show that

$$
\frac{1}{2}\left\langle\Delta\left(\underline{u}^{\prime} \cdot \underline{u}^{\prime}\right)\right\rangle=\left\langle\nabla \underline{u}^{\prime}: \nabla \underline{u}^{\prime}\right\rangle+\left\langle\underline{u}^{\prime} \cdot \Delta \underline{u}^{\prime}\right\rangle .
$$

Example 4.2

We consider a statistically stationary, fully-developed turbulent channel flow (see figure below). The channel height is $2 h$. The end of the plates in z direction is very far away, so that it has no influence on the flow and we consider periodic boundary conditions in x (i.e. an infinite long channel). The density of the fluid is $\rho=$ const. The flow is forced by pressure gradient $\frac{\partial\langle p\rangle}{\partial x}$.

1. Simplify the RANS equations for the given case. Consider the continuity equation as well as momentum equations.

Figure 1: Turbulent channel flow
2. Show that the pressure $\langle p\rangle$ for all (y, z)-planes has reached its maximum at $y=0 / 2 h$.
3. Show that the $\left\langle v^{\prime} w^{\prime}\right\rangle$ component of the Reynolds stress tensor is 0 in the whole flow field.
4. Derive the equation for the total shear stress in dependence of y

$$
\begin{equation*}
\frac{\tau_{\mu}+\tau_{t}}{\tau_{w}}=f(y), \tag{1}
\end{equation*}
$$

where $\tau_{\mu}=\mu \frac{\partial\langle u\rangle}{\partial y}$ is the viscous shear stress, $\tau_{t}=-\rho\left\langle u^{\prime} v^{\prime}\right\rangle$ the Reynolds shear stress and $\tau_{w}=\left.\mu \frac{\partial\langle u\rangle}{\partial y}\right|_{y=0}$ the wall shear stress.

Example 4.3

Implement a RANS solver using two different turbulence models for calculating the eddy viscosity ν_{t} in NGSolve. Test your implementation for the turbulent channel flow and compare the results of the two models. K-equation model (one transport equation).

- Start with the temporal and spatial discretization of the incompressible RANS equations ($\rho=1$) using Taylor-Hood elements and first order IMEX scheme.
- Setup the channel flow test case in 2 D with $\Omega=(0,5) \times(0,1)$. Use a laminar parabolic flow profile $\left(v_{b u l k}=1\right)$ for the inlet boundary at $x=0$, outflow boundary condition at $x=5$ and no-slip boundary conditions for the lower and upper wall. The Reynolds number should be set to $R e=\frac{1}{\nu}=10000$.
- Mixing length model (algebraic): The eddy viscosity is calculated via

$$
\begin{equation*}
\nu_{t}=l_{m}^{2} \sqrt{2 S(\langle\underline{u}\rangle): S(\langle\underline{u}\rangle)}, \tag{2}
\end{equation*}
$$

where $S(\langle\underline{u}\rangle)$ is the strain rate tensor. The mixing length l_{m} is defined as

$$
\begin{equation*}
l_{m}=\max \left(\kappa d, 0.09 \delta_{99}\right) . \tag{3}
\end{equation*}
$$

Here, $\kappa=0.41, \delta_{99}=0.5$ and d is the distance to closest wall.

- K-equation model (one equation model): The transport equation of the turbulent kinetic energy has to be discretized using standard H^{1}-conforming elements and solved over time. The equation is given as

$$
\begin{equation*}
\frac{\partial K}{\partial t}+\langle\underline{u}\rangle \cdot \nabla K=\Pi-\epsilon+\operatorname{div}\left(\left(\nu+\nu_{t}\right) \nabla K\right), \tag{4}
\end{equation*}
$$

where the production term Π is modeled using the eddy viscosity assumption

$$
\begin{equation*}
\Pi=-\left\langle\underline{u}^{\prime} \otimes \underline{u}^{\prime}\right\rangle \nabla\langle\underline{u}\rangle=\left(2 \nu_{t} S\left(\langle\underline{u}\rangle-\frac{2}{3} K I\right)\right) \nabla\langle\underline{u}\rangle \tag{5}
\end{equation*}
$$

with I the identity matrix and the dissipation term is defined as

$$
\begin{equation*}
\epsilon=C_{D} \frac{K^{3 / 2}}{l_{m}} \tag{6}
\end{equation*}
$$

with the model constant $C_{D}=0.08$ and the mixing length from the previous model. Use $K_{\text {inlet }}=\frac{3}{2} t_{\text {int }}^{2}\langle\underline{u}\rangle_{\text {inlet }}$ with the turbulent intensity $t_{\text {int }}=0.04$ as inlet boundary condition, homogenous Dirichlet boundary condition for the walls and homogenous Neumann boundary condition for the outlet. The eddy viscosity can then be computed via

$$
\begin{equation*}
\nu_{t}=l_{m} K^{1 / 2} . \tag{7}
\end{equation*}
$$

Hint: By definition $K \geq 0$. Although, it may happen that the approximation of K has slightly negative values for a short period of time and therefore the computation of \sqrt{K} is not defined. Avoid this problem, by using a bound for K.

- Since ν_{t} changes over time, the matrices for the IMEX time stepping scheme do not keep constant and have to be reassembled and solved for every step (use the calculated ν_{t} from the previous step).

After a stationary state has been reached, compare the resulting velocity profiles at $x=4.5$ of the two different models to the laminar velocity profile at the inlet. What do you observe?

