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Example 4.1

Derive the transport equation for the turbulent kinetic energy K = 1
2〈u

′ · u′〉. The solution
should be:

∂K

∂t
+ 〈u〉 · ∇K = −〈u′ ⊗ u′〉∇〈u〉 − ν〈∇u′ : ∇u′〉 − ∇〈p′u′〉 − div

(1

2
〈(u′ · u′)u′〉+ ν∇K

)
Hint:

• Begin with inserting the Reynolds decomposition of u and p into the Navier-Stokes equa-
tions and subtract it from the RANS equations.

• Show that

1

2
〈∆(u′ · u′)〉 = 〈∇u′ : ∇u′〉+ 〈u′ ·∆u′〉.

Example 4.2

We consider a statistically stationary, fully-developed turbulent channel flow (see figure below).
The channel height is 2h. The end of the plates in z direction is very far away, so that it has
no influence on the flow and we consider periodic boundary conditions in x (i.e. an infinite long

channel). The density of the fluid is ρ = const. The flow is forced by pressure gradient ∂〈p〉
∂x .

1. Simplify the RANS equations for the given case. Consider the continuity equation as well
as momentum equations.
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Figure 1: Turbulent channel flow
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2. Show that the pressure 〈p〉 for all (y, z)-planes has reached its maximum at y = 0/2h.

3. Show that the 〈v′w′〉 component of the Reynolds stress tensor is 0 in the whole flow field.

4. Derive the equation for the total shear stress in dependence of y

τµ + τt
τw

= f(y), (1)

where τµ = µ∂〈u〉∂y is the viscous shear stress, τt = −ρ〈u′v′〉 the Reynolds shear stress and

τw = µ∂〈u〉∂y |y=0 the wall shear stress.

Example 4.3

Implement a RANS solver using two different turbulence models for calculating the eddy viscosity
νt in NGSolve. Test your implementation for the turbulent channel flow and compare the results
of the two models. K-equation model (one transport equation).

• Start with the temporal and spatial discretization of the incompressible RANS equations
(ρ = 1) using Taylor-Hood elements and first order IMEX scheme.

• Setup the channel flow test case in 2D with Ω = (0, 5) × (0, 1). Use a laminar parabolic
flow profile (vbulk = 1) for the inlet boundary at x = 0, outflow boundary condition at
x = 5 and no-slip boundary conditions for the lower and upper wall. The Reynolds number
should be set to Re = 1

ν = 10000.

• Mixing length model (algebraic): The eddy viscosity is calculated via

νt = l2m
√

2S(〈u〉) : S(〈u〉), (2)

where S(〈u〉) is the strain rate tensor. The mixing length lm is defined as

lm = max(κd, 0.09δ99). (3)

Here, κ = 0.41, δ99 = 0.5 and d is the distance to closest wall.

• K-equation model (one equation model): The transport equation of the turbulent kinetic
energy has to be discretized using standard H1-conforming elements and solved over time.
The equation is given as

∂K

∂t
+ 〈u〉 · ∇K = Π− ε+ div

(
(ν + νt)∇K

)
, (4)

where the production term Π is modeled using the eddy viscosity assumption

Π = −〈u′ ⊗ u′〉∇〈u〉 =
(
2νtS(〈u〉 − 2

3
KI)

)
∇〈u〉 (5)

with I the identity matrix and the dissipation term is defined as

ε = CD
K3/2

lm
(6)

with the model constant CD = 0.08 and the mixing length from the previous model. Use
Kinlet = 3

2 t
2
int〈u〉inlet with the turbulent intensity tint = 0.04 as inlet boundary condi-

tion, homogenous Dirichlet boundary condition for the walls and homogenous Neumann
boundary condition for the outlet. The eddy viscosity can then be computed via

νt = lmK
1/2. (7)

Hint: By definition K ≥ 0. Although, it may happen that the approximation of K has
slightly negative values for a short period of time and therefore the computation of

√
K is

not defined. Avoid this problem, by using a bound for K.
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• Since νt changes over time, the matrices for the IMEX time stepping scheme do not keep
constant and have to be reassembled and solved for every step (use the calculated νt from
the previous step).

After a stationary state has been reached, compare the resulting velocity profiles at x = 4.5 of
the two different models to the laminar velocity profile at the inlet. What do you observe?
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