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Abstract

This is a preliminary version of the lecture notes for the course Finite Element Methods
in Computational Fluid Dynamics and will be updated regularly. The notes are primarily
based on:

• Lecture notes on Numerical Methods for PDEs (J. Schöberl, TU Wien)

• Lecture notes on Special Topics in the Finite Element Method (R. Stenberg, Aalto
University)

• Boock Chapter: Finite Element Methods for the Incompressible Navier-Stokes Equa-
tions (R. Rannacher, Springer)

• Book: Finite Element Methods for Flow Problems (J. Donea and A. Huerta, Wiley)

• Book: Finite Element Methods for Incompressible Flow Problems (V. John, Springer)
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1 The equations of fluid motion

This chapter is devoted to the basic principles of fluid mechanics and the derivation of the
governing equations. We follow the same ideas as provided in standard literature on fluid
dynamics, see [38, 5, 42, 2].

In the following we consider an Euclidean space with the independent three-dimensional
variable x = (x1, x2, x3) and assume that the time t proceeds independently. Using the
unit vectors e1, e2 and e3 along the x1, x2 and x3 axes, respectively, we define the vector
velocity field by

u := u1e1 + u2e2 + u3e3,

with the scalar-valued components u1 = u1(x1, x2, x3, t), u2 = u2(x1, x2, x3, t) and u3 =

u3(x1, x2, x3, t). Similarly, the scalar density field and the scalar pressure is given by ρ :=

ρ(x1, x2, x3, t) and p := p(x1, x2, x3, t). We speak of a two-dimensional flow field, when
the fluid motion is restricted to parallel planes. In this case the the velocity component,
which is perpendicular to the plane is equal to zero at each point. Further, the flow is
independent of deformations that are parallel to the flow. In this work a two dimensional
flow is always considered in the x1-x2 plane, thus the velocity field is given by u := u1e1 +

u2e2. Note that in order to speak of the above defined physical quantities we assumed that
the continuum assumption holds true. This means that the physical quantities of interest
of the liquid contained in a given small volume are imagined to be uniformly distributed
over that volume. We can then also talk about fluid particles at a specific point, when we
keep in mind that this particle is actually sufficiently large to contain enough molecules of
the liquid such that an averaging, for example of the velocity, makes sense.

For the derivation of the governing equations of fluid mechanics we are using the con-
cept of (finite) control volumes and their associated control surfaces. The main purpose of
using a control volume is to focus the attention on physical events and quantities only in a
small region and its boundary in order to be able to keep track of all effects. We can dis-
tinguish between two different types. A fixed control volume is specified by a given (fixed)
location in space, thus the fluid passes into and out off the volume through the surface.
The second type is called a material control volume. The idea is that the control volume is
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1 The equations of fluid motion

moving with the liquid such that the fluid particles stay inside and do not pass the surface.
This leads to two different aspects. A Lagrangian viewpoint focuses on the flow of fluid
particles. Each particle is identified by its initial position at a specific given (start) time.
When time passes all particles move and change their position. This position (trajectory)
now is a function that depends on the original location and the time. Similarly, all other
physical quantities only depend on the initial position and time, thus refer to one specific
fluid particle. In contrast to this, the Eulerian viewpoint deals with fixed points in space. At
a given time we can evaluate physical quantities at each point to retrieve local information
on the fluid. In this work we always use the Eulerian viewpoint. The close relation of the
two different viewpoints is given by the substantial derivative

D

Dt
:=

∂

∂t
+ (u · ∇), (1.1)

which can be interpreted as the time rate of change following a fluid particle. It consists of
the local time derivative at a fixed point ∂/∂t and the convective derivative (u · ∇), which
describes the time rate of change induced by the movement of the particle. Using the
substantial derivative, also often called material derivative, we can also present the well-
known Reynolds transport theorem which gives the relation of the time derivative of an
integral over an materical control volume ω(t)

d

dt

∫
ω(t)

f(x, t) dx =

∫
ω≡ω(t)

∂f(x, t)

∂t
dx+

∫
∂ω≡∂ω(t)

f(x, t)v · n ds, (1.2)

where the f(x, t) is a smooth function (we explicitly included the dependency on x and t
here to make things more readable). Note, that the integrals on the right side are con-
sidered on the fixed domain ω which consides with the moving control volume ω(t) at the
considered instant, t, in time.

1.1 Fundamental laws

1.1.1 The continuity equation

The fundamental physical principle that we consider in the following is the conservation of
mass. To this end, let ω be an arbitrary fixed control volume, hence we assume that it is
not moving with the flow. The principle of mass conservation then reads as

Mass flow through the surface ∂ω = time rate of decrease of mass inside ω (1.3)
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1 The equations of fluid motion

In the following we translate (1.3) into an explicit equation including functions and vari-
ables. We first deal with the left hand side of this equation. The mass that is transported
through an infinitesimal small surface area is given by the density times the size of this
area times the velocity that is perpendicular to the surface. Thus, we have, using the
Gaussian theorem,

Netto mass flow through the surface ∂ω :=

∫
∂ω
ρu · n ds =

∫
ω

div(ρu) dx .

The right hand side of (1.3) is given by the negative derivation with respect to time of the
mass inside of ω, thus

time rate of decrease of mass inside ω := − ∂

∂t

∫
ω
ρ dx .

Note that the control volume is fixed in time, allowing us to change the order of integration
and differentiation. Combining the last two results then leads to∫

ω

∂ρ

∂t
+ div(ρu) dx = 0.

Taking into account that the control volume ω was arbitrary, the equation inside the integral
has to be fulfilled at each point and so we finally derive the continuity equation given by

∂ρ

∂t
+ div(ρu) = 0. (1.4)

This means that the time rate of change at a specific point equals the negative netto flow
of the mass out of an infinitesimal small volume area (a fluid particle).

Note, that the continuity equation in integral form can also be derived by simply using
the Reynolds transport theorem where f = ρ. The principle of conservations of mass on
a time dependent domain ω(t) then simply states that

0 =
d

dt

∫
ω(t)

ρdx,

hence with (1.2), we also get

0 =
d

dt

∫
ω(t)

ρ dx =

∫
ω≡ω(t)

∂ρ

∂t
dx+

∫
∂ω≡∂ω(t)

ρ · n ds =

∫
ω≡ω(t)

∂ρ

∂t
+ div(ρu) dx .
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1 The equations of fluid motion

1.1.2 The momentum equation

The momentum equation, which is based on Newton’s second law, relates the time rate
of change of the momentum of a particle to the force acting on it. For the derivation we
choose a material control volume ω(t), which is moving with the flow. Then we have

time rate of change of momentum of ω(t) = netto forces acting on ω(t). (1.5)

For the computation of the momentum we first focus on the physical effects in the x1-
direction. The product ρu1 is equivalent to the momentum in the direction of e1 per unit
volume,

time rate of change of momentum in x1-direction of ω(t) =
d

dt

∫
ω(t)

ρu1 dx .

Using Reynolds transport theorem and the Gaussian theorem on the appearing surface
integral, we can further write

d

dt

∫
ω(t)

ρu1 dx =

∫
ω(t)

∂

∂t
(ρu1) dx+

∫
∂ω(t)

(ρu1)u · n ds =

∫
ω(t)

∂

∂t
(ρu1) + div(ρu1u) dx,

hence with the matrix [ρu⊗ u]ij = ρuiuj and applying the same steps for the other spatial
directions we get in total

d

dt

∫
ω(t)

ρudx =

∫
ω(t)

∂

∂t
(ρu) + div(ρu⊗ u) dx .

For the right hand side of (1.5) we first consider a volume force f and a surface force s.
Thus, again restricting on the x1-direction, we have

Forces in x1-direction acting on ω(t) =

∫
ω(t)

ρf1 dx+

∫
∂ω(t)

s1 ds .

Note that there is no density included for the boundary forces as the infinitesimal small
areas contain no mass. Thus, with f = (f1, f2, f3) and s = (s1, s2, s3), in total we have∫

ω(t)

∂

∂t
(ρu) + div(ρu⊗ u) dx =

∫
ω(t)

ρf dx+

∫
∂ω(t)

sds . (1.6)

Following for example [38, chapter 5.4], one relates the appearing forces on the boundary
with the Cauchy stress tensor σ such that s = σn. Applying the Gaussian theorem for the

4



1 The equations of fluid motion

right integral on the left side, equation (1.6) can be written as∫
ω(t)

∂

∂t
(ρu) + div(ρu⊗ u) dx =

∫
ω(t)

ρf dx+

∫
ω(t)

div(σ) dx .

and since the control volume was arbitrary we get the differential form the momentum
equation

∂

∂t
(ρu) + div(ρu⊗ u− σ) = ρf. (1.7)

1.1.3 The energy equation

Again we choose a material control volume ω(t) and consider the energy balance of the
fluid. Let E denote the total energy per unit mass and let e be the inner energy per unit
mass, i.e. we have the relation E = e + 1/2u2. The first law of thermodynamics now
states, that the temporal change of the total energy is balanced by the work produced by
the fluid and external forces and the flow of heat across the boundary. First, as before,
the Reynolds transport theorem allows to reformulate the temporal variation of the total
energy in ω(t) as

d

dt

∫
ω(t)

ρE dx =

∫
ω(t)

∂(ρE)

∂t
+ div(ρEu) dx .

For a given volume function f (see section above), the work produced in the interior and
on the surface is given by the integrals∫

ω(t)
ρf · u dx, and

∫
∂ω(t)

(σu) · n ds =

∫
ω(t)

div(σu) dx .

Next, let Φ be a given function that describes the changes of the internal energy. Then,
the heat flow across the boundary, can be written as∫

∂ω(t)
Φ · n dx =

∫
ω(t)

div(Φ) dx .

The corresponding constitutive law for Φ will be given in the next section. Hence, in total
we get∫

ω(t)

∂(ρE)

∂t
+ div(ρEu) dx =

∫
ω(t)

ρf · udx+

∫
ω(t)

div(σu) dx+

∫
∂ω(t)

div(Φ) dx, (1.8)
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1 The equations of fluid motion

of in differential form

∂(ρE)

∂t
+ div(ρEu) = ρf · u+ div(σu) + div(Φ).

1.1.4 Constitutive laws and equation of state

The above derived equations for the conservation of mass, momentum and energy must
be closed by several constitutive laws. The first equation is call Newton’s viscosity law
(hence we assume a Newtonian fluid) and is given by the following conditions:

1. The stress tensor σ depends only on the gradient of the velocity ∇u. Further, this
dependence is linear.

2. The stress tensor σ is symmetric (conservation of angular momentum).

3. In the absence of internal friction (inviscid flows), the stress tensor σ is diagonal and
proportional to the pressure (this shows that the boundary forces in the momentum
equation are only applied in normal direction).

Above assumptions give the relation

σ = 2µε(u) + λdiv(u)I− pI, with ε(u) =
1

2
(∇u+∇uT ).

Here µ is called the dynamic viscosity and λ the volume viscosity. These two coefficients
are related by the definition of the bulk viscosity µB = λ + 2/3µ, which in general is
negligible (Stokes hypothesis) except in the study of the structure of (for example) shock
waves. In this work we will always consider the case µB = 0. At several points the stress
tensor might also be written in the more compact form σ = τ − pI with the viscous stress
tensor

τ = µ(2ε(u)− 2

3
div(u)I).

Next, we apply Fourier’s law that states, that Φ is proportional to the variations of the
internal energy, i.e. we have

Φ = k∇T,

where k is the coefficient of thermal conductivity.
Finally, to close the system of equations, it is necessary to present an equation of state,

thus give a relation between the thermodynamic variables ρ, p, T and the energy e. In the
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1 The equations of fluid motion

case of a perfect gas we have the well known equation p = ρRT , where R is the gas
constant per unit mass. In this work we will assume that the gas (or fluid) is given as a
calorically perfect gas, i.e. we assume that the specific heat at constant volume cv, and
the specific heat at constant pressure cp, are constant. With the ratio of the specific heats
given by γ we then have the relations

e = cvT, γ =
cp
cv
, cv =

R

γ − 1
, cp =

γR

γ − 1
,

thus, the equation of state can also be written as

p = (γ − 1)ρe and T =
(γ − 1)e

R
,

or with the total energy also

E =
p

ρ(γ − 1)
+

1

2
u2.

1.1.5 The compressible Navier-Stokes equations

When we gather all the above equations and close them with the constitutive laws and the
equation of state, we obtain the compressible Navier-Stokes equations given by

∂ρ

∂t
+ div(ρu) = 0, (1.9a)

∂ρu

∂t
+ div(ρu⊗ u)− div(µ(2ε(u)− 2

3
div(u)I)) +∇p = ρf, (1.9b)

∂(ρE)

∂t
+ div(ρEu)− div(µ(2ε(u)− 2

3
div(u)I)u) + div(pu)− div(k∇T ) = ρf · u, (1.9c)

with

p = p(ρ, T ), and E =
p

ρ(γ − 1)
+

1

2
u2.
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1 The equations of fluid motion

1.1.6 The Euler equations

In the inviscid case, thus in the limit of vanishing viscosity λ = µ = 0, the compressible
Navier-Stokes equation reduce to the so called Euler equations given by

∂ρ

∂t
+ div(ρu) = 0, (1.10a)

∂ρu

∂t
+ div(ρu⊗ u) +∇p = ρf, (1.10b)

∂(ρE)

∂t
+ div((ρE + p)u)− div(k∇T ) = ρf · u, (1.10c)

with

p = p(ρ, T ), and E =
p

ρ(γ − 1)
+

1

2
u2.

1.1.7 The incompressible Navier-Stokes and Stokes equations

In the following we derive several sets of equations that consider the incompressible case,
thus we assume a constant density in space and time. To this end we define the kinematic
viscosity by ν = µ/ρ and replace the pressure p by the scaled pressure p/ρ. For simplicity
we will still use the notation p for the pressure. Note, that the conservation of mass now
simplifies to div(u) = 0, and thus we also have the simplified relation of the viscous stress
tensor

div(u) = 0 ⇒ τ = 2µε(u).

Finally, since the equation of the conservation of energy now decouples from the other
equations we get the instationary incompressible Navier-Stokes equations given by

div(u) = 0, (1.11a)
∂u

∂t
+ div(u⊗ u)− 2ν div(ε(u)) +∇p = f. (1.11b)

In several textbooks, this set of equations is often further simplified by using the identity

2ν div(ε(u)) = ν (∆u+∇ div(u)) = ν∆u,
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1 The equations of fluid motion

which then gives

div(u) = 0, (1.12a)
∂u

∂t
+ div(u⊗ u)− ν∆(u) +∇p = f. (1.12b)

Note however, that the above identity assumes a smooth enough (regular) velocity solution
such that the order of differentiation can be changed. Thus, in the context of variational
formulations and their discretization, one has to be very careful and maybe needs to deal
with the more challenging setting where we consider the symmetric gradient ε(u).

As a next step of simplification we now consider the case of a stationary flow, i.e. we
consider a flow that does not change in time. Then we get the stationary incompressible
Navier Stokes equations given by

div(u) = 0, (1.13a)

div(u⊗ u)− 2ν div(ε(u)) +∇p = f. (1.13b)

In order to derive the last simplification we first introduce an important characteristic
quantity of fluid dynamics called the Reynolds number given by

Re :=
UL

ν
, (1.14)

where U and L are characteristic length and velocity scales. The Reynolds number is
important as it can be interpreted as the ratio between inertia and viscous forces. If we
fix the reference variables U and L to be for example O(1), then a high Reynolds number
corresponds to a very small viscosity, i.e. the friction between fluid particles is small and
the acceleration initiated by inertia forces dominates. However, in a flow characterized
by a small Reynolds number, the viscous effects are crucial. Such flows are often called
creeping flows and are of practical importance. This has a great impact on the governing
equations of fluid motion. Using a dimension analysis for the case when Re → 0 shows
that the nonlinear term in (1.13) vanishes, thus div(u⊗ u)→ 0. The resulting set of partial
differential equations is called the Stokes equations given by

−2ν div(ε(u)) +∇p = f,

div(u) = 0.
(1.15)

These equations are of great interest as they fit into the mathematical concept of a saddle
point problem. Although the full nonlinear setting of the incompressible Navier-Stokes
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1 The equations of fluid motion

equations is generally applied, a proper (numerical) treatment of (1.15) is essential since
for example a lot of solving routines for the nonlinear system are based on iterations relying
on the solution of (1.15).

1.1.8 Boundary and initial conditions

In order to solve the systems of partial differential equations introduced above, we might
need suitable boundary and initial conditions. In particular, equations (1.11), (1.12), (1.9)
and (1.10) demand an initial condition for the velocity u and the temperature T . Further,
the last two demand also an initial condition for the density ρ. Since the energy equation
is decoupled in the incompressible case, the initial condition for the temperature might be
neglected (if one is not interested in the evolution of the temperature).

Beside the Euler equations, all other sets of equations (1.11), (1.12) and the stationary
cases (1.13) and (2.6), further include a second order differential operator acting on the
velocity u which allows (and demands) to prescribe boundary conditions. In a first step we
consider the case where the fluid comes in contact with a wall. Since no velocity is going
to pass through the wall in normal direction, we impose the condition

u · n = uw · n, (1.16)

where uw is the prescribed velocity of the wall. Note that in the unsteady case the bound-
ary velocity might also depend on the time. This condition only acts on the normal compo-
nent of the velocity, but has no impact on the tangential velocity. This is mainly due to the
different physical effects that appear close to the wall. In history, there are several differ-
ent approaches on how to deal with the tangential components of the velocity. In this work
we mainly discuss the case of the so called no-slip condition that is commonly accepted.
The idea is that the viscous effects close to the wall create a force that adhere the fluid
particles and the wall together which, similar to the normal component, reads as

u− (u · n)n = u− (uw · n)n. (1.17)

For a detailed discussion we refer to [38, chapter 6.4]. These two conditions together are
called Dirichlet conditions.

The second type is called a Neumann boundary condition and induces a certain value
for the stress tensor σ on (a part of) the boundary. Similar as in the derivation of the
conservation of momentum, we can only prescribe the forces in normal direction, i.e.

σn = (τ − idp)n = g, (1.18)

10



1 The equations of fluid motion

with an given (vector valued) force g. An example of a Neumann condition is given by a
flow through a pipe where you (want to) impose no forces (g = 0) on the outlet. This is
also often call a do nothing boundary condition. For more details we refer to [21].

Finally we also want to mention the more general (Robin type) boundary conditions
given by

γnu · n+ (1− γn)nTσn = gn, (1.19)

γt(u− (u · n)n) + (1− γt)(σn− (nTσn)n) = gt, (1.20)

with some given functions gn and gt and some fixed values γn, γt ∈ [0, 1]. The case γn =

γt = 1 corresponds to the above discussed no-slip case, whereas the case γn = 1, γt = 0

corresponds to so called slip conditions.
Beside the boundary conditions for the velocity, the compressible Navier-Stokes equa-

tions (1.11) also allow to prescribe a boundary conditions for the temperature. Similarly
as before, one can define Dirichlet, Neumann or Robin type boundary conditions.
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2 The Stokes equations - Theory of mixed
finite elements

2.1 Basic notation and fundamentals

In the following, we introduce the notation and establish properties of certain Sobolev
spaces that we use throughout this work. For a more detailed discussion on this topic we
refer to [1, 35, 8] and [16]. First, we introduce the notation A ∼ B to indicate that there
exists constants c, C > 0 independent of the mesh size h (as defined later) and other
problem parameters like the viscosity ν such that cA ≤ B ≤ CA. We also use A . B

when there exists a C > 0 independent of h and ν such that A ≤ CB. In a similar manner
we also define the symbol &.

For the rest of the work let Ω ⊂ Rd, d = 2 or 3, be an open bounded subset such that
the boundary Γ := ∂Ω is smooth, i.e. Γ ∈ C∞,

Let Ck(Ω,R) be the function space consisting of real-valued k-times continuously dif-
ferentiable functions on Ω. Then we define D(Ω,R) := C∞0 (Ω,R) as the set of infinitely
differentiable, compactly supported, real-valued functions on Ω and denote by D′(Ω) the
space of distributions. To inidicate vector and matrix-valued functions we include the range
in the notation, thus D(Ω,Rd) := {φ : Ω → Rd with φi ∈ D(Ω,R)} and D(Ω,Rd×d) := {φ :

Ω → Rd×d with φij ∈ D(Ω,R)} indicate vector and matrix-valued infinitely differentiable,
compactly supported, real-valued functions, respectively. This notation is extended to
other functions spaces as needed. Whereas

L2(Ω,R) := {f :

∫
Ω
|f |2 dx <∞} (2.1)

denotes the space of square integrable functions with the inner product and the norm

(f, g)L2(Ω) :=

∫
Ω
fg dx, ‖f‖2L2(Ω) := (f, f)L2(Ω), ∀f, g ∈ L2(Ω), (2.2)

the spaces L2(Ω,Rd) and L2(Ω,Rd×d) denote its vector and matrix-valued versions. At
several points in the later chapters we make use of the local L2-norm defined on subsets

12



2 The Stokes equations - Theory of mixed finite elements

ω ⊂ Ω. For a better readability we introduce the following notation

‖ · ‖ω := ‖ · ‖L2(ω).

Certain differential operators have different definitions depending on the context. We
define the “curl” operator by

curl(φ) = (−∂2φ, ∂1φ)T, for φ ∈ D′(Ω,R) and d = 2,

curl(φ) = −∂2φ1 + ∂1φ2, for φ ∈ D′(Ω,R2) and d = 2,

curl(φ) = (∂2φ3 − ∂3φ2, ∂3φ1 − ∂1φ3, ∂1φ2 − ∂2φ1)T for φ ∈ D′(Ω,R3) and d = 3,

where (·)T denotes the transpose and ∂i abbreviates ∂/∂i. Similarly, ∇φ has differ-
ent meanings depending on the context and results either in a vector [∇φ]i = ∂iφ for
φ ∈ D′(Ω,R) or in a matrix [∇φ]ij = ∂iφj for φ ∈ D′(Ω,Rd). Finally, we denote by
div(φ) =

∑3
i=1 ∂iφi the standard divergence operator for φ ∈ D′(Ω,Rd) and by [div(φ)]j =∑3

i=1 ∂iφji the vector-valued divergence operator applied to φ ∈ D′(Ω,Rd×d).
Let d̃ := d(d − 1)/2 (such that d̃ = 1 and d̃ = 3 for d = 2 and d = 3, respectively). The

standard Sobolev spaces are denoted by

H1(Ω,R) := {u ∈ L2(Ω,R) : ‖∇u‖L2(Ω) <∞},
H1(Ω,Rd) := {u ∈ L2(Ω,Rd) : ‖∇u‖L2(Ω) <∞},
H(div,Ω) := {u ∈ L2(Ω,Rd) : ‖ div(u)‖L2(Ω) <∞},
H(curl,Ω) := {u ∈ L2(Ω,Rd) : ‖ curl(u)‖L2(Ω) <∞},

with the associated norms given by ‖ · ‖H1(Ω), ‖ · ‖H(div,Ω) and ‖ · ‖H(curl,Ω), respectively.
Note that we will not distinguish between the dimension of the ordinary Sobolev space in
the definition of the norm, thus we use ‖ · ‖H1(Ω) as the symbol for the norm on H1(Ω,R)

and H1(Ω,Rd). In the same fashion we also denote the seminorms by | · |H1(Ω), | · |H(div,Ω)

and | · |H(curl,Ω). Sobolev spaces with higher regularity are similarly given by

Hm(Ω,R) := {u ∈ L2(Ω,R) : ‖∇mu‖L2(Ω) <∞},
Hm(Ω,Rd) := {u ∈ L2(Ω,Rd) : ‖∇mu‖L2(Ω) <∞},
Hm(div,Ω) := {u ∈ Hm(Ω,Rd) : ‖ div(u)‖L2(Ω) <∞},
Hm(curl,Ω) := {u ∈ Hm(Ω,Rd) : ‖ curl(u)‖L2(Ω) <∞},

and we use the notation ‖ · ‖Hm(Ω), ‖ · ‖Hm(div,Ω) and ‖ · ‖Hm(curl,Ω) for the corresponding
norms. Note that the Sobolev spaces above can also be defined as the closure of C∞(Ω, ·)

13



2 The Stokes equations - Theory of mixed finite elements

(for sufficiently smooth boundaries) with the according norms, see for example in [23] for
spaces with more regularity and for the standard spaces [18, 20, 16]. The equivalence of
those definitions is not trivial and goes back to the famous theorem of N. Meyers and J.
Serrin, see [34]. A detailed proof can also be found in the book [14, 1].

We continue with the definition of appropriate Sobolev spaces on the boundary. Using
the notations from above the space of square integrable functions on the boundary Γ is
denoted by L2(Γ,R). Now let n denote the outward unit normal on Ω, then we introduce
the following trace operators for smooth functions

γφ := φ|Γ ∀φ ∈ C1(Ω,R), γnφ := φ|Γ · n ∀φ ∈ C1(Ω,Rd),

γtφ := φ|Γ × n ∀φ ∈ C1(Ω,Rd), πtφ := (φ|Γ − (φ|Γ · n)n) ∀φ ∈ C1(Ω,Rd),

γnnφ := γn(φ|Γn)|Γ ∀φ ∈ C1(Ω,Rd×d), πntφ := πt(φ|Γn) ∀φ ∈ C1(Ω,Rd).

Note that in three dimensions there holds πtφ = n× (φ× n)|Γ and that in two dimensions
γt does not exist. For the ease of notation we omit the symbols of the corresponding trace
operator if it is clear from the context, e.g. where φn, φt represent the normal part and the
tangential projection (with respect to πt) of a vector-valued function. Similarly, φnn and φnt
are the normal-normal and the normal-tangential projection of a matrix-valued function.

Next, recall that γ can be extended to the Sobolev space H1(Ω,R) such that

γ : H1(Ω,R)→ H1/2(Γ,R),

is a linear, continuous and surjective operator. Here, H1/2(Γ,R), denotes the standard
trace space of H1. Next, let Γi ⊂ Γ be an arbitrary subset, then we define the closed
subspaces with vanishing trace

H1
0 (Ω,R) := {u ∈ H1(Ω,R) : u = 0 on ∂Ω},

H1
0,Γi(Ω,R) := {u ∈ H1(Ω,R) : u = 0 on ∂Γi},

and similarly the vector-valued versions H1
0 (Ω,Rd) and H1

0,Γi
(Ω,Rd). For the definition of

further trace operators we first need some dual spaces. We use the superscript ∗ in the
case of a Hilbert space, whereas the dual spaces of the above defined Sobolev spaces
are simply defined using the well known notation with negative indices. Thus we have for
example

H−1(Ω,R) := [H1
0 (Ω,R)]∗ and H−1

Γi
(Ω,R) := [H1

0,Γi(Ω,R)]∗,

14



2 The Stokes equations - Theory of mixed finite elements

and similarly on the boundary

H−1/2(Γ,R) := [H1/2(Γ,R)]∗.

Further we introduce the following notation: the action of a continuous linear functional f
on an element g belonging to a topological space X is denoted by 〈f, g〉X . We omit the
subscript in 〈·, ·〉 when it is obvious from the context. For the Soblev space H(div,Ω) the
appropriate trace operator is given by γn such that

γn : H(div,Ω)→ H−1/2(Γ,R),

is a linear, continuous and surjective operator. We define the closed subspaces with
vanishing normal trace

H0(div,Ω) := {u ∈ H(div,Ω) : 〈u · n, φ〉 = 0 ∀φ ∈ H1(Ω,R)},
H0,Γi(div,Ω) := {u ∈ H(div,Ω) : 〈u · n, φ〉 = 0 ∀φ ∈ H1

0,Γ\Γi
(Ω,R)}.

Finally, the operators γt and πt can be extended to H(curl,Ω) such that they are linear,
continuous and surjective with respect to appropriate trace spaces. Since their construc-
tion demands a lot of notation they are neglected for now and will be introduced if neces-
sary.

Finally, similarly to the differential operators above, we define the operator skw· depend-
ing on the context. To this end let φ ∈ D′(Ω,R) and ψ ∈ D′(Ω,R3) then we have

skwφ =

(
0 −φ
φ 0

)
, and skwψ =

 0 ψ3 −ψ2

−ψ3 0 ψ1

ψ2 −ψ1 0

 .

For matrix valued functions φ ∈ D′(Ω,Rd×d) we simply set skwφ := 1
2φ− φT.

We conclude this section by introducing some important inequalities.

Theorem 1 (Inverse inequality for polynomials). Let ω ⊂ Rd and let ph ∈ Pk(ω,R). There
holds the inverse inequality

‖ph‖∂ω .
k√

diam(ω)
‖ph‖ω.

Theorem 2 (Cauchy Schwarz inequality). Let V be an inner product space, and let f, g ∈

15



2 The Stokes equations - Theory of mixed finite elements

V . There holds

|(f, g)V | ≤ ‖f‖V ‖g‖V

Theorem 3 (Youngs inequality). There holds the arithmetic-geometric-mean ineqaulity

|ab| ≤ ε

2
a2 +

1

2ε
b2 a, b ∈ R, ε > 0,

or as we will often use

−|ab| ≥ −ε
2
a2 − 1

2ε
b2 a, b ∈ R, ε > 0.

Theorem 4 (Poincaré inequality). Let Ω ⊂ Rd, d = 2 or 3, be an arbitrary bounded and
connected Lipschitz domain with diam(Ω) = 1. For a function u ∈ H1(Ω) there holds

‖u‖2H1(Ω) ≤ cP
(
|u|2H1(Ω) +

(∫
Ω
udx

)2
)
,

where cp only depends on the shape of Ω.

Theorem 5 (Friedrichs inequality). Let Ω ⊂ Rd, d = 2 or 3, be an arbitrary bounded
and connected Lipschitz domain with diam(Ω) = 1. Let ΓD ⊂ ∂Ω be of positive measure
|ΓD| > 0. There holds

‖u‖H1(Ω) ≤ cF |u|H1(Ω) ∀u ∈ H1
0,ΓD

(Ω),

where cF only depends on the shape of Ω.

Theorem 6 (Korn inequality). Let Ω ⊂ Rd, d = 2 or 3, be an arbitrary bounded and
connected Lipschitz domain. For u ∈ H1(Ω,Rd) there holds

‖ε(u)‖2L2(Ω) + ‖u‖2L2(Ω) ≥ ck‖u‖2H1(Ω),

where the constant ck depends on the domain Ω. Now let ΓD ⊂ ∂Ω be of positive measure
|ΓD| > 0, and let u ∈ H1

0,ΓD
(Ω,Rd), then

‖ε(u)‖2L2(Ω) ≥ ck‖∇u‖2L2(Ω).

Proof. For a detailed proof for a smooth boundary we refer to chapter 3.3 in [11], and for
non-smooth boundaries see [9].
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2 The Stokes equations - Theory of mixed finite elements

2.2 Preliminaries and notation for finite element methods

We start with the introduction of several preliminaries that we shall use within this work.
Given a domain Ω ⊂ Rd with d = 2 or 3 with a Lipschitz boundary, let Th be a partition of Ω

into triangles and tetrahedrons in two and three dimensions, respectively. Throughout this
work we assume that the triangulation Th is

• shape regular: There exists a constant cs > 0 such that

max
T∈Th

diam(T )d

|T | ≤ cs for all T ∈ Th,

and

• quasi-uniform: There exists a constant cq > 0 such that

diam(T ) ≥ cqh for all T ∈ Th,

where h := max
T∈Th

diam(T ).

For a given element T ∈ Th we denote by Vh(T ) the set of vertices of the element T ,
and by Fh(T ) the set of faces, so the d − 1 subsimplices, of the element T . In a similar
manner we then denote by Fh the set of all element interfaces and boundaries of the given
triangulation Th. This set can further be split into two parts. The first part is denoted by
Fext
h and is given by all facets that lie on the boundary of the domain, thus Fext

h := {F ∈
Fh : F ∩ Γ 6= ∅}. The second part, denoted by F int

h , contains all facets that are in the
interior of the domain, thus F int

h = Fh \ Fext
h . Finally, we denote by Vh the set of the nodes

of the triangulation Th which we split as before into nodes on the boundary Vext
h and nodes

in the interior V int
h .

With a slight abuse of notation, we use the same symbol n for the outward unit normal
vector on each element boundary ∂T and for the normal vector defined on the boundary Γ.
Then, the corresponding normal and tangential traces of smooth vector-valued functions,
and the normal-normal and normal-tangential traces of smooth matrix-valued functions on
element boundaries and facets are equivalently defined as in section 2.1.

At several points in the definition of the finite elements and also in the numerical analysis
we make use of a mapping from a physical element T ∈ Th to a so called reference

17



2 The Stokes equations - Theory of mixed finite elements

element denoted by T̂ . To this end we define

T̂ := {(x1, x2) ∈ R2 : 0 ≤ x1, x2 and x1 + x2 ≤ 1} for d = 2,

T̂ := {(x1, x2, x3) ∈ R3 : 0 ≤ x1, x2, x3 and x1 + x2 + x3 ≤ 1} for d = 3.

Although one could define a different reference element, it is important that the diameter
is approximately one, thus diam(T̂ ) = O(1). On these reference elements we denote the
vertices by

V0 := (0, 0), V1 := (1, 0), V2 := (0, 1),

and

V0 := (0, 0, 0), V1 := (1, 0, 0), V2 := (0, 1, 0), V3 := (0, 0, 1),

for two and three dimensions, respectively. Next, we further define the follwoing reference
faces and the associated normal and tangential vectors. In two dimensions we have

F̂0 := {(x1, x2) ∈ R2 : 0 ≤ x1, x2 ≤ 1, x1 + x2 = 1},
F̂1 := {(0, x2) ∈ R2 : 0 ≤ x2 ≤ 1},
F̂2 := {(x1, 0) ∈ R2 : 0 ≤ x1 ≤ 1},

with

n̂0 :=
1√
2

(1, 1)T, n̂1 := (−1, 0)T, n̂2 := (0,−1)T,

t̂0 :=
1√
2

(−1, 1)T, t̂1 := (0,−1)T, t̂2 := (1, 0)T.

For the three dimensional case we have

F̂0 := {(x1, x2, x3) ∈ R3 : 0 ≤ x1, x2, x3 ≤ 1, x1 + x2 + x3 = 1},
F̂1 := {(0, x2, x3) ∈ R3 : 0 ≤ x2, x3 ≤ 1, 0 ≤ x2 + x3 ≤ 1},
F̂2 := {(x1, 0, x3) ∈ R2 : 0 ≤ x1, x3 ≤ 1, 0 ≤ x1 + x3 ≤ 1},
F̂3 := {(x1, x2, 0) ∈ R2 : 0 ≤ x1, x2 ≤ 1, 0 ≤ x1 + x2 ≤ 1},

18
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V0 V1

V2

x1

x2

n̂0

t̂0

n̂1
t̂1

n̂2

t̂2 V0

V1

V3

V2

n̂2 x1

x3

x2

n̂0

t̂01

t̂02
n̂1

t̂ 22
=
t̂ 12

t̂32 = t̂11

n̂3

t̂31 = t̂21

Figure 2.1: The reference element T̂ and the corresponding normal and tangential vectors
in two dimensions (left) and in three dimensions (right).

with

n̂0 :=
1√
3

(1, 1, 1)T, t̂01 :=
1√
2

(−1, 1, 0)T, t̂02 :=
1√
2

(0, 1,−1)T,

n̂1 := (−1, 0, 0)T, t̂11 := (0,−1, 0)T, t̂12 := (0, 0,−1)T,

n̂2 := (0,−1, 0)T, t̂21 := (1, 0, 0)T, t̂22 := (0, 0,−1)T,

n̂3 := (0, 0,−1)T, t̂31 := (1, 0, 0)T, t̂32 := (0,−1, 0)T.

In figure 2.1 we illustrated the reference elements in both dimensions.
By the definition of the reference element we are now able to define the associated ele-

ment mappings. For an arbitrary element T ∈ Th let φT : T̂ → T be an affine homeomor-
phism, with the Jacobi matrix denoted by FT := φ′T . As we assumed that the triangulation
Th is shape regular and quasi-uniform we have

||FT ||∞ ≈ h and ||F−1
T ||∞ ≈ h−1 and |det(FT )| ≈ hd. (2.3)

Similarly, we can restrict the mapping φT to a reference face F̂ ∈ Fh(T̂ ) and reference
edge Ê ⊂ ∂F̂ (in three dimensions) whose gradients are then denoted by FFT := (φT |F̂ )′

and FET := (φT |Ê)′. Using these quantities the unit normals and tangents of the reference
element and its mapped configurations on the physical element T are related by

n =
det(FT )

det(FFT )
F−T
T n̂ and t =

1

det(FET )
FT t̂, (2.4)
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where in two dimensions we have to replace FET by FFT .
We continue with the definition of polynomial spaces. For a given element T ∈ Th

we denote by Pk(T ) the space of polynomials defined on T whose total order is less or
equal k. Again, we use the same notation as for function spaces for non scalar-valued
polynomial spaces, e.g. where Pk(T,Rd) denotes the space of vector-valued polynomials,
we use Pk(T,Rd×d) for the space of matrix-valued polynomials. Using these notations we
further define polynomials on the triangulation by

Pk(Th,R) :=
∏
T∈Th

Pk(T,R),

and similarly Pk(Th,Rd) and Pk(Th,Rd×d). Beside this we make use of homogeneous
polynomials denoted by Pkhom(Th,R) and the space of matrix-valued skew symmetric poly-
nomials defined by

Pkskw(Th,Rd×d) := {η ∈ Pk(Th,Rd×d) : (η + ηT)|T = 0 on all T ∈ Th}.

Finally, we introduce the space of rigid displacements by

RM(Th) := {a+Bx : a ∈ P0(T,Rd), B ∈ P0
skw(T,Rd×d)}. (2.5)

At several points in the analysis we make use of polynomials defined in the tangent
plane of a face of a given element T . To this end let F ∈ Fh(T ), then with a slight abuse
of notation we do not distinguish between the tangent plane parallel to the facet F and
the isomorphic Rd−1 and write instead Pk(F,Rd−1). Note that for example the tangential
projection of a polynomial µ ∈ Pk(T,Rd) is in this space, thus µt ∈ Pk(F,Rd−1).

With respect to a triangulation we introduce for each element T ∈ Th the local element-
wise L2-projection on polynomials of order k by Πk

T . Note that we do not distinguish
between scalar-, vector- or matrix-valued functions, but always use the same symbol.
Following the notations from above the corresponding global L2-projection onto the space
Pk(Th) is given by Πk

Th . Similarly, on each facet F ∈ Fh, let Πk
F denote the L2-projection

onto the space of polynomials of order k on F . Again, we use the same symbols for
projections with different ranges. For example, the projection into the tangent plane of F is
also given by Πk

F , i.e., with the notation from above we have for any vector-valued function
v ∈ L2(F,Rd−1) that the projection Πk

F v ∈ Pk(F,Rd−1) satisfies (Πk
F v, q)F = (v, q)F for all

q ∈ Pk(F,Rd−1).
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Similarly, we also define function spaces with respect to the triangulation Th, e.g.

Hm(Th,R) := {u ∈ L2(Ω,R) : u|T ∈ Hm(T,R) for all T ∈ Th},

denotes the broken Sobolev space of order m. Note that we use the same symbols for
a broken differential operator applied on each element for functions in a broken Sobolev
space and the continuous operator applied on functions in the corresponding standard
Sobolev space, e.g. we write (∇u)|T = ∇(u|T ) for functions u ∈ H1(Th,R).

Now let IVh(T ) be the index set of the vertices Vh(T ), then we use the standard notation
for the barycentric coordinate functions given by λi, thus we have

λi ∈ P1(T,R) such that λi(Vj) = δij ∀i, j ∈ IVh(T ),

where δij is the Kronecker delta.

2.3 The variational formulation of the Stokes equations

Before we can deal with the time dependent non-linear versions of the fluid equations we
have to develop some basics knowledge of the Stokes equations and its descretization
techniques. For the ease we only consider the case of homogenoues Dirichlet boundary
condition, i.e. we have the problem: Find u, p such that

−ν div(ε(u)) +∇p = f,

div(u) = 0.
(2.6)

Note, that for simplicity we neglect the scaling of the viscosity with the constant 2 in this
section. In a first step we are going to prove that the Stokes equations have an unique
solution (if it exists). To this end we need to take a closer look onto the kernel of the
symmetric gradient.

Theorem 7. The strain τ = ε(u) vanishes if and only if the velocity is a rigid body motion,
i.e. for d = 3 we have

ε(u) = 0⇔ u(x) = a+ b× x

where a, b ∈ R3 and for d = 2 we have

ε(u) = 0⇔ u(x) = a+ b

(
−x2

x1

)
,
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with a ∈ R2 and b ∈ R.

Note, that the term “rigid body motion” is motivated from the theory of elasticity. For
the Stokes equations, a rigid body motion equals a flow where the velocity of every fluid
particle is a linear combination of a constant velocity and a constant rotation. Obviously,
this induced no diffusive forces and the strain vanishes. Understanding the kernel, we can
now proof the following uniqueness result

Theorem 8. Assuming enough regularity, the Stokes problem (2.6) has an, up to an addi-
tive constant pressure, unique solution.

Proof. Since the Stokes equations are a linear problem, we have to show that if the right
hand side vanishes f = 0, the solution is given by u = 0 and p = c, with c ∈ R. In a first
step we multiply the first equation with the exact solution u, integrate over the domain Ω,
and apply integration by parts. This gives

0 =

∫
Ω
νε(u) : ∇(u) dx−

∫
Ω
p div(u) dx .

Due to the incompressibility constraint the second integral vanishes and we obtain (using
the symmetry of ε(u))

0 =

∫
Ω
νε(u) : ∇(u) dx =

∫
Ω
νε(u) :

1

2
∇(u) dx+

∫
Ω
νε(u) :

1

2
∇(u) dx

=

∫
Ω
νε(u) :

1

2
∇(u) dx+

∫
Ω
νε(u) :

1

2
∇(u)T dx

=

∫
Ω
ν|ε(u)|2 dx .

By Theorem 7, the vanishing L2-norm of the strain implies that u equals a rigid body
motion. However, since we consider homogeneous Dirichlet boundary condition on ∂Ω

this finally gives that u = 0 and further

−ν div(ε(u)) +∇p = ∇p = 0,

from what we conclude the proof, since the first equations now gives ∇p = 0, i.e. p is
constant.

We continue with the derivation of the weak formulation of the Stokes equations which,
as usual, follows very similar steps as in the proof above. The second order differential
operator in the Stokes equations motivates to choose the (vector valued!) space V :=

H1
0 (Ω,Rd) for the velocity. In order to guarantee uniqueness of the variational formulation
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we consider the closed subspace space of square integratable functions with vanishing
mean value

Q := L2
0(Ω,R) := {f ∈ L2(Ω,R) :

∫
Ω
f dx = 0},

as space for the pressure. Multiplying (2.6) with test functions v, q ∈ V × Q, integrating
over the domain Ω and integrate by parts gives the weak formulation: Find u, p ∈ V × Q
such that ∫

Ω
νε(u) : ε(v) dx−

∫
Ω

div(v)p =

∫
Ω
f · v dx ∀v ∈ V (2.7)

−
∫

Ω
div(u)q = 0 ∀q ∈ Q.

In order to prove uniqueness (in the spaces V and Q) we follow similar steps as before.
Choosing f = 0 and the test functions v = u and q = p gives (including the incompress-
ibility constraint) ∫

Ω
νε(u) : ε(v) dx = 0,

which again implies u = 0. What remains is the condition

−
∫

Ω
div(v)p = 0 ∀v ∈ V,

or, assuming a smooth solution, integration by parts also gives∫
Ω
v · ∇p = 0 ∀v ∈ V,

Now let b(x) be a positive function b(x) > 0 for all x ∈ Ω that vanishes on the boundary,
i.e. b(x)|∂Ω = 0 (the b stands for bubble function). Choosing v = ∇pb (the b was needed
for the boundary conditions) gives ∫

Ω
b|∇p|2 dx = 0,

and thus (since this reads as an (equivalent) weighted L2-norm) ∇p = 0 implying a con-
stant pressure. Due to the choice of the space Q, this shows that p = 0. In the case of a
non-smooth solution (p only in L2), “integration by parts” gives the duality pair 〈∇p, v〉V = 0

for all v ∈ V . Proving that this again implies that p = 0 is not that simple and requires some
applied functional analysis which we will discuss later.
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Since the symmetric bilinear form in the upper left part of (2.7) is elliptic (as we will
discuss in the next section), we can interpret the weak formulation of the Stokes equations
as the Euler-Lagrange equations of a constrained optimization problem. In particular, the
velocity solution u ∈ V is given as the solution of

min
v∈V

∫
Ω

ν

2
|ε(v)|2 − f · v dx,

subject to the constraint

div(v) = 0.

To solve this problem we can define the Lagrange function L : V ×Q→ R by

L(v, q) :=
ν

2
‖ε(v)‖2Ω − (div(v), q)Ω.

The variation with respect to the velocity test function gives the first equation of (2.7), and
the variation of the scalar pressure test function gives the incompressibility constraint, i.e.
the second line of (2.7). This shows, that the physical meaning (and also in a mathematical
sense) of the pressure is the Lagrange multiplier enforcing the divergence constraint of the
velocity. Further, the solution of the minimization problem is a saddle point, i.e. the velocity
u is a minimizer and p is a maximizer

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀(v, q) ∈ V ×Q.

In the next section we discuss the stability of mixed methods in a general setting. Further,
we will focus on the case where, motivated by above findings, the solution corresponds to
a saddle point problem.

2.4 Stability theory of mixed methods

2.4.1 The inf-sup theorem

In this section we discuss the stability of variational problems in a more general framework.
To give a proper name to the results and theorems, a detailed study of the history is
needed and even then there might be some disagreement. One can find these results for
example in the survey of lectures by Babuška and Aziz, see [4] where they also refer to the
works of Nirenberg, see [37]. At several points in the literature one also finds references
of the work by Nečas, see [36]. In [13], the theorem is called the BNB theorem, since
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beside Babuška and Nečas, it can also be seen as rephrasing two fundamental results of
Banach (the closed range and open mapping theorem). For the ease, we will call it the
inf-sup theorem.

Now let H be a Hilbert space with the inner product (·, ·)H and the corresponding norm
‖ · ‖H . Assume a given bilinear form K : H ×H → R and a given right hand side F ∈ H ′.
We consider the problem: Find u ∈ H such that

K(u, v) = F (v) ∀v ∈ H. (2.8)

Theorem 9 (inf-sup). Consider the above setting, and suppose that the bilinear form K

fulfills the following conditions:

• Continuity: there exists a positive constant α such that

|K(u, v)| ≤ α‖u‖H‖v‖H ∀u, v ∈ H.

• The “inf-sup” condition: there exists a positive constant β such that

sup
v∈H,v 6=0

K(u, v)

‖v‖H
≥ β‖u‖ ∀u ∈ H.

• There holds

sup
u∈H

K(u, v) 6= 0 ∀v ∈ V.

Then, the variational problem (2.8) has an unique solution depending continuously on the
data, i.e.

‖u‖H ≤
1

β
‖F‖H′ .

Proof. Step 1: Let w ∈ H be arbitrary and define the functional

φw(v) := K(w, v) ∀v ∈ H.

By the Riesz representation theorem, there exists a function z ∈ H such that

(z, v)H = φw(v).
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Hence, we can define a linear mapping K : H → H,K(w) = z such that

(K(w), v) = K(w, v) ∀v ∈ H.

Using the continuity properties of the bilinear form we have for all w ∈ H

‖K(w)‖2H = (K(w),K(w)) = K(w,K(w)) ≤ α‖w‖H‖K(w)‖H , (2.9)

thus K is bounded ‖K‖ ≤ α (where ‖ · ‖ is the operator norm).
Step 2: We continue by proving that K is also bounded from below and that the range
R(K) is closed. The first statement follows immediately by the inf-sup condition

‖K(w)‖H = sup
v∈H,v 6=0

(K(w), v)H
‖v‖H

= sup
v∈H,v 6=0

K(w, v)H
‖v‖H

≥ β‖w‖.

No let K(wn) be a Cauchy sequence in R(K). Using above estimate we have

‖K(wn)−K(wm)‖H ≥ β‖wn − wm‖H ,

and thus wn is also a Cauchy sequence (in the Hilbert space H). For the ease, let w
denote the limit of wn. Since K is bounded we also have that K(wn) → K(w), i.e. the
range R(K) is closed.
Step 3: We proof R(K) = H by contradiction: Assume there exists an element v0 ∈ H

with v0 6= 0 such that

(K(w), v0)H = 0 ∀w ∈ H, (⇔ v0 ⊥H R(K)).

By definition, this is equivalent to K(w, v0) = 0 for all w ∈ H, thus we have a contradiction
to the third assumption of the theorem.
Step 4: We apply the Riesz theorem to the right hand side of problem (2.8), i.e. we find a
function uF such that

F (v) = (uF , v)H ∀v ∈ H,

thus the variational problem is equivalent to the operator problem K(u) = uf , with the
solution

u = K−1(uF ),

where K is invertible since K is a bijective bounded linear operator, thus the existence
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of the inverse follows from the bounded inverse theorem (which is equivalent to the open
mapping and closed graph theorem, see comment above).
Step 5: From the inf-sup condition we finally have

β‖u‖H ≤ sup
v∈H,v 6=0

K(u, v)

‖v‖H
= sup

v∈H,v 6=0

F (v)

‖v‖H
= ‖F‖H′ .

Remark 1. The inf-sup theorem as stated above only considers the case where the bi-
linear form K is defined on H × H, where H is a Hilbert space, thus it can be seen as
a generalized version of the Lax-Milgram theorem. The universal case considers the a
bilinear form K : U × V → R, with two Banach spaces U, V (i.e. the name BNB-theorem,
see above).

Remark 2. The first part of step 2 in the above proof showed that the operator K is injec-
tive, i.e., the inf-sup condition gives the uniqueness of the problem. The second part of
step 2 and step 3 showed the surjectivity.

Remark 3. There are alternative versions of stability (the inf-sup) condition

• There exists a positive constant β such that

inf
u∈H,u 6=0

sup
v∈H,v 6=0

K(u, v)

‖u‖H‖v‖H
≥ β.

• There exists a positive constant β such that for every u ∈ H there exists a v ∈ H
such that

K(u, v) = ‖u‖2H and ‖v‖H ≤ β‖u‖H .

Considering the variational formulation of the Stokes equations (2.7), we could now set
H := H1

0 (Ω,R3)× L2
0(Ω) and define the bilinear form

K((u, p), (v, q)) :=

∫
Ω
νε(u) : ε(v) dx−

∫
Ω

div(u)q dx−
∫

Ω
div(v)p dx,

and the linear form F ((v, q)) := f(v). In order to guarantee that the problem is well
posed, we have to check the stability conditions of Theorem 9. Nevertheless, as already
discussed in the previous section, the solution of the variational formulation of the Stokes
problem is a saddle point, i.e. we have a saddle point problem. In this case simplified
(inf-sup like) conditions can be considered which are discussed in the next section.
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2.4.2 The Brezzi theorem for saddle point problems

We consider the abstract setting of a saddle point problem. To this end let V,Q be two
Hilbert spaces with the inner product (·, ·)V and (·, ·)Q, and the corresponding norms ‖ · ‖V
and ‖ · ‖Q. We consider the problem: Find (u, p) ∈ V ×Q such that:

a(u, v) + b(v, p) = f(v) ∀v ∈ V (2.10)

b(u, q) = g(q) ∀q ∈ Q

for given right hand sides f ∈ V ′ and g ∈ Q′, and the bilinear forms a : V × V → R and
b : V ×Q→ R.

Theorem 10. Consider the above settings and assume that the bilinear forms fulfill the
conditions:

• The bilinear forms are continuous

a(u, v) ≤ α1‖u‖V ‖v‖V ∀v, u ∈ V
b(u, q) ≤ α2‖u‖V ‖q‖Q ∀v ∈ V,∀q ∈ Q.

• The bilinear form a is elliptic on the kernel of the bilinear form b, i.e. we have

a(u, u) ≥ β1‖u‖2V ∀u ∈ V0 := {v ∈ V : b(v, q) = 0 ∀q ∈ Q}.

• The bilinear form b fulfills the LBB (Ladyshenskaya-Babuška-Brezzi) condition, i.e.

sup
u∈V,u6=0

b(u, q)

‖u‖V
≥ β2‖q‖Q ∀q ∈ Q.

Then, the variational problem (2.10) has a unique solution depending continuously on the
data, i.e.

‖u‖V + ‖p‖Q . β−2
2 (‖f‖V ′ + ‖g‖Q′) and ‖u‖V . β−1

2 (‖f‖V ′ + ‖g‖Q′).

where the constants depends on α1, α2, β1.

Proof. We want to show that the conditions of Theorem 10 imply that the conditions of
Theorem 9 are valid. To this end we define the “big” bilinear form on the product space
H = V ×Q with the norm ‖(u, p)‖2H = ‖u‖2V + ‖p‖2Q by

K((u, p), (v, q)) = a(u, v) + b(u, q) + b(v, p).
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In the proof we want to explicitly keep track of the LBB constant as it plays an important
role (for example in the theory of preconditioners).
Step 1: The continuity of K on H is a direct consequence of the continuity of the bilinear
forms a and b., i.e. we have

|K((u, p), (v, q))| ≤ |a(u, v)|+ |b(u, q)|+ |b(v, p)| . ‖(u, p)‖H‖(v, q)‖H .

Step 2: Let v ∈ V and q ∈ Q be arbitrary (but fixed). First, the LBB condition (surjectivity)
shows that there exists an u1 (not unique!) such that

b(u1, q) = (q, q)Q and ‖u1‖V . β−1
2 ‖q‖Q.

Next, we solve the following problem on the kernel: Find u0 ∈ V0 such that

a(u0, v0) = (v, v0)− a(u1, v0) ∀v0 ∈ V0.

By Lax-Milgram this problem has a unique solution with the stability estimate

‖u0‖V . ‖v‖V + ‖u1‖V .

Step 3: We set u = u0 + u1, and define the functional (v, ·)V − a(u, ·) ∈ V ′. Then, using
the Riesz isomorphism we find a function z ∈ V such that

(z, w)V = (v, w)V − a(u,w) ∀w ∈ V.

By construction, we have that for all v0 ∈ V0

(z, v0)V = (v, v0)V − a(u, v0) = (v, v0)V − a(u0, v0)− a(u1, v0) = 0,

thus, z ∈ V ⊥0 . As in the proof of Theorem 9, we now define the operator B∗ : Q → V

such that (u,B∗p)V = b(u, p). The LBB conditions now shows that we can bound B∗ from
below,

β2‖p‖Q ≤ sup
w∈V

b(w, p)

‖w‖V
= sup

w∈V

(w,B∗p)V
‖w‖V

≤ ‖B∗p‖V ,

and thus, similarly to before, this shows that the range R(B∗) = B∗Q is closed. Since

(v0, B
∗p)V = b(v0, p) = 0 ∀v0 ∈ V0
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shows that B∗Q is V -orthogonal onto V0, and since V0 is closed (kernel of cont. operator)
we have the orthogonal decomposition V = V0 ⊕ B∗Q. In total this gives z ∈ B∗Q and so
we can find a p ∈ Q such that z = B∗p. Further, we have the stability estimate

‖p‖Q ≤ β−1
2 ‖z‖V . β−1

2 (‖v‖V + ‖u1‖V ) . β−2
2 (‖v‖V + ‖q‖Q),

or all together

‖u‖V + ‖p‖Q . β−2
2 (‖v‖V + ‖q‖Q).

Since we also have

K((u, p), (v, q)) = a(u, v) + b(u, q) + b(v, p)

= a(u, v) + b(u, q) + (z, v)V

= a(u, v) + b(u, q) + (v, v)V − a(u, v)

= b(u0, q) + b(u1, q) + ‖v‖2V
= ‖q‖2Q + ‖v‖2V .

This concludes the well posedness proof (see second point of Remark 3) and gives the
continuity estimate

‖u‖V + ‖p‖Q . Cβ−2
2 (‖f‖V ′ + ‖g‖Q′).

For the second estimate, follow the same steps as above but scale the solution p with the
LBB constant. This gives the stability estimate

‖u‖V ≤ ‖u‖V + ‖β2p‖Q . β−1
2 (‖v‖V + ‖q‖Q).

The rest follows as before.

Remark 4. In contrast to the proof of Theorem 9, where the stability conditions where used
to show that the corresponding operator is bijective, the conditions of the Brezzi theorem
can be interpreted in the following sense: the kernel ellpiticity simply provides a condition
for the solvability in the case where the constraint given by the b bilinear form vanishes.
Here we can simply use the standard theory of elliptic problems given by the Lax-Milgram
theorem. The LBB condition has to be valid because it guarantees that there are “enough”
functions in V such that the second line of the saddle point problem can be fulfilled (i.e.
we have surjectivity of the operator corresponding to the constraint).
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Theorem 10, also often just called Brezzi’s theorem, shows that there are two crucial
conditions that we have to check: the kernel ellipticity and the LBB condition. If we apply
the above setting to the Stokes equations we set V := H1

0 (Ω,R3) and Q = L2
0(Ω) and

define for all u, v ∈ V and q ∈ Q the bilinear forms

a(u, v) :=

∫
Ω
νε(u) : ε(v) dx (2.11a)

b(u, q) := −
∫

Ω
div(u)q dx . (2.11b)

The continuity reads by a proper scaling with the viscosity and reads as

a(u, v) ≤ ν‖u‖1‖v‖1 ∀v, u ∈ V
b(u, q) ≤ ‖u‖1‖q‖Q ∀v ∈ V,∀q ∈ Q.

and the kernel is given by all divergence free functions

V0 :={u ∈ H1
0 (Ω,R3) : b(u, q) = 0 ∀q ∈ Q}

={u ∈ H1
0 (Ω,R3) : div(u) = 0 in L2}.

The coercivity for the Stokes equations follows immediately using Korn’s inequality, see
Theorem 6, i.e. we have

a(u, u) & ν‖u‖21 ∀u ∈ V.

Note, that we even have ellipticity on the whole space V (and not only on the kernel), but
keep in mind that this is not the usual case. The LBB condition now reads as

sup
u∈V

∫
Ω div(u)q dx

‖u‖1
& ‖q‖0 ∀q ∈ Q. (2.12)

Unfortunately, there is no simple proof of the above theorem for arbitrary domains. We
refer for example to [13] where the LBB condition is discussed in more details including
different boundary conditions. Nevertheless, a proof can be constructed in the case where
we assume the surjectivity of the H2 trace operator, i.e. we consider a domain Ω such that
the operators

(γ(·), γn(∇(·)) : H2(Ω,R)→ (H3/2(∂Ω,R), H1/2(∂Ω,R))

(evaluation of a function and its normal derivative) is continuous and surjective. This im-
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plies that the boundary of the domain has to be smooth enough, see [32, 12, 19, 6] for a
detailed discussion. The LBB condition reads as the surjectivity of the divergence operator
(see remarks above), i.e. consider an arbitrary q ∈ Q, then we have to find a u ∈ V such
that div(u) = q and ‖u‖1 . ‖q‖0. In a first step we solve the auxiliary Poisson problem
−∆ϕ = −q in Ω with Neumann boundary conditions ∇ϕ · n = 0 on ∂Ω. Due to the zero
mean value of q this problem has a unique solution in H1(Ω,R)/R. Now set u := ∇ϕ
to get div(u) = ∆ϕ = q and using a regularity result for the Poisson problem we get
‖u‖1 = ‖ϕ‖2 . ‖q‖0. Further note, that we already have u · n = ∇ϕ · n = 0 on ∂Ω. In the
next step we are going to correct the tangential component such that the resulting velocity
satisfies the zero boundary conditions of V . Thus, we seek for a function ψ ∈ H2(Ω,R3)

that fulfills

ψ = 0 on ∂Ω and
∂ψ

∂n
= −u · t on ∂Ω and ‖ψ‖2 . ‖u‖1.

Since we assumed that theH2 trace operator is surjective, the existence of such a function
is guaranteed, see Theorem 1.12 in [7]. Now set ũ := u + curlψ to get div ṽ = div(u) +

div(curl(ψ)) = q in Ω. On the boundary ∂Ω we observe

ũ · n = u · n+ curl(ψ) · n = ∇ψ · t = 0 and ũ · t = u · t+ curl(ψ) · t = u · t+∇ψ · nn = 0.

Finally, due to the H2-continuity of ψ, we get ‖ũ‖1 = ‖u‖1 + ‖ curl(ψ)‖1 . ‖u‖1 . ‖q‖0.

2.5 Conforming Finite element methods for the Stokes
equations

In this section we want to derive a (conforming) finite element method in order to dis-
cretize the variational formulation (2.7). To this end let Vh ⊂ V and Qh ⊂ Q be two finite
dimensional spaces, then we have the problem: Find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(vh, ph) = (f, vh) ∀vh ∈ Vh (2.13)

b(uh, qh) = 0 ∀qh ∈ Qh, (2.14)

where the bilinear forms are given by (2.11). The stability conditions of Theorem 10,
show that there is a strong connection between the continuous velocity space V and
the pressure space Q. Unfortunately, in contrast to standard elliptic problems where the
solveability of a (conforming) discrete method is inherited from the continuous setting, this
is not the case for saddle point problems. Thus, the discrete spaces Vh and Qh can not be
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chosen independently. Since the kernel ellipticity of the Stokes problem on the continuous
level holds on the whole space V , this condition is indeed inherited due to the conformity
Vh ⊂ V . Thus, in order to prove well posedness (i.e. unique solveability) of (2.13) we can
focus on the LBB condition.

However, since the LBB condition might be difficult to prove, we will first discuss a
uniqueness (but not existence) property that might be easier to check.

Theorem 11. The solution of the discrete problem (2.13) is unique if and only if the dis-
crete finite element spaces Vh and Qh fulfill the condition

b(vh, ph) = −
∫

Ω
div(vh)ph dx = 0 ∀vh ∈ Vh ⇒ ph = 0. (2.15)

Proof. The proof follows with the same steps as in the continuous setting.

Remark 5. In general, above theorem should be stated such that the implication gives
that the discrete pressure is constant, i.e. ph = c ∈ R (and not zero as above). Here,
we explicitly have stated that ph should vanish as we enforced uniqueness by the zero
mean value constraint Qh ⊂ Q = L2

0(Ω). Note, that this is just a mathematical “grounding”
technique. One could have also enforced (for example) a different (fixed) non-zero mean
value to guarantee uniqueness.

Above condition is not always true and can help to check if a pair of finite element spaces
is a suitable couple for the discretization of the Stokes equations.

Example 1. Probably the first most trivial choice of a finite element discretization might be
to choose a standard linear Lagrangian finite element approximation for the velocity and
the pressure, i.e. we choose the space

Vh := {vh ∈ H1
0 (Ω,Rd) : vh|T ∈ P1(T,Rd) ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) ∩ C0(Ω,R) : qh|T ∈ P1(T,R) ∀T ∈ Th}.

We give a simple counter example which proves that this discretization does not provide
a unique solution. Let Ω be a square and let the triangulation be given as in Figure 2.2.
We set ph such that its evaluation equals either −1 or 1 on nodes that are on common
vertical lines. Any function vh ∈ Vh is uniquely defined by fixing the values on the nodes
in the interior, which are further associated to the corresponding nodal hat functions. For
simplicity let vh = ϕ, where ϕ is the hat function of the blue vertex with support on the
vertex patch ω = ωr ∪ωo which is split into an orange part ωo and a red part ωr. Since ∇ph
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−1 1 −1 1 −1

−1 1 −1 1 −1

−1 1 −1 1 −1

−1 1 −1 1 −1

Figure 2.2: Considered triangulation and nodal values of ph

is 2 and −2 on ωr and ωo, respectively, integration by parts shows

−
∫

Ω
div(vh)ph dx = −

∫
ω

div(vh)ph dx =

∫
ω
vh · ∇ph dx = 2

∫
ωr

ϕ− 2

∫
ωo

ϕ = 0,

where we used, that |ωo| = |ωr| and that ϕ is point symmetric on ω with respect to the blue
vertex (i.e. the integrals have the same value). A similar argument can be used for any
other hat function (and linear combination) which shows that

−
∫

Ω
div(vh)ph dx = 0 ∀vh ∈ Vh.

Example 2 (The MINI element). The MINI element uses the same pressure approximation
as before, but the linear Lagrangian velocity space is augmented by local element wise
bubble functions such that it admits a unique solution. To this end we define for each
element T ∈ Th the bubble space given by B(T,R) = Pd+1(T,R) ∩ H1

0 (T,R), thus cubic
or quartic polynomials for d = 2 and d = 3 respectively, that vanish on the boundary of the
element. A local basis function of (the one dimensional space) B(T,R) is simply given by
the bubble bT = Πd+1

i=1 λi where λi are the barycentric coordinate functions on T (i.e. linear
polynomials). With a slight abuse of notation let B(T,Rd) be the vector valued bubble
space where each component is given by B(T,R). We choose the spaces

Vh := {vh ∈ H1
0 (Ω,Rd) : vh|T ∈ [P1(T,Rd) +B(T,Rd)] ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) ∩ C0(Ω,R) : qh|T ∈ P1(T,R) ∀T ∈ Th}.

Now assume that for a given ph the condition (2.15) is satisfied . Let T ∈ Th be arbitrary,
then we choose the discrete velocity such that vh = 0 on Ω \ T and vh|T = bT∇ph, where
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bT is the local element bubble defined as above. Integration by parts then gives

0 = b(vh, ph) = −
∫

Ω
div(vh)ph dx =

∫
T
bT |∇ph|2 dx,

from which we obtain that ph|T = c on T (since bT is a positive weighting). As ph is
continuous it has to be the same constant on the whole domain Ω, and as further ph ∈
L2

0(Ω,R) we have c = 0.

Example 3. Now we consider a method with a discontinuous pressure approximation. We
choose the spaces

Vh := {vh ∈ H1
0 (Ω,Rd) : vh|T ∈ Pd(T,Rd) ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) : qh|T ∈ P0(T,R) ∀T ∈ Th}.

Let T1, T2 ∈ Th be two adjacent elements with common face F ∈ Fh. Set vh such that
it vanished on Ω \ (T1 ∪ T2) (i.e. in two dimensions where we have the second order
Lagrangian finite element space for the velocity, just the edge bubble has a non zero
coefficient). Now let p1

h := ph|T1 and p2
h := ph|T2 be the constant values on T1 and T2,

respectively. Condition (2.15) gives

0 = b(vh, ph) = −
∫
T1∪T2

div(vh)ph dx

= −p1
h

∫
T1

div(vh) dx−p2
h

∫
T2

div(vh) dx

= −p1
h

∫
F
vh · n1 ds−p2

h

∫
F
vh · n2 ds = (p2

h − p1
h)

∫
F
vh · n1 ds .

Since vh is equivalent to the edge bubble, the integral on the edge is not zero and we
conclude that p1

h = p2
h. This shows that ph equals a global constant, and as ph ∈ L2

0(Ω) is
has to vanish.

Example 4. The last example is also based on a discontinuous pressure approximation.
Note, that this choice only works in two space dimensions (but a similar version also exists
for d = 3). We choose the spaces

Vh := {vh ∈ H1
0 (Ω,R2) : vh|T ∈ [P2(T,R2) +B(T,R2)] ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) : qh|T ∈ P1(T,R) ∀T ∈ Th}.

The uniqueness follows with the same techniques as before.

After providing a simple check if a couple Vh × Qh of finite element spaces is suitable,
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i.e. provides a unique solution, the next two sections are dedicated to present a detailed
stability analysis. Note, that since we only consider the case with homogeneous Dirichlet
boundary conditions given on the whole boundary ∂Ω we will use at several point in the
analysis the equivalence (see Theorem 3.2)

‖v‖1 ∼ ‖∇v‖0 ∀v ∈ V.

2.5.1 Discrete stability by mesh dependent norms

Since the kernel ellipticity of the bilinear form a is inherited from the continuous setting, we
aim to provide a proof for the discrete LBB condition given by

sup
vh∈Vh

b(vh, qh)

‖vh‖1
& ‖qh‖0 ∀qh ∈ Qh. (2.16)

It turns out that a simple technique for proving that (2.16) holds true is based on defining
a new mesh dependent norm for the pressure space. To this end we define the norm

‖ph‖20,h :=
∑
T∈Th

h2‖∇ph‖2T +
∑
F∈Fh

h‖[[ph]]‖2F ∀ph ∈ Qh,

where [[·]] denotes the jump operator, as defined in (2.33a). The modified LBB condition
now reads as

sup
vh∈Vh

b(vh, qh)

‖vh‖1
& ‖qh‖0,h ∀qh ∈ Qh. (2.17)

Before we provide a proof that the modified stability condition is sufficient, we introduce
the so called Clément quasi interpolation operator. To this end let Vi ∈ Vh be the nodes of
the triangulation. Then we define the vertex patch by

ωi :=
⋃

T :Vi∈T
T.

For a function v ∈ L2(ωi) let Π0
ωiv be the L2 projection onto constant functions on ωi, i.e.

we have

Π0
ωiv :=

1

|ωi|

∫
ωi

v dx .

Now let IV int
h

denote the index set of nodes in the interior of Ω, and let ϕi ∈ P1(Th) be the
corresponding nodal hat functions. We define the Clément quasi interpolation operator IC
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by

ICv :=
∑
i∈IV int

h

(Π0
ωiv)ϕi. (2.18)

Note, that the result is a piece-wise linear polynomial, i.e. we have ICv ∈ P1(Th).

Theorem 12. Let v ∈ H1
0 (Ω). The Clément quasi interpolation operator is continuous, i.e.

‖ICv‖1 . ‖v‖1 and there holds the approximation result∑
T∈Th

h−2‖v − ICv‖2T + h−1‖v − ICv‖2∂T

1/2

. ‖∇v‖0.

Proof. The proof is based on the Bramble-Hilbert Lemma, standard scaling arguments
and a partition of unity argument. A proof can be found for example in [8].

Remark 6. The operator IC is called a quasi interpolation operator because ICvh = vh

does not hold true for all vh ∈ P1(Th).

Remark 7. In the case where we only have partial Dirichlet boundary condition, the def-
inition of the Clément quasi interpolation operator considers all nodes in the interior and
all nodes that are on non Dirichlet boundary parts.

Theorem 13. Suppose that the couple Vh×Qh fulfills the modified stability condition (2.17).
Then (2.16) is valid

Proof. Let qh ∈ Qh be arbitrary. Since qh is in Q we can use the continuous Stokes-
LBB (2.12) to find a function v ∈ H1

0 (Ω,R2) such that b(v, qh) ≥ C1‖v‖1‖qh‖0. Now let
vh := ICv ∈ Vh be the Clément interpolant of the continuous velocity v, then we have

b(vh, qh) = b(v, qh)− b(v − vh, qh).

Using an element by element integration by parts argument and Cauchy-Schwarz yields

b(v − vh, qh) =
∑
T∈Th

∫
T

div(vh − v)qh dx

= −
∑
T∈Th

∫
T

(vh − v) · ∇qh dx+
∑
F∈Fh

∫
F

(vh − v) · n[[qh]] ds

.

∑
T∈Th

h−2‖vh − v‖2T +
∑
F∈Fh

h−1‖(vh − v) · n‖2F

1/2

‖qh‖0,h
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Using the interpolation properties of the Clément operator, see Theorem 12, we finally get
b(v − vh, qh) ≤ C2‖v‖1‖qh‖0,h, thus in total

b(vh, qh) ≥ (C1‖qh‖0 − C2‖qh‖0,h)‖v‖1.

By the continuity of the Clément operator ‖vh‖1 ≤ C−1
3 ‖v‖1 we obtain

b(vh, qh)

‖vh‖1
≥ C3(C1‖qh‖0 − C2‖qh‖0,h),

and thus with C̃i := CiC3 we have

sup
vh∈Vh

b(vh, qh)

‖vh‖1
≥ C̃1‖qh‖0 − C̃2‖qh‖0,h.

Using the modified LBB condition, there exists a constant C̃3 such that

sup
vh∈Vh

b(vh, qh)

‖vh‖1
≥ C̃3‖qh‖0,h,

and thus a convex combination with 0 ≤ t ≤ 1 this finally gives

sup
vh∈Vh

b(vh, qh)

‖vh‖1
= t sup

vh∈Vh

b(vh, qh)

‖vh‖1
+ (1− t) sup

vh∈Vh

b(vh, qh)

‖vh‖1
≥ (t(C̃3 + C̃2)− C̃2)‖qh‖0,h + (1− t)C̃1‖qh‖0.

By the choice 1 > t > C̃2/(C̃2 + C̃3) we can conclude the proof.

2.5.2 Examples of stable Stokes discretizations

We can now prove the stability proof for the methods discussed before. To this end we
show that the modified LBB condition (2.17) holds, since Theorem 13 then provides sta-
bility.

Example 5 (The MINI element). We have the spaces

Vh := {vh ∈ H1
0 (Ω,Rd) : vh|T ∈ [P1(T,Rd) +B(T,Rd)] ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) ∩ C0(Ω,R) : qh|T ∈ P1(T,R) ∀T ∈ Th}.

Now let qh ∈ Qh be given. We choose vh ∈ Vh such that vh|T := −h2bT∇qh for all elements
T ∈ Th. This choice is possible because we augmented the velocity space with the local
element bubbles. Since we consider a continuous pressure approximation, integration by
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parts gives

b(vh, qh) = −
∫

Ω
div(vh)qh dx =

∫
Ω
vh · ∇qh dx

=
∑
T∈Th

h2‖b1/2T ∇qh‖2T &
∑
T∈Th

h2‖∇qh‖2T = ‖qh‖20,h.

Using that vh ∈ H1
0 (T,Rd), we have on each element the estimate (use scaling arguments)

‖∇vh‖|T . h−1‖vh‖T . h‖bT∇qh‖ . h‖∇qh‖T ,

and so ‖vh‖1 . ‖∇v‖0 . ‖qh‖0,h, which proves that (2.17) holds true.

Example 6 (The P2P0 element). Consider the case d = 2. We have the spaces

Vh := {vh ∈ H1
0 (Ω,R2) : vh|T ∈ P2(T,R2) ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) : qh|T ∈ P0(T,R) ∀T ∈ Th}.

Let qh ∈ Qh be arbitrary and set vh|F := hbF [[qh]]n, where bF is the edge bubble. Note,
that this choice was only possible because we included the element bubble in the velocity
space. This shows why the P1 × P0 combination does not work. The above choice then
gives

b(vh, qh) = −
∫

Ω
div(vh)qh dx = −

∑
T∈Th

qh|T
∫
T

div(vh) dx

=
∑
F∈Fh

∫
F
vh · n[[qh]] ds =

∑
F∈Fh

h

∫
F
bF |[[qh]]|2 ds ∼ ‖qh‖20,h.

The inverse inequality, see Theorem 1, and scaling then also gives ‖vh‖1 ≤ ‖qh‖0,h.

Example 7 (The Bernardi Raugel (BR) element). Consider the case d = 2. Above exam-
ple shows, that we only need to control the normal velocity at the edge, i.e. adding the
edge bubble for both components of the velocity seems to be sub optimal (with respect to
computational costs and the expected approximation properties). The idea now is to only
add the normal edge bubble. To this ed we define

Bn(Th) := {vh ∈ H1
0 (Ω,R2) ∩ P2(Th,R2) : vh|F = cbFn, c ∈ R, ∀F ∈ Fh}.
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Then we set

Vh := {vh ∈ H1
0 (Ω,R2) : vh|T ∈ P1(T,R2)∀T ∈ Th} ∪Bn(Th),

Qh := {qh ∈ L2
0(Ω,R) : qh|T ∈ P0(T,R) ∀T ∈ Th}.

The proof for the stability follows as before.

Example 8 (The P3P0 element). Consider the case d = 3. We have the spaces

Vh := {vh ∈ H1
0 (Ω,R2) : vh|T ∈ P3(T,R3) ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) : qh|T ∈ P0(T,R) ∀T ∈ Th}.

The proof follows with the same steps as before and is given as an exercise for the reader.

Example 9 (The P2-bubble element). Consider the case d = 2. We choose the spaces

Vh := {vh ∈ H1
0 (Ω,R2) : vh|T ∈ [P2(T,R2) +B(T,R2)] ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) : qh|T ∈ P1(T,R) ∀T ∈ Th}.

We combine the results from before. Let qh ∈ Qh be arbitrary. On each element T we can
decompose qh = q0

h + q1
h such that q0

h ∈ P0(T,R) and q1
h ∈ P1(T,R) ∩ L2

0(T,R), i.e. we set

q0
h|T :=

∫
T qh dx

|T | .

The idea now is to use the additional bubble to control the element wise linear polynomials
with vanishing mean value, and the edge dofs to control the constants. From the stability
(i.e. surjectivity of the divergence) of the P2P0 element there exists a function v0

h ∈ Vh

such that

b(v0
h, q

0
h) = ‖q0

h‖20 and ‖v0
h‖1 ≤ C0‖q0

h‖0.

Next, using the stability result of the MINI element (on each element separately) we find
another function v1

h ∈ Vh such that (by scaling we can use the same constant C0 here)

b(v1
h, q

1
h) = ‖q1

h‖2T and ‖v1
h‖1 ≤ C0‖q1

h‖0.

Note, that it was crucial that q1
h ∈ L2

0(T ). Further, since v1
h vanishes on the boundary of
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each element we have

b(v1
h, q

0
h) = 0.

Now set vh := v1
h + αv0

h where α > 0 is a constant yet to be set. By Cauchy Schwarz and
Young’s inequality we have

b(vh, qh) = b(v1
h, q

1
h) + αb(v0

h, q
0
h) + αb(v0

h, q
1
h)

= ‖q1
h‖20 + α‖q0

h‖20 + αb(v0
h, q

1
h)

& ‖q1
h‖20 + α‖q0

h‖20 − α‖v0
h‖1‖q1

h‖0
& ‖q1

h‖20 + α‖q0
h‖20 −

αε

2
‖v0
h‖21 −

α

ε2
‖q1
h‖20

& (1− α

ε2
)‖q1

h‖20 + α(1− ε

2C2
0

)‖q0
h‖20

Hence, in a first step we choose ε such that 1 − ε/(2C2
0 ) > 0, and then α such that

1− α/(2ε) > 0, which gives

b(vh, qh) & (‖q0
h‖20 + ‖q1

h‖20) & ‖qh‖20.

Since we also have ‖vh‖1 . ‖qh‖0, we have proven the stability (here without using directly
the modified LBB).

Example 10 (Taylor-Hood element). In all above examples it was possible to prove the
stability by a local construction of the discrete velocity. Unfortunately, this is not possible
for the famous element called Taylor-Hood element. Here we choose the spaces

Vh := {vh ∈ H1
0 (Ω,Rd) : vh|T ∈ P2(T,Rd) ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) ∩ C0(Ω,R) : qh|T ∈ P1(T,R) ∀T ∈ Th},

thus, similar to the MINI element, we consider a continuous pressure approximation. The
stability analysis is based on the construction of a Fortin interpolation operator (see next
section) and is based on a macro element technique. See for example in [33].

2.5.3 Discrete stability by Fortin-Interpolation operators

Another very common technique to prove discrete stability of a finite element method is
based on the introduction of a Fortin operator denoted by IF .
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Theorem 14 (Fortin operator). Assume there exists an operator IF : V → Vh such that

b(IF v, qh) = b(v, qh) ∀qh ∈ Qh, and ‖IF v‖1 . ‖v‖1.

Then the discrete LBB condition (2.16) follows from the continuous LBB condition (2.12).

Proof. Using the above properties we get

sup
vh∈Vh

b(vh, qh)

‖vh‖1
& sup

v∈V

b(IF v, qh)

‖IF v‖1
= sup

v∈V

b(v, qh)

‖IF v‖1
& sup

v∈V

b(v, qh)

‖v‖1
& ‖qh‖0 ∀qh ∈ Qh,

where we used (2.12) in the last step (since Qh ⊂ Q).

Note that the construction of a Fortin operator has to be done for each discretization
separately. As we will see, this will be done with the same techniques that we already
used in the previous section.

Example 11 (The P2P0 element). Consider the case d = 2. We have the spaces

Vh := {vh ∈ H1
0 (Ω,R2) : vh|T ∈ P2(T,R2) ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) : qh|T ∈ P0(T,R) ∀T ∈ Th}.

The construction of a Fortin operator is split into two steps. First, let I1
F := IC be given as

the Clément operator. Note, that I1
F only gives a linear approximation, i.e. we have only

defined the nodal values. Next, we choose I2
F to be the operator defined by the equations

I2
F v(xV ) = 0 ∀xV ∈ Vh,∫

F
I2
F v · n ds =

∫
F
v · n ds ∀F ∈ Fh

Note, that this can be done by setting

I2
F v :=

∑
F∈Fh

∫
F v · n ds∫
F bF · n ds

bF ,

where bF is (now a vector valued) edge bubble. Next note, that
∫
F bF · n ds ∼ h and by a

standard scaling arguments ‖∇bF ‖T ∼ 1 and

‖u · n‖2F . h−1‖u‖2T + h‖∇u‖2T .
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Thus, in total we get (using Cauchy Schwarz)

‖∇I2
F v‖2T .

∑
F∈Fh

1

h2
(

∫
F
u · n ds)2

∑
F∈Fh

h

h2

∫
F

(u · n)2 ds . h−2‖u‖2T + ‖∇u‖2T .

Combining these two operators we define the Fortin operator as

IF v := I1
F v + I2

F (v − I1
F v).

Now let qh ∈ Qh be arbitrary, then we have on each element using the Gaussian theorem
(since qh is a piece wise constant)∫

T
div(IF v)qh dx = qh

∫
∂T
IF v · n ds =

= qh
∑
F⊂∂T

∫
F
IF v · n ds

= qh
∑
F⊂∂T

∫
F
I1
F v · n ds+

∫
F
I2
F (v − I1

F v) · n ds

= qh
∑
F⊂∂T

∫
F
I1
F v · n ds+

∫
F

(v − I1
F v) · n ds

= qh

∫
∂T
v · n ds =

∫
T

div(v)qh dx .

Further, by Theorem 12 we get on each element with above estimates

‖∇IF v‖T ≤ ‖∇I1
F v‖T + ‖∇I2

F (v − I1
F v)‖T

≤ ‖∇v‖T +
1

h
‖(v − I1

F v)‖T + ‖∇(v − I1
F v)‖T ≤ ‖∇v‖T .

The construction of a Fortin operator for the other elements follows with very similar
ideas and will be left as examples for the reader.

2.5.4 Stabilized methods

In the previous section we saw that the choice of the discretization spaces Vh andQh is not
straight forward and, with respect to the discrete LBB condition (2.16), stability can either
be forced by decreasing the dimension of pressure space or increasing the dimension of
the velocity space. In this section we will introduce the idea of stabilization techniques.
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The idea is to use a pair Vh × Qh that is not inf-sup stable but can be made well posed
by weakening the incompressibility constraint such that div uh = gh for some appropriate
gh. The stabilization can also be motivated by looking at the saddle point structure of the
discrete problem given by (

A BT

B 0

)(
uh

ph

)
=

(
f

0

)
.

Here A and B represent the finite element matrices of the bilinear forms a and b, respec-
tively. A simple calculation shows that the pressure Schur complement is given by

BA−1BTp = BA−1f,

where we assumed that A is invertible which is fulfilled due to the ellipiticity of the bilinear
form a on the whole space Vh ⊂ V . Here we can see that a discrete method is well posed
if and only if the symmetric positive semi-definite matrix BA−1BT only has the constants
in the null space which is the same constraint as Theorem 11. The idea of a stabilization
is now to replace the above matrix by(

A BT

B 0

)
⇒

(
A BT

B −βC

)
,

which gives the modified Schur complement

BA−1BTp+ βCp = BA−1f.

The motivation now is that the stabilization βC allows to remove non constant pressure
which lie in the kernel of the original Schur complement. In order to motivate the structure
of C we will revisit the MINI finite element. To this end we define the space

V l
h := H1

0 (Ω,Rd) ∩ P1(Th,Rd) and V b
h :=

⋃
T∈Th

B(T,Rd)

Vh := V l
h ⊕ V b

h

Qh := L2
0(Ω,R) ∩ P1(Th,R).

Here, V l
h represent the low order space of linear approximations and V b

h is the space of
local bubbles. Now let uh be the solution of the discrete Stokes problem, then we can split
the solution into uh := ulh + ubh where ulh ∈ V l

h and ubh ∈ V b
h . It turns out, that the two

parts fulfill an orthogonality property in the momentum balance. To this end let vlh ∈ V l
h
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be a linear test function, then since the bubbles vanish at element interfaces we get using
integration by parts

a(ubh, v
l
h) =

∑
T∈Th

ν

∫
T
ε(ubh) : ε(vlh) dx =

∑
T∈Th

−ν
∫
T
ubh · div(ε(vlh)) dx = 0, (2.19)

and thus we have

a(ulh, v
l
h) + b(vlh, ph) = (f, vlh) ∀vlh ∈ V l

h.

Now let cT ∈ Rd be the coefficient of the solution of ubh such that

ubh =
∑
T∈Th

cT bT ∈ V b
h ,

where bT are the (scalar) bubble functions on each element T . Using that the discrete
pressure is continuous, integration by parts and choosing a bubble bT ′ , where T ′ ∈ Th is
arbitrary, as test function we get with (2.19) in the momentum equation

a(uh, bT ′) + b(bT ′ , ph) = a(ubh, bT ′) + (bT ′ ,∇ph)

=

∫
T ′
νcT ′ |ε(bT ′)|2 dx+

∫
T ′
bT ′ · ∇ph dx =

∫
T ′
f · bT ′ dx .

Since this can be done for all elements separately, we get an explicit formula for the coef-
ficients given by

cT :=

∫
T (f −∇ph) · bT dx∫
T ν|ε(bT ′)|2 dx

∀T ∈ Th.

For the ease let us define γT := (
∫
T |ε(bT )|2 dx)−1, then the incompressibility constraint

gives for all qh ∈ Qh

0 = b(uh, qh) = b(ulh, qh) + b(ubh, qh)

= b(ulh, qh) +
∑
T∈Th

∫
T
cT bT · ∇qh dx

= b(ulh, qh) +
∑
T∈Th

γT

(∫
T
bT · ∇qh dx

)(∫
T

(f −∇ph) · bT dx

)
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In total this shows, that the linear part (ulh, ph) ∈ V l
h × Qh of the solution of MINI finite

element method solves the problem

a(ulh, v
l
h) + b(vlh, ph) = (f, vlh) ∀vlh ∈ V l

h

b(ulh, qh)−
∑
T∈Th

γ̃T

∫
T
b2T∇ph · ∇qh dx =

∑
T∈Th

γT

∫
T
bT · ∇qh dx

∫
T ′
f · bT dx ∀qh ∈ Qh,

where we used that ∇ph and ∇qh are constant and γ̃T := γT |T |−1(
∫
T bT dx)2. This can be

interpreted as a P 1 × P 1 approximation of the partial differential equation

−ν div(ε(u)) +∇p = f

div(u)− ρ∆p = −ρdiv(f),

with some constant ρ. Note, that since ulh is linear, we may also add the additional term
div(ε(vlh)) to the left hand side of the second equations. Now let Vh×Qh be arbitrary. Since
γT ∼ h2 and bT = O(1) above derivations motivates to define for all (uh, ph), (vh, qh) ∈
Vh ×Qh the bilinear form

c((uh, ph), (vh, qh)) =α
∑
T∈Th

h2

∫
T

(−ν div(ε(uh)) +∇ph) · (−ν div(ε(vh)) +∇qh) dx

+ β
∑
F∈Fh

h

∫
F

[[qh]][[ph]] ds .

Note, that the jump term is only essential for a lowest order discontinuous pressure ap-
proximation and when the velocity space does not contain polynomials of order d, i.e. we
have

Qh ⊂ C(Ω) or Pd(Ω,Rd) ∩H1(Ω,Rd) ⊂ Vh ⇒ β = 0.

Then we have the stabilized problem: Find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(uh, qh) + b(vh, ph)− c((uh, ph), (vh, qh))

= (f, vh)−
∑
T∈Th

αh2

∫
T
f · (−ν div(ε(vh)) +∇qh) dx ∀(vh, qh) ∈ Vh ×Qh.

Note, that stability of above method then depends on a proper choice of the stabilization
parameters α and β. The proof follows similar steps as the proof of Theorem 13. A detailed
analysis is presented in Chapter 4 of [22]. Further note, that the new stabilized terms are
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consistent, i.e. for the exact solution uh = u and ph = p we have

−c((uh, ph), (vh, qh)) = −
∑
T∈Th

αh2

∫
T
f · (−ν div(ε(vh)) +∇qh) dx ∀(vh, qh) ∈ Vh ×Qh,

thus the exact solution still solves above stabilized problem.

2.5.5 Error analysis

In this section we derive a priori error estimates for the solution of the discrete problem
(2.13). Similarly as for standard elliptic problems, the derivation is based on a best ap-
proximation result and by means of appropriate interpolation operators. Similarly as for
the continuous setting we define the space of discrete divergence-free velocity functions

V0,h := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh}.

Further, assuming stability, let β2,h be the discrete LBB condition in (2.16).

Lemma 1. Let (u, p) ∈ V × Q be the exact solution of weak formulation of the Stokes
equation (2.7), and let (uh, ph) ∈ Vh × Qh be the discrete solution of (2.13). There holds
the best approximation result

‖u− uh‖1 . inf
vh∈Vh,0

‖u− vh‖1 +
1

ν
inf

qh∈Qh
‖p− qh‖0.

If there holds the kernel inclusion property V0,h ⊂ V0 we further have

‖u− uh‖1 ≤ inf
vh∈Vh,0

‖u− vh‖1.

Proof. Let vh ∈ V0,h be arbitrary. In a first step we use the triangle inequality to get

‖u− uh‖1 ≤ ‖u− vh‖1 + ‖vh − uh‖1.

Since we also have uh ∈ Vh,0 we get for the difference vh − uh by the coercivity of the
bilinear form a

ν‖vh − uh‖21 . a(vh − uh, vh − uh) = a(vh − u, vh − uh) + a(u− uh, vh − uh).
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For the second term on the right hand side we get by linearity

a(u− uh, vh − uh) = a(u, vh − uh)− a(uh, vh − uh)

= (f, vh − uh)− b(vh − uh, p)− (f, vh − uh)− b(vh − uh, ph)

= −b(vh − uh, p− ph).

Next, let qh ∈ Qh be arbitrary. Since vh − uh ∈ Vh,0 we can write

b(vh − uh, p− ph) = b(vh − uh, p− qh),

and thus in total

ν‖vh − uh‖21 ≤ a(vh − u, vh − uh)− b(vh − uh, p− qh)

. ν‖vh − u‖1‖vh − uh‖1 + ν‖vh − uh‖1
1

ν
‖p− qh‖0.

Dividing by ν‖vh − uh‖1 gives the first result. The second estimate follows with the same
steps and using b(vh − uh, p− ph) = 0 which follows from V0,h ⊂ V0.

Lemma 2. Let (u, p) ∈ V × Q be the exact solution of weak formulation of the Stokes
equation (2.7), and let (uh, ph) ∈ Vh × Qh be the discrete solution of (2.13). There holds
the best approximation result

inf
vh∈Vh,0

‖u− vh‖1 .

(
1 +

1

β2,h

)
inf

vh∈Vh
‖u− vh‖1.

Proof. We aim to follow similar steps as in the proof of the Brezzi theorem. To this end let
wh ∈ Vh be arbitrary. We solve the variational problem: Find rh ∈ Vh such that

b(rh, qh) = b(u− wh, qh) ∀qh ∈ Qh.

Note that this problem admits a (non unique!) solution due to the discrete LBB condition
(2.16) with the stability estimate

‖rh‖1 ≤ β−1
2,h‖b(u− wh, ·)‖Q∗h = β−1

2,h sup
qh∈Qh

b(u− wh, qh)

‖qh‖0
. β−1

2,h‖u− wh‖1.

Now let vh = rh + wh, and observe

b(vh, qh) = b(rh, qh) + b(wh, qh) = b(u, qh)− b(wh, qh) + b(wh, qh) = 0,
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which shows that vh ∈ Vh,0. Together with the estimate

‖u− vh‖1 ≤ ‖u− wh‖1 + ‖rh‖1 ≤ (1 + β−1
2,h)‖u− wh‖1,

we conclude the proof.

Lemma 3. Let (u, p) ∈ V × Q be the exact solution of weak formulation of the Stokes
equation (2.7), and let (uh, ph) ∈ Vh × Qh be the discrete solution of (2.13). There holds
the best approximation result

‖p− ph‖0 . (1 + β−1
2,h) inf

qh∈Qh
‖p− qh‖0 + νβ−1

2,h‖u− uh‖1.

Proof. Since Vh ⊂ V and Qh ⊂ Q, Galerkin orthogonality gives for all vh ∈ Vh the equation
b(vh, p− ph) = −a(u− uh, vh) and thus

b(vh, qh − ph) = −a(u− uh, vh)− b(vh, p− qh).

Using the discrete LBB condition (2.16) then provides the estimate

β2,h‖qh − ph‖0 ≤ sup
vh∈Vh

b(vh, qh − ph)

‖vh‖1

= sup
vh∈Vh

−a(u− uh, vh)− b(vh, p− qh)

‖vh‖1
. ν‖u− uh‖1 + ‖p− qh‖0.

By the triangle inequality we finally get

‖p− ph‖0 ≤ ‖p− qh‖0 + ‖qh − ph‖0
. (1 + β−1

2,h)‖p− qh‖0 + νβ−1
2,h‖u− uh‖1.

Theorem 15 (Best approximation). Let (u, p) ∈ V × Q be the exact solution of weak
formulation of the Stokes equation (2.7), and let (uh, ph) ∈ Vh×Qh be the discrete solution
of (2.13). There holds the best approximation result

‖u− uh‖1 + ν−1‖p− ph‖0 . inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0.

In order to study the convergence orders, we introduce appropriate interpolation oper-
ators. In the case of a conforming discretization, these are given by the standard nodal

49



2 The Stokes equations - Theory of mixed finite elements

Lagrange interpolation operator for the velocity space, and the L2-projection for the dis-
crete pressure space.

Theorem 16 (Interpolation operator). Assume that the discrete velocity space includes
polynomials of order kV , and the discrete pressure space polynomials of order kQ, i.e. we
have

PkV (Th,Rd) ∩ V ⊂ Vh and PkQ(Th,R) ∩Q ⊂ Qh

Assume that (u, p) ∈ H l(Ω,Rd) × Hr(Ω,R). There exists interpolation operators IV and
IQ such that

‖u− IV u‖1 . hs‖u‖s+1, and ‖p− IQp‖0 . ht‖p‖t,

where s = min(kV , l − 1) and t = min(kQ + 1, r).

Proof. Let IV be the standard Lagrange interpolation operator and let IQ be defined as
the L2-projection. The result follows by scaling arguments and the Bramble-Hilbert lemma,
see for example in [13].

In view of the best approximation results given by Theorem 15 and the interpolation
results, we see that there is a relation between the approximation order of the velocity
space kV and the order of the pressure space kQ. To see this, let r = l − 1, thus assume
the regularity (u, p) ∈ H l(Ω,Rd)×H l−1(Ω,R), then we have the convergence results

‖u− uh‖1 + ν−1‖p− ph‖0 . hs(‖u‖s+1 +
1

ν
‖p‖s),

where s = min(kV , kQ+1, l−1). This shows that, in an optimal setting, the pressure order
is one order smaller compared to the velocity error. In Table 2.1 we can see the expected
order of convergence for several Stokes discretizations. Note, that kV and kQ correspond
to the polynomial orders that are completely (locally on each element) included in the
corresponding approximation spaces.

2.5.6 Pressure robustness

This section deals with a property of Stokes discretizations called “pressure robustness”
which was first discussed in the work [31]. Before revealing the mechanisms in detail we
aim, to motivate pressure robustness in the following.

With respect to the error estimates and the best approximation results of Theorem 15 in
the previous section we see, that the velocity error depends on the pressure error with a
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element kV kQ conv. order

P2P0 2 0 O(h)
MINI 1 1 O(h)
BR 1 1 O(h)

stab. P1P1 1 1 O(h)
stab. P2P2 2 2 O(h2)
P2-bubble 2 1 O(h2)

Taylor-Hood 2 1 O(h2)

Table 2.1: Expected convergence order for various Stokes elements

scaling factor ν−1. This shows, that there might occur a blow up in the case of a vanishing
viscosity ν → 0. For a closer investigation we consider a simple example. Let Ω = (0, 1)2

and f = −div(νε(u)) +∇p with the exact solutions

u = curl(ψ), and p := x5 + y5 − 1

3
,

where the potential is given by ψ := x2(x − 1)2y2(y − 1)2. In Figure 2.3 we compare the
H1-semi norm error ‖∇u−∇uh‖0 for the standard non pressure robust Taylor-Hood (TH)
element of order k = 2 (for the velocity) and a pressure robust method abbreviated by
MCS (mass conserving mixed stress methods, see [17]). Note, that although the Taylor-
Hood element provides optimal orders of convergence, we see that the error shows the
unwanted scaling with respect to ν and can get arbitrary big.

10−8 10−6 10−4 10−2 100 102

10−2

100

102

104

ν

MCS
TH

Figure 2.3: The H1-seminorm error for the MCS method and a Taylor-Hood approximation
for varying viscosities ν.

To identify the problem, we consider now a more general setting with an arbitrary domain
Ω. We want to solve the Stokes problem (2.7) with homogeneous Dirichlet boundary
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conditions where the right hand side is given by a gradient field, i.e. we have f := ∇Ψ.
Using integration by parts we see that the exact solution is given by (0,Ψ) as

a(0, v) + b(v,Ψ) = −
∫

Ω
div(v)Ψ dx =

∫
Ω
v · ∇Ψ dx = (f, v) ∀v ∈ V,

and b(0, q) = 0 for all q ∈ Q. This shows that arbitrary gradient fields are totally balanced
by the pressure. The question that arises is, if this physical property is also given in
the discrete setting, thus if the discrete solution is given by (0,ΠQhΨ), where ΠQh is the
L2-projection onto the discrete pressure space. The problem can be easily seen if the
discrete system is tested with a discretely divergence free test function vh ∈ V0,h. Similarly
as before, integration by parts (now on the right side) gives

−
∫

Ω
div(vh)ΠQhΨ dx = −

∫
Ω

Ψ div(vh) dx .

Since vh is discretely divergence-free and ΠQhΨ ∈ Qh, the left hand side vanishes.
Nevertheless, the right hand side only vanishes if either Ψ ∈ Qh or if vh is also ex-
actly divergence-free, thus if the Stokes discretization fulfills the kernel inclusion property
V0,h ⊂ V0. Indeed, Lemma 1 and Lemma 2 show that one can then deduce a velocity error
estimate

‖u− uh‖1 ≤ inf
vh∈Vh

‖u− vh‖1.

that is independent of the best approximation of the pressure and independent of the
viscosity. In general, the author of [31] calls a finite element method for the Stokes problem
pressure robust if one can deduce a pressure independent velocity error estimate. Note,
that this then also corresponds to the structure preserving property mentioned above that
gradient fields (forces) are only balanced by the discrete pressure.

As shown above, pressure robustness is immediately given in the case when V0,h ⊂ V0.
A finite element method that yields the kernel inclusion is given by the Scott-Vogelius finite
element methods given by the choice

Vh := {vh ∈ H1
0 (Ω,R2) : vh|T ∈ P2(T,R2) ∀T ∈ Th},

Qh := {qh ∈ L2
0(Ω,R) : qh|T ∈ P1(T,R) ∀T ∈ Th}.

Since div(Vh) ⊂ Qh we have that∫
Ω

div(vh)qh dx = 0 ∀qh ∈ Qh
qh:=div(vh)⇒ div(vh) = 0,
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and thus discretely divergence-free functions are also exactly divergence-free. Unfor-
tunately is the Scott-Vogelius method not stable on arbitrary triangulations but only on
barycentric refined ones. This is derived by splitting each triangle (in two dimensions for
example) T ∈ Th into three sub triangles by connecting the barycenter with the vertices.
Note however, that this procedure might produce elements with a very bad aspect ratio if
boundary layers need to be approximated.

Unluckily, all other methods discussed so far, which are used in many (industrial) codes
for computational fluid dynamics are not pressure robust in general. To this end many
authors as in [24, 10, 30, 27, 26, 15, 41, 43] have studied a technique to “repair” pres-
sure robustness for standard methods by means of the introduction of a reconstruction
operator. For simplicity we now assume that Q is discretized by a discontinuous approx-
imation space. Note, that the continuous setting is also possible, see [29], but is much
more difficult. Now let kR := kQ + 1, where kQ is the polynomial order of the discrete
pressure space. We assume that there exists an operator R : Vh → Ṽh, with some
H(div)-conforming space Ṽh, that fulfills the properties

‖vh −Rvh‖T . h‖∇vh‖T ∀vh ∈ Vh,∀T ∈ Th (2.20)

(Rvh − vh, lh) = 0 ∀lh ∈ PkR−2(Th,Rd), (2.21)

div(Rvh) = 0 ∀vh ∈ Vh,0, (2.22)

By means of this operator we now define modified Stokes problem: Find (uh, ph) ∈ Vh×Qh
such that

a(uh, vh) + b(vh, ph) = (f,Rvh) ∀vh ∈ Vh (2.23)

b(uh, qh) = 0 ∀qh ∈ Qh. (2.24)

Here, we only introduced a consistency error by changing the right hand side. Note, that
by standard scaling argument and with (2.20) we have

‖Rvh‖0 ≤ ‖Rvh − vh‖0 + ‖vh‖0 . (
∑
T∈Th

h2‖∇vh‖2T )1/2 + ‖vh‖0 . ‖vh‖0,

and thus since ‖vh‖0 . ‖vh‖1 we have that (f,Rvh) is still a continuous functional (needed
for solveability). This allows us to derive the following pressure robust error estimate.

Theorem 17. Let (u, p) ∈ V × Q be the exact solution of weak formulation of the Stokes
equation (2.7), and let (uh, ph) ∈ Vh×Qh be the discrete solution of (2.23). Further assume
the regularity estimate ∆u ∈ L2(Ω). There holds the pressure robust best approximation
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result

‖u− uh‖1 . inf
vh∈Vh

‖u− vh‖1 + h‖(id−ΠkR−2
Th ) div(ε(u))‖0,

where ΠkR−2
Th = 0 if kR ≤ 1.

Proof. The proof follows with very similar steps as in Lemma 1. To this end let vh ∈ V0,h,
then the triangle inequality gives

‖u− uh‖1 ≤ ‖u− vh‖1 + ‖vh − uh‖1.

Now let wh := vh − uh then the coercivity of the bilinear form a induces

ν‖vh − uh‖21 = ν‖wh‖21 . a(vh − uh, vh − uh) = a(vh − u,wh) + a(u− uh, wh).

For the second term on the right hand side we get by linearity

a(u− uh, wh) = a(u,wh)− a(uh, wh)

= a(u,wh)− (f,Rwh)− b(vh − uh, ph).

Now, since wh ∈ V0,h we have b(vh − uh, ph) = 0, and by property (2.22) integration by
parts shows that

(f,Rwh) = (−ν∆u,Rwh) + (∇p,Rwh) = (−div(νε(u)),Rwh).

In total we have the estimate, again by integration by parts we get

a(u− uh, wh) = (−div(νε(u)), wh −Rwh) = ((id−ΠkR−2
Th )(−div(νε(u))), wh −Rwh),

where we used (2.21) in the last step. Note, that in the case where the reconstruction
operator fulfills no orthogonality properties (kR ≤ 1) we simply set ΠkR−2

Th = 0. Using the
approximation results (2.20) and the Cauchy-Schwarz inequality then further gives

a(u− uh, wh) . ‖(id−ΠkR−2
Th ) div(νε(u))‖0h‖wh‖1.

By the continuity of a and a division by ν we conclude

‖wh‖21 . ‖vh − u‖1‖wh‖1 + h‖(id−ΠkR−2
Th ) div(ε(u))‖0,

which proves the statement.

54



2 The Stokes equations - Theory of mixed finite elements

In the following we aim to define a reconstruction operator R that fulfills above proper-
ties. For the ease we only consider the case d = 2 but note that these findings can also
be extended to three dimensions. In the case of a conforming velocity approximation and
a discontinuous pressure approximation, the reconstruction operator is given by an inter-
polation operator into the H(div)-conforming Brezzi-Douglas-Marini space of appropriate
order, where (as a short reminder)

H(div,Ω) := {v ∈ L2(Ω,Rd) : div(v) ∈ L2(Ω)},

hence L2 functions whose weak divergence is also in L2(Ω). Note (see also Section
2.1) that the normal trace operator γn can be continuously extended onto H(div,Ω). This
motivates to approximate the H(div,Ω) space by a normal continuous polynomial space.
To this end we define the space

BDMk :={vh ∈ H(div,Ω) : vh|T ∈ Pk(T,Rd)}
={vh ∈ Pk(Th,Rd) : [[vh · n]] = 0 on all F ∈ Fh},

where the jump is defined as in (2.33a). Whereas the “one to one” mapping is the proper
mapping for standard H1-conforming finite element spaces (because it preserves continu-
ity) the correct mapping for the BDM-space is given by the Piola mapping. To this end let
φT : T̂ → T be the (affine) mapping from the reference to the physical element, and let
FT := φ′T denote its Jacobian. For a functions σ̂ ∈ L2(T̂ ) we define the Piola mapping by

P(σ̂)(x) :=
1

det(FT )
FT σ̂(x̂) with x = φT (x̂).

Lemma 4. Let σ̂ ∈ H(div, T̂ ) and set σ = P(σ̂). Then we have

div(σ)(x) =
1

det(FT )
div(σ̂)(x̂) with x = φT (x̂).

Proof. Follows immediately using the definition of the weak divergence and is left for the
reader as exercise.

The corresponding finite element for BDMk and every T ∈ Th is based (for example) on
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the following set of functionals

ΦF (v) :=

{∫
F
v · nrh ds : rh ∈ Pk(F ),∀F ⊂ ∂T

}
, (2.25)

ΦT
div(v) :=

{∫
T

div(v)sh dx : sh ∈ Pk−1(T )/R
}
, (2.26)

ΦT
curl(v) :=

{∫
T
v ·
(
x2

−x1

)
lh dx : lh ∈ Pk−2(T )

}
. (2.27)

Remark 8. The last group is named curl since the function (x2,−x1)Tlh all have a zero
divergence but a nonzero curl.

In the following we prove that these functionals are linearly independent. To this end we
first show that we can map them to the reference element T̂ .

Lemma 5. Let v̂ be such that v = P(v̂), then the functionals (2.25),(2.26) and (2.27) are
equivalent to

ΦF̂ (v) :=

{∫
F̂
v̂ · n̂r̂h ds : r̂h ∈ Pk(F̂ ),∀F̂ ⊂ ∂T̂

}
, (2.28)

ΦT̂
div(v) :=

{∫
T̂

div(v̂)ŝh dx̂ : ŝh ∈ Pk−1(T̂ )/R
}
, (2.29)

ΦT̂
curl(v) :=

{∫
T̂
v̂ ·
(
x̂2

−x̂1

)
l̂h dx̂ : l̂h ∈ Pk−2(T̂ )

}
. (2.30)

Proof. In the following we use a one to one mapping for the testing polynomials, i.e. we
have rh(x) = r̂h(x̂), sh(x) = ŝh(x̂) and lh(x) = l̂h(x̂). Now let F̂ be a facet of the reference
element T̂ such that F = φT (F̂ ). Following (2.4), the normal vector has the relation

n =
det(FT )

det(FFT )
F−T
T n̂,

where FFT is the Jacobian of φT |F̂ . This shows that for all rh we have∫
F
v · nrh ds =

∫
F̂

1

det(FT )
FT v̂ ·

det(FT )

det(FFT )
F−T
T n̂r̂h det(FFT ) dŝ =

∫
F̂
v̂ · n̂r̂h dŝ .
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Similarly we have by Lemma 4 for all sh∫
T

div(v)sh dx =

∫
T

1

det(FT )
div(v̂)sh dx

=

∫
T̂

1

det(FT )
div(v̂)ŝh det(FT ) dx̂ =

∫
T̂

div(v̂)ŝh dx̂ .

For the last group we first have to observe what mapping has to be chosen. To this end
we set m̂(x̂) := (x̂2,−x̂1)T l̂h(x̂) and define m(x) := F−T

T m̂(x̂) (this is called a covariant
transformation and is used for H(curl)-conforming functions). We will now show that this
mapping preserves the space. For the ease we now only consider the case where φT (x̂) =

x = FT x̂ (hence no translation is included). Together with the rotation matrix

R :=

(
0 1

−1 0

)
,

we see that

m(x) = F−T
T m̂(x̂) = F−T

T

(
x̂2

−x̂1

)
l̂h(x̂) = F−T

T R

(
x̂1

x̂2

)
l̂h(x̂) = F−T

T RF−1
T

(
x1

x2

)
l̂h(x̂).

SinceR is skew-symmetric, and F−T
T RF−1

T is also skew-symmetric, there exists a constant
c ∈ R such that F−T

T RF−1
T = cR, and thus since l̂h = lh is arbitrary we get with the

substitution l̂h → cl̂h

m(x) = F−T
T RF−1

T

(
x1

x2

)
l̂h(x̂) = R

(
x1

x2

)
lh(x) =

(
x2

−x1

)
lh(x).

In total this gives

∫
T
v ·
(
x2

−x1

)
lh dx =

∫
T̂

1

det(FT )
FT v̂ · F−T

T

(
x̂2

−x̂1

)
l̂h det(FT ) dx̂ =

∫
T̂
v̂ ·
(
x̂2

−x̂1

)
l̂h dx̂ .

Next we continue with the proof of the linearly independence of the first two groups.

Lemma 6. The functionals (2.28) and (2.29) are linearly independent.

Proof. Let r̂h ∈ Pk(∂T̂ ,R) and ŝh ∈ Pk−1(T̂ ,R)/R such that∫
∂T̂
r̂hv̂h · n̂ dŝ+

∫
T̂

div(v̂h)ŝh dx̂ = 0 ∀vh ∈ Pk(T̂ ,R2).
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We show that this induces r̂h = ŝh = 0. In a first step we take the choice

v̂h = (x̂2∂x̂1 ŝh, x̂2∂x̂2 ŝh)T(1− x̂1 − x̂2)

. This gives that v̂h · n̂ = 0 on the boundary, and so using integration by parts above
conditions gives ∫

T̂
[x̂1(∂x̂1 ŝh)2 + x̂2(∂x̂2 ŝh)2](1− x̂1 − x̂2) dx̂ = 0,

thus ∇ŝh = 0 (since all terms are positive) which gives sh = 0. On the face F̂0, see
Figure 2.1, we now set v̂h = (x̂1qh, 0)T or v̂h = (0, x̂2qh)T, where qh ∈ Pk−1(F̂0). This
shows since ∫

F̂0

r̂hx̂1qh dŝ =

∫
F̂0

r̂hx̂2qh dŝ =

∫
F̂0

r̂hqh dŝ = 0,

where we used that x̂1 + x̂2 = 1 on F̂0. In total this shows that r̂h vanishes on F̂0. In a
similar way we continue on F̂1 and F̂2, to conclude that r̂h = 0 on ∂T̂ .

We are now in the position of proving the linear independence, to this end we first further
introduce the space

Ĥk := {ûh ∈ P k(T̂ ,R2) : ûh · n̂ = 0 on ∂T̂ ,div(ûh) = 0}.

Lemma 7. The functionals (2.28), (2.29) and (2.30) are linearly independent on P k(T̂ ,R2).

Proof. For a given v̂h ∈ Pk(T̂ ,R2) assume that all functionals (2.28),(2.29) and (2.30)
vanish. In the following we show that this induces that v̂h = 0. A counting argument will
conclude the proof. Since v̂h ∈ Pk(T̂ ,R2) we first choose r̂h := v̂h · n̂. Then, the first group
shows that the normal trace of v̂h vanishes. Next, set ŝh := div(v̂h) − c where c ∈ R is
such that ŝh has a zero mean value. Then the second group and the Gaussian theorem
show

0 =

∫
T̂

div(v̂h)ŝh dx̂ =

∫
T̂

div(v̂h) div(v̂h) dx̂−c
∫
∂T̂
v̂h · n̂ dŝ =

∫
T̂

div(v̂h)2 dx̂ .

and so vh has a zero divergence. A counting argument shows that the first and second
group given by (2.28) and (2.29) result in 3(k + 1) + k(k+1)

2 − 1 constraints. This shows,
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that the dimension of Ĥk is given by

dim(Ĥk) = dim(P k(T̂ ,R2))− 3(k + 1)− k(k + 1)

2
+ 1 =

k(k − 1)

2
= dim(P k−2(T̂ ,R)).

This shows that

Ĥk = {ûh ∈ P k(T̂ ,R2) : ûh = curl(bT̂ ξ̂h), ξ̂h ∈ Pk−2(T̂ ,R)}

because every curl(bT̂ ξ̂h) is divergence free and has a zero normal trace. In total this
shows that we find a (fixed) function ξ̂h ∈ Pk−2(T ) such that v̂h = curl(bT̂

ˆ̂ξh). By choosing
l̂h = ξ̂h we have

0 =

∫
T̂

curl(bT̂ ξ̂h) ·
(
x̂2

−x̂1

)
ξ̂h dx̂ =

∫
T̂
∇(bT̂ ξ̂h) ·

(
x̂1

x̂2

)
ξ̂h dx̂

= −
∫
T̂
bT̂ ξ̂h div(

(
x̂1

x̂2

)
ξ̂h) dx̂

= −
∫
T̂
bT̂ ξ̂h(div(

(
x̂1

x̂2

)
)ξ̂h +

(
x̂1

x̂2

)
· ∇(ξ̂h)) dx̂

= −
∫
T̂

2bT̂ ξ̂
2
h dx̂−1

2

∫
T̂
bT̂∇(ξ̂2

h) ·
(
x̂1

x̂2

)
dx̂

= −
∫
T̂

2bT̂ ξ̂
2
h dx̂+

1

2

∫
T̂
ξ̂2
h div(

(
x̂1

x̂2

)
bT̂ ) dx̂

= −
∫
T̂
bT̂ ξ̂

2
h dx̂+

1

2

∫
T̂

(
x̂1

x̂2

)
· ∇(bT̂ )ξ̂2

h dx̂

On the reference element we have λ1 = x̂1, λ2 = x̂2 and λ0 = (1 − x̂1 − x̂2). Further, the
bubble is given by bT̂ = λ0λ1λ2. This gives

−bT̂ +
1

2

(
x̂1

x̂2

)
· ∇(bT̂ ) = −λ0λ1λ2 +

1

2
λ1∂1(λ0λ1λ2) +

1

2
λ2∂2(λ0λ1λ2)

= −λ0λ1λ2 +
1

2
λ1[λ0λ2 + ∂1(λ0λ2)] +

1

2
λ2[λ0λ1 + ∂2(λ0λ1)]

=
1

2
λ1∂1(λ0λ2) +

1

2
λ2∂2(λ0λ1) = −x̂1x̂2.
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In total we have (by a scaling with −1)∫
T̂
x̂1x̂2ξ̂

2
h dx̂ = 0,

and since x̂1, x̂2 ≥ 0 on T̂ this shows that ξ̂h = 0. We conclude the proof by a simple
counting argument.

Remark 9. Above proof shows that the third group can be changed to the following set

ΦT
curl(v) :=

{∫
T
v · curl(bT lh) dx : lh ∈ Pk−2(T )

}
.

Based on the functionals (2.25),(2.26) and (2.27) we define the reconstruction operator
R : Vh → BDMkR such that for an arbitrary vh ∈ Vh we have∫

F
(vh −Rvh) · nrh ds = 0 ∀rh ∈ PkR(F )∀F ⊂ ∂T,∫

T
div(vh −Rvh)sh dx = 0 ∀sh ∈ PkR−1(T )/R,∫

T
(v −Rvh) ·

(
x2

−x1

)
lh dx = 0 ∀lh ∈ PkR−2(T ),

then we have the following properties.

Lemma 8. The operator R : Vh → BDMkR fulfills the properties (2.20), (2.21) and (2.22).

Proof. Since the first group (2.25) shows that R preserves constants, the approximation
property (2.20) follows by standard scaling arguments and the Bramble Hilbert Lemma.
Now let vh ∈ V0h and qh ∈ Qh be arbitrary. On every element T ∈ Th we can split
qh = q0

h + q1
h with q1

h ∈ PkR−1(T ) \ R (since kR = kQ + 1) and q0
h ∈ R. Then, the first two

groups show that

0 =

∫
Ω

div(Rvh)qh dx =
∑
T∈Th

∫
T

div(Rvh)q0
h dx+

∫
T

div(Rvh)q1
h dx

=
∑
T∈Th

∫
∂T
Rvh · nq0

h ds+

∫
T

div(vh)q1
h dx

=
∑
T∈Th

∫
∂T
vh · nq0

h ds+

∫
T

div(vh)q1
h dx =

∫
Ω

div(vh)qh dx = 0.

Next note that the reconstruction operator preserves the homogeneous Dirichlet boundary
conditions in normal direction, i.e. R(vh) · n = 0 on ∂Ω which shows that div(Rvh) ∈ Qh.
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Choosing qh = div(Rvh) in above observations then gives div(Rvh) = 0, thus (2.22) holds.
For (2.21) first note that on each element we can split the polynomial space PkR−2(T,Rd)
into (see for example in [29])

PkR−2(T,Rd) = ∇PkR−1(T,R)⊕
(
x2

−x1

)
PkR−3(T,R),

and thus, the orthogonality follows by the definition of the functionals.

Example 12. We now consider the P2P0 example. To this end we set kR = 1, thus
the reconstruction operator maps into the space of linear H(div)-conforming polynomials.
Theorem 17 gives the best approximation result

‖u− uh‖1 . inf
vh∈Vh

‖u− vh‖1 + h‖ div(εu)‖0.

Although Theorem 16 shows that the infimum can be bounded by O(h2), the second term
limits the order and we get in total

‖u− uh‖1 . h‖u‖2.

Nevertheless, since the P2P0 element in general only shows a linear convergence, this is
the result we expected.

Example 13. Now we consider the P2-bubble element. Here we have kR = 2 and so
Theorem 17 gives the best approximation result

‖u− uh‖1 . inf
vh∈Vh

‖u− vh‖1 + h‖(id−Π0
Th) div(εu)‖0.

Using the approximation properties of the L2-projection we can bound the second term by

h‖(id−Π0
Th) div(εu)‖0 . h

∑
T∈Th

h2|u|23

1/2

,

and thus by Theorem 17 we have again in total (assuming enough regularity)

‖u− uh‖1 . h2‖u‖3.
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2.6 (Hybrid) Discontinuous Galerkin methods for the Stokes
equation

2.6.1 (Hybrid-) Discontinuous Galerkin methods for the Poisson equation

In this section we aim to derive a new non-conforming finite element method for the ap-
proximation of second order problems. For the ease, we only consider the scalar Poisson
equation for now and extend the results to the Stokes equations later. We aim to solve the
model problem: Find u such that

−∆u = f in Ω (2.31)

u = uD on ∂Ω. (2.32)

Since there are several different definitions of the jump and the mean value in the litera-
ture, we give a precise definition as we use it within these notes in the following. To this
end T1 and T2 be two elements with a common edge F , and let n1 and n2 be the two
outward pointing normal vectors. Further, for functions v ∈ H1(T1,R) ∪ H1(T2,R) and
τ ∈ H1(T1,Rd) ∪H1(T2,Rd) we set vi := v|Ti , τi := τ |Ti with i = 1, 2. Then we define

{{v}} :=
1

2
(v1 + v2), (2.33a)

[[v]]∗ := v1 − v2, (2.33b)

{{τ}}∗ :=
1

2
(τ1n1 − τ2n2), (2.33c)

[[τ · n]] := τ1n1 + τ2n2. (2.33d)

In the case where F is on the boundary ∂Ω we further set

{{v}} := v1,

[[v]]∗ := v1,

{{τ}}∗ := τ1n1,

[[τ · n]] := τ1n1.

Remark 10. Here the symbol ·∗ should highlight that there is a direction included in the
definition. However, as we will see later, changing the direction in both terms [[·]]∗ and {{·}}∗

will give us the same formulations later.

62



2 The Stokes equations - Theory of mixed finite elements

The Nitsche penalty method

Before we start with the derivation of the final method we first discuss two discretisation
techniques which are often called the Nitsche penalty method. The first method shows
how we can incorporate above the Dirichlet boundary conditions in a weak sense. To this
end we multiply the first equation of (2.31) with a test function that does not vanish at the
boundary. Integration by parts then gives∫

Ω
∇u · ∇v dx−

∫
∂Ω
∇u · nv ds =

∫
∂Ω
fv dx .

Using that u− uD = 0 on the boundary, we can add a consistent term to get∫
Ω
∇u · ∇v dx−

∫
∂Ω
∇u · nv ds−

∫
∂Ω
∇v · nuds =

∫
∂Ω
fv dx−

∫
∂Ω
∇v · nuD ds .

In order to obtain stability of the method (as proven below) we further add a stabilization
integral to define the bilinear form and linear form

aN1(u, v) =

∫
Ω
∇u · ∇v dx−

∫
∂Ω
∇u · nv ds−

∫
∂Ω
∇v · nuds+

αk2

h

∫
∂Ω
uv ds

fN1(v) =

∫
∂Ω
fv dx−

∫
∂Ω
∇v · nuD ds+

αk2

h

∫
∂Ω
uDv ds,

where α has to be chosen sufficiently large. Note, that above bilinear and linear forms are
not well defined for functions in H1 since, beside evaluating the traces at the boundary we
further need the values of the normal derivative which is only well defined if ∇u ∈ H(div).
Now let V N1

h := Pk(Th,R) ∩H1(Ω), then we define the problem: Find uh such that

aN1(uh, vh) = fN1(vh) ∀vh ∈ V N1
h .

For the analysis we now define the discrete H1-like Nitsche norm

‖uh‖2N1 := ‖∇uh‖2Ω +
k2

h
‖u‖2∂Ω.

Lemma 9. Assume that α > 0 is sufficiently large, then above bilinear form aN1(·, ·) is
coercive and continuous on V N1

h with respect to the norm ‖ · ‖N1.

Proof. The crucial ingredient for the stability analysis is the inverse inequality for polyno-
mials as given in Theorem 1. Using this estimate on each boundary element separately
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we get in total for the normal flux

‖∇uh · n‖2∂Ω ≤ c1‖∇uh‖2∂Ω .
k2

h
‖∇uh‖2Ω ∀uh ∈ V N1

h .

By the Cauchy-Schwarz inequality we then immediately derive continuity. Next, applying
Cauchy Schwarz and Young’s inequality for the integral including the normal derivative we
then further get with above inverse inequality

aN1(uh, uh) = ‖∇uh‖2Ω − 2

∫
∂Ω
∇uh · nuh ds+

αk2

h
‖uh‖2∂Ω

≥ ‖∇uh‖2Ω −
h

εk2
‖∇uh · n‖2∂Ω −

εk2

h
‖uh‖2∂Ω +

αk2

h
‖uh‖2∂Ω

≥ (1− c1

ε
)‖∇uh‖2Ω +

(α− ε)k2

h
‖uh‖2∂Ω.

Choosing α > c1 and ε < α, shows coercivity.

Note that we can not apply the standard theory to derive an apriori error estimate since
a is not continuous on H1 and so we can not derive Céa like best approximation results.
Nevertheless we could directly estimate the interpolation error ‖uh − Ihu‖N1.

Above technique provided a method that incorporates the boundary conditions in a weak
sense. In a similar way we can also derive a method that enforces weak continuity between
two domains. To this end assume that we split the domain into two parts, i.e. we have
Ω = Ω1 ∪ Ω2 with γ := Ω1 ∩ Ω2. Further we consider for simplicity the case where the (for
the ease homogeneous) Dirichlet boundary conditions are incorporated in a strong sense.
With u1 := u|Ω1 and u2 := u|Ω2 we have the problem

−∆u = f in Ω,

u1 = u2 on γ,

∇u1 · n1 = −∇u2 · n2 on γ,

u = 0 on ∂Ω,

where n1 and n2 are the outward pointing normal vectors on Ω1 and Ω2, respectively. Test-
ing the first line of above problem with a domain wise smooth test function that vanishes
on ∂Ω and applying integration by parts on each subdomain gives∫

Ω1

∇u1 · ∇v1 dx−
∫
γ
∇u1 · n1v1 ds+

∫
Ω2

∇u2 · ∇v2 dx−
∫
γ
∇u2 · n2v2 ds =

∫
Ω
fv,

where as before vi := v|Ωi with i = 1, 2. Extending the definition of the jump and the mean
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value in (2.33a) to the above case (i.e. set T1 = Ω1 and T2 = Ω2) we see that

−
∫
γ
∇u1 · n1v1 ds−

∫
γ
∇u2 · n2v2 ds = −

∫
γ
{{∇u}}∗[[v]]∗ + {{v}}[[∇u · n]] ds .

Thus, using the continuity of the normal flux [[∇u · n]] = 0 we get in total∫
Ω
∇u · ∇v dx−

∫
γ
{{∇u}}∗[[v]]∗ ds =

∫
Ω
fv.

Note, that if we change the numbering of the two subdomains, the definition of the mean
value {{·}}∗ and the jump [[·]]∗ changes in the same manner, thus in total we get the same
formulation, see also Remark 10. As before we add a consistent symmetric term (using
that the exact solution u is continuous) and a stability term to get the variational formula-
tion: Find uh ∈ V N2

h such that

aN2(uh, vh) = fN2(vh) ∀vh ∈ V N2
h ,

with the discrete space

V N2
h := {vh ∈ H1(Ω1,R) ∪H1(Ω2,R) : vh|T ∈ Pk(T,R), vh = 0 on ∂Ω}.

and the bilinear and linear form

aN2(uh, vh) :=

∫
Ω
∇uh · ∇vh dx−

∫
γ
{{∇uh}}∗[[vh]]∗ ds

−
∫
γ
{{∇vh}}∗[[uh]]∗ ds+

αk2

h

∫
γ

[[uh]]∗[[vh]]∗ ds,

fN2(vh) :=

∫
Ω
fvh dx .

Above method is now stable in the norm

‖uh‖2N2 := ‖∇uh‖2Ω1
+ ‖∇uh‖2Ω2

+
k2

h
‖[[uh]]∗‖2γ .

The stability proof is left as an exercise.

The discontinuous Galerkin method

The idea of the discontinuous Galerkin (DG) method is to use a Nitsche penalty technique
to enforce weak continuity on each facet of the triangulation separately and to further
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enforce Dirichlet boundary conditions in a weak sense. The final result is the symmetric
interior penalty discontinuous Galerkin (SIP-DG) bilinear form given by

aDG(u, v) :=
∑
T∈Th

∫
T
∇u · ∇v dx−

∑
F∈Fh

∫
F
{{∇u}}∗[[v]]∗ ds

−
∑
F∈Fh

∫
F
{{∇v}}∗[[u]]∗ ds+

∑
F∈Fh

αk2

h

∫
F

[[u]]∗[[v]]∗ ds .

and the right hand side by

fDG(v) :=

∫
Ω
fv dx−

∑
F∈Fext

h

∫
F
uD∇v · n+

αk2

h
uDv ds .

Using the space of piece wise polynomials Pk(Th,R) as approximation space we then
have the problem: Find uh ∈ Pk(Th,R) such that

aDG(uh, vh) = fDG(vh) ∀vh ∈ Pk(Th,R).

For the analysis we extend the ideas of the previous section and define the norm

‖uh‖2DG :=
∑
T∈Th

‖∇uh‖2T +
∑
F∈Fh

k2

h
‖[[uh]]∗‖2F .

Above norm can be interpreted as a discrete H1-like semi norm. Note, that in the lowest
order case, i.e. k = 0, the first sum vanishes. Then the norm of the jump divided by
the h can be interpreted as a difference quotient at each facet, hence we still measure
a derivative like quantity. Following similar steps as in the proof of Lemma 9 one can
show that the bilinear form aDG is again coercive and continuous (on Pk(Th,R)). The error
analysis needs a detailed investigation but will not be presented since it follows similar
ideas as the analysis presented in the next section.

Note that beside the SIP-DG method a lot of other DG schemes can be found in the
literature. An overview and a unified analysis can be found for example in [3].

There are several different motivations for using a DG method instead of a standard
continuous Galerkin (CG) approximation as discussed so far. Particularly, as we will see
later, DG methods are well suited for convection equations since they allow to incorporate
a very smart stabilization mechanism. Nevertheless, although DG methods earned a lot
of attention in computational fluid dynamics, they have a crucial disadvantage when we
consider standard second order elliptic problems. First of all, compared to a CG method
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the number of degrees of freedom is much higher (on the same mesh) and secondly, even
worse, the number of non-zero entries per row in the system matrix is much higher. In
Figure 2.4 we have plotted the sparsity pattern of two discretizations of problem (2.31)
where Ω = (0, 1)2. We have fixed the polynomial order k = 5 and compare the non-zero
entries of a standard H1-conforming approximation (left) and a SIP-DG method (right). As
mentioned above we observe that the inter element coupling, i.e. the number of non-zero
entries per row, is much worse for DG. In the next section we present a technique how this
increased coupling can be eliminated.

Figure 2.4: Sparsity patterns of a continuous Galerkin and a discontinuous Galerkin ap-
proximation of the Poisson problem with k = 5 on a regular triangulation with
8 elements on the domain Ω = (0, 1)2. Left we see the pattern of the system
matrix (CG) of size 121 × 121 of the CG approach and right the pattern of the
system matrix of size 168× 168 of the DG approach.

The hybrid discontinuous Galerkin method

The main idea of a hybridized discontinuous Galerkin approximation is to reduce the in-
ter element coupling of two adjacent elements by introducing additional unknowns at the
facets. Although this further increases the number of unknowns, we can apply a static
condensation technique to eliminate all local element unknowns. For this then only small
local element matrices need to be inverted (what can be done in parallel manner). The
final system that is solved then only includes the facet unknowns.

Let vh ∈ Vh with Vh := Pk(Th,R) be an element wise smooth test function. Assuming
enough regularity of the exact solution, testing (2.31) with vh and using integration by parts
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on all T ∈ Th gives

∑
T∈Th

∫
T
∇u · ∇vhdx−

∫
∂T
∇u · nvh ds = (f, vh).

Since the normal flux of the exact solution is continuous we have∑
T∈Th

∫
∂T
∇u · nv̂h ds = 0 ∀v̂h ∈ V̂h := {v̂h ∈ Pk(Fh,R) : v̂h = 0 on ∂Ω}.

Note that similarly as in the derivation of a CG methods, the facet test functions vanish on
the (Dirichlet-) boundary. Adding these two equations gives

∑
T∈Th

∫
T
∇u · ∇vhdx−

∫
∂T
∇u · n(vh − v̂h) ds = (f, vh).

Here the terms (vh − v̂h) read as a hybrid version of the jumps used in the derivation of
the DG method. Since the exact solution is continuous across element interfaces we may
again add a consistent symmetric and stabilizing term to define the bilinear form

aHDG((uh, ûh), (vh, v̂h)) :=
∑
T∈Th

∫
T
∇uh · ∇vhdx−

∫
∂T
∇uh · n(vh − v̂h) ds

−
∫
∂T
∇vh · n(uh − ûh) ds+

αk2

h

∫
∂T

(uh − ûh)(vh − v̂h) ds,

and the problem: Find (uh, ûh) ∈ Vh × V̂h such that

aHDG((uh, ûh), (vh, v̂h)) = (f, vh) ∀(vh, v̂h) ∈ Vh × V̂h. (2.34)

For the stability analysis we introduce the broken Sobolev spaces

Hs(Th,R) := {u ∈ L2(Ω,R) : u|T ∈ Hs(T,R) ∀T ∈ Th},

with the broken norm ‖u‖2Hs(Th) :=
∑
T∈Th

‖u‖2Hs(T ). Since the boundary integrals of aHDG

demand for a higher regularity we define the following continuous spaces

V reg := H1(Ω,R) ∩H2(Th,R),

V̂ reg := {û ∈ L2(Fh,R) with û = 0 on ∂Ω}.

In a first step we show that the HDG method is consistent.
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Lemma 10. Let u ∈ H1
0 (Ω,R) ∩ V reg be the weak solution of (2.31) (with uD = 0) and let

û := u|Fh . The HDG formulation (2.34) is consistent, i.e.

aHDG((u, û), (v, v̂h)) = (f, vh) ∀(vh, v̂h) ∈ Vh × V̂h.

Proof. By the continuity of the exact solution (u− û = 0 on all F ∈ Fh) we have

aHDG((u, û), (vh, v̂h)) =
∑
T∈Th

∫
T
∇u · ∇vhdx−

∫
∂T
∇u · n(vh − v̂h) ds .

Next, since we assumed that f ∈ L2(Ω) we also have f = div(∇u) ∈ L2(Ω) thus ∇u ∈
H(div,Ω). Since this implies that the gradient is normal continuous we have as v̂h is single
valued on the edges

∑
T∈Th

∫
∂T
∇u · nv̂h ds = 0.

We conclude by an integration by parts argument.

Next we define two norms

‖(uh, ûh)‖21,h :=
∑
T∈Th

‖∇uh‖2T +
k2

h
‖uh − ûh‖2∂T

‖(uh, ûh)‖21,h,∗ :=
∑
T∈Th

‖∇uh‖2T +
k2

h
‖uh − ûh‖2∂T +

h

k2
‖∇uh · n‖2∂T .

By means of these norms we can proof the following stability results.

Lemma 11. Let (vh, v̂h) ∈ Vh × V̂h. There holds the norm equivalence

‖(vh, v̂h)‖1,h ∼ ‖(vh, v̂h)‖1,h,∗.

Proof. Follows immediately by the inverse inequality1.

Since the inverse inequality only holds for discrete functions the second norm is needed
to prove continuity on V × V̂ .

Lemma 12. Let the stabilization parameter α > 0 be sufficiently large. The bilinear form
aHDG is continuous on (V reg × V̂ reg) + (Vh × V̂h), i.e. there holds

aHDG((u, û), (v, v̂)) . ‖(u, û)‖1,h,∗‖(v, v̂)‖1,h,∗ ∀(u, û), (v, v̂) ∈ (V reg × V̂ reg) + (Vh × V̂h).
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Proof. Follows by the Cauchy-Schwarz inequality and is left as exercise.

In contrast to the continuity result, the bilinear form is only coercive on the discrete
space.

Lemma 13. There holds the coercivity estimate

aHDG((uh, ûh), (uh, ûh)) & ‖(uh, ûh)‖21,h ∀(uh, ûh) ∈ Vh × V̂h. (2.35)

Proof. The proof follows with the Cauchy Schwarz, the Young and the inverse inequality for
polynomials similarly as in the stability proof of the Nitsche penalty methods, see Lemma
9. This immediately shows why coercivity only holds on the discrete space.

Theorem 18. There exists a unique solution of the HDG variational formulation (2.34).
Further, let u ∈ H1

0 (Ω,R) ∩ V reg be the exact solution of (2.31) (with uD = 0) and let
û := u|Fh . There holds the Cea-like best approximation result

‖(u− uh, û− ûh)‖1,h,∗ . inf
(vh,v̂h)∈Vh×V̂h

‖(u− vh, û− v̂h)‖1,h,∗.

Proof. Existence and uniqueness (of the discrete method) follows with the Lax-Milgram
theorem, Lemma 12 and Lemma 13. For the best approximation results let (vh, v̂h) ∈
Vh × V̂h be arbitrary, then the triangle inequality gives

‖(u− uh, û− ûh)‖1,h,∗ ≤ ‖(u− vh, û− v̂h)‖1,h,∗ + ‖(vh − uh, v̂h − ûh)‖1,h,∗.

Using the continuity of the exact solution Lemma 10 gives the Galerkin orthogonality

aHDG((u− uh, û− ûh), (vh, v̂h)) = 0 ∀(vh, v̂h) ∈ Vh × V̂h,

thus using Lemma 13 and Lemma 11 we have

‖(vh − uh, v̂h − ûh)‖21,h,∗ ∼ ‖(vh − uh, v̂h − ûh)‖21,h
. aHDG((vh − uh, v̂h − ûh), (vh − uh, v̂h − ûh))

= aHDG((vh − u, v̂h − û), (vh − u, v̂h − û))

. ‖(u− vh, û− v̂h)‖1,h,∗‖(vh − uh, v̂h − ûh)‖1,h,∗.

Lemma 14. Let u ∈ H1
0 (Ω,R) ∩ H l(Th,R) be the exact solution of (2.31) (with uD = 0)
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and let û := u|Fh , there holds the approximation result

‖(u− uh, û− ûh)‖1,h,∗ . hs‖u‖Hs+1(Th),

where s = min(k, l − 1).

Proof. Let IHDG : V reg × V̂ reg → Vh × V̂h be the element and facet wise L2-projection, i.e.
we have IHDG(u, û) = (Πk

Thu,Π
k
Fh û). Scaling arguments and the Bramble-Hilbert Lemma

show that there holds the approximation result (assuming enough regularity)

‖IHDG(u, û)− (u, û)‖1,h,∗ . hs|u|Hs+1(Th).

Then the result follows by Theorem 18.

We finish this section with a discussion regarding the computational costs and the spar-
sity pattern. As mentioned in the previous section, a main disadvantage of a DG ap-
proach is the increased coupling between neighbouring elements, see right picture of
Figure 2.4. Although an HDG further increases the number of unknowns, the sparsity pat-
tern, of the condensed system, is much smaller. To analyse this in detail we define for all
(uh, ûn), (vh, v̂h) ∈ Vh × V̂h the bilinear forms

aTT ((uh, 0), (vh, 0)) :=
∑
T∈Th

∫
T
∇uh · ∇vh dx+

∫
∂T
−∇uh · nvh −∇vh · nuh +

αk2

h
uhvh ds

aTF ((uh, 0), (0, v̂h)) :=
∑
T∈Th

∫
∂T
∇uh · nv̂h ds−αk

2

h

∫
∂T
uhv̂h ds

aFT ((0, ûh), (vh, 0)) :=
∑
T∈Th

∫
∂T
∇vh · nûh ds−αk

2

h

∫
∂T
vhûh ds

aFF ((0, ûh), (0, v̂h)) :=
∑
T∈Th

αk2

h

∫
∂T
v̂hûh ds .

Note that aHDG = aTT+aTF+aFT+aFF . Using again uh, ûh as symbols for the coefficients
of the solutions, the discrete problem (2.34) can be written as(

ATT AFT

ATF AFF

)(
uh

ûh

)
=

(
fh

0

)

where ATT , ATF , AFT , AFF are the corresponding system matrices of aTT , aTF , aFT , aFF ,
respectively and fh is the right hand side vector. Since ATT is block diagonal we can invert
it on each element separately (computational cheap!). This allows to condense the local
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variable uh = (ATT )−1(f −AFT ûh) and thus we get

(AFF −ATF (ATT )−1AFT )ûh = −ATF (ATT )−1f.

In Figure 2.5 we can see the sparsity pattern of the corresponding matrices. On the
left side we can clearly see the sub matrices ATT , ATF , AFT , AFF and the block struc-
ture of ATT . On the right side we see the much smaller condensed system of (AFF −
ATF (ATT )−1AFT ) that needs to be solved.

Remark 11. Note, that the local matrices are invertible since on each element T ∈ Th
the bilinear form aTT equals the Nietsche bilinear form aN1 for the case Ω = T . Hence,
inverting ATT corresponds to solving a Poisson problem on T with a weak incorporation
of homogeneous Dirichlet boundary conditions on ∂T .

Figure 2.5: Sparsity pattern of a hybridized discontinuous Galerkin approximation of the
Poisson problem with k = 5 on a regular triangulation with 8 elements on
the domain Ω = (0, 1)2. Left we see the pattern of the system matrix of size
264× 264 before static condensation and right the pattern of the system matrix
of size 96× 96 after static condensation.

2.6.2 Hybrid discontinuous Galerkin method for the Stokes equation

We now want to apply the HDG techniques from the previous section also to the Stokes
equations.
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A fully discontinuous approach

We define the discrete spaces as

Vh := Pk(Th,Rd),
V̂h := {v̂h ∈ Pk(Fh,Rd) : v̂h = 0 on ∂Ω},
Qh := Pk−1(Th,R) ∩Q.

On these spaces we define for all (uh, ûh), (vh, v̂h) ∈ Vh × V̂h and qh ∈ Qh the bilinear
forms

aHDG((uh, ûh), (vh, v̂h)) :=
∑
T∈Th

∫
T
νε(uh) : ε(vh)dx−

∫
∂T
νε(uh) · n(vh − v̂h) ds

−
∫
∂T
νε(vh) · n(uh − ûh) ds+

ναk2

h

∫
∂T

(uh − ûh)(vh − v̂h) ds,

bHDG((uh, ûh), qh) :=
∑
T∈Th

−
∫
T

div(uh)qh dx+

∫
∂T

(uh − ûh) · nqhds.

The definition of the incompressibility constraint follows the same ideas as in the derivation
of aHDG (see also the proof of the consistency Lemma below). Now we have the problem:
Find ((uh, ûh), ph) ∈ (Vh × V̂h)×Qh such that

aHDG((uh, ûh), (vh, v̂h)) + bHDG((vh, v̂h), ph) = (f, vh) ∀(vh, v̂h) ∈ Vh × V̂h (2.36a)

bHDG((uh, ûh), qh) = 0 ∀qh ∈ Qh. (2.36b)

Again there holds the following consistency results.

Lemma 15. Let u ∈ H1
0 (Ω,Rd) ∩H2(Th,Rd) with û := u|Fh and p ∈ Q ∩H1(Th,R) be the

exact solution of (2.7). There holds the consistency result

aHDG((u, û), (vh, v̂h)) + bHDG((vh, v̂h), p) = (f, vh) ∀(vh, v̂h) ∈ Vh × V̂h
bHDG((u, û), qh) = 0 ∀qh ∈ Qh.

Proof. Similarly as in the proof of Lemma 10 the regularity f ∈ L2(Ω,Rd) shows that f =

−div(νε(u) + pI) ∈ L2(Ω,Rd) which gives that the stress νε(u) + pI is normal continuous
and thus since v̂h is single valued we have

∑
T∈Th

∫
∂T

(−νε(u) + pI) · nv̂h ds = 0
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Using the continuity of the velocity solution and integration by parts locally on each element
then gives

aHDG((u, û), (vh, v̂h)) + bHDG((vh, v̂h), p) =
∑
T∈Th

∫
T
νε(u) · ε(vh)dx−

∫
∂T
νε(u) · nvh ds

+
∑
T∈Th

−
∫
T

div(vh)p dx+

∫
∂T
vh · npds

=
∑
T∈Th

∫
T
− div(νε(u) + pI)vhdx

=
∑
T∈Th

∫
T
f · vh dx .

Since all the techniques from the previous section can be adapted to prove continuity
and (kernel) coercivity of aHDG, we only discuss well posedness, i.e. continuity and the
inf-sup condition, for the incompressibility constraint bHDG. To this end we extend the
definition of the norms ‖ · ‖1,h and ‖ · ‖1,h,∗ onto the vector valued velocity spaces Vh × V̂h.
On the pressure space we use the L2-norm and further introduce the norm

‖q‖20,∗ =
∑
T∈Th

‖qh‖2T + h‖q‖2∂T .

Similarly as in the previous section, the norm ‖q‖0,∗ is needed to prove continuity of above
bilinear forms with respect to the spaces

V reg := H1(Ω,Rd) ∩H2(Th,Rd),
V̂ reg := {û ∈ L2(Fh,Rd) with û = 0 on ∂Ω},
Qreg := L2

0(Ω) ∩H1(Th,R),

where the pressure space includes a local H1 regularity such that the evaluation on ele-
ment boundaries is applicable. As for the velocity space, a scaling argument shows that
on the discrete pressure space there holds the norm equivalence

‖qh‖0 ∼ ‖qh‖0,∗ ∀qh ∈ Qh.

There holds the following stability result.
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Lemma 16. The bilinear form bHDG is continuous

bHDG((u, û), q) . ‖u, û‖1,h,∗‖q‖0,∗ ∀(uh, ûh) ∈ (V reg × V̂ reg) + (Vh × V̂h), ∀q ∈ Qreg +Qh.

and there holds the discrete LBB condition

sup
(uh,ûh)∈Vh×V̂h

bHDG((uh, ûh), qh)

‖uh, ûh‖1,h
& ‖qh‖0 ∀qh ∈ Qh.

Proof. The continuity result follows simply by the Cauchy Schwarz inequality. The LBB
proof follows with the technique of the mesh dependent norms and an adaption of the
results of Theorem 13 (where we need to exchange b by bHDG). For this note that the
Clément interpolant vh := ICv for all v ∈ H1

0 (Ω,Rd) is continuous and thus particularly also
an element of Vh. Thus by setting v̂h := vh|Fh we further have ‖vh, v̂h‖1,h = ‖vh‖1 and the
arguments of Theorem 13 also hold for bHDG. This shows that it is sufficient to prove the
modified LBB

sup
(uh,ûh)∈Vh×V̂h

bHDG((uh, ûh), qh)

‖uh, ûh‖1,h
& ‖qh‖0,h ∀qh ∈ Qh.

Now let qh ∈ Qh be arbitrary, then we define on each element uh := h2∇qh and with a
fixed normal vector on each facet further ûh := −h[[qh]]∗n. Using integration by parts then
gives

bHDG((uh, ûh), qh) =
∑
T∈Th

∫
T
uh · ∇qh dx+

∫
∂T
−ûh · nqhds

=
∑
T∈Th

∫
T
uh · ∇qh dx+

∑
F∈Fh

∫
F
−ûh · n[[qh]]∗ds ≥ ‖qh‖20,h,

Further we have

‖uh, ûh‖21,h =
∑
T∈Th

‖uh‖2T +
k2

h
‖uh − ûh‖2∂T =

∑
T∈Th

h4‖∇2qh‖2T +
k2

h
‖h2∇qh + h[[qh]]∗n‖2∂T .

By a scaling argument we have on each element h4‖∇2qh‖2T ≤ h2‖∇qh‖2T . Next we use
the triangle inequality (and that |n| = 1) to split the boundary term into two parts

∑
T∈Th

k2

h
‖h2∇qh + h[[qh]]∗n‖2∂T ≤

∑
T∈Th

k2

h
‖h2∇qh‖2∂T +

k2

h
‖h[[qh]]∗‖2∂T .
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By the inverse inequality, the first sum can be bounded again by the element terms since
‖h2∇qh‖2∂T . h−1‖h2∇qh‖2T . In total this gives

‖uh, ûh‖21,h .
∑
T∈Th

h2‖∇qh‖2T +
k2

h
‖h[[qh]]‖2∂T . ‖qh‖20,h,

where the constants depend on the polynomial order k. This proves that the modified LBB
condition holds true and thus we conclude the proof.

Theorem 19. There exists an unique solution (uh, ûh), ph ∈ (Vh × V̂h) × Qh of problem
(2.36). Let u ∈ H1

0 (Ω,R2) ∩H l(Th,Rd) with û := u|Fh and p ∈ L2
0(Ω) ∩H l−1(Th,R) be the

exact solution of (2.7), there holds the approximation result

‖(u− uh, û− ûh)‖1,h,∗ +
1

ν
‖p− ph‖0,∗ . hs(‖u‖Hs+1(Th) +

1

ν
‖p‖Hs(Th)).

where s = min(k, l − 1).

Proof. The existence follows by Theorem 10 and above stability results. The approxi-
mation results are derived with the same techniques as in Section 2.5.5, above stability
results and the consistency results of Lemma 15.

An H(div)-conforming approach

The definition of the bilinear form bHDG above shows that in order to guarantee consis-
tency we needed to add the additional terms

∑
T∈Th

∫
∂T

(uh − ûh) · nqh ds .

From a more mathematical point of view, the integrals on the boundary can be interpreted
as additional edge distributions that results from taking the weak divergence of a discon-
tinuous function uh. These findings motivate to define an HDG method that lies between
a fully H1-conforming and a fully discontinuous approach as above such that the weak
divergence (but not the full gradient) is well defined. To this end we define the following
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discrete spaces

Vh :=BDMk(Th,Ω) ∩H0(div,Ω)

={vh ∈ Pk(Th,Rd) : [[vh · n]] = 0 on all F ∈ Fh, vh · n = 0 on ∂Ω },
V̂h :={v̂h ∈ Pk(Fh,Rd) : v̂h|F · n = 0 ∀F ∈ Fh, v̂h = 0 on ∂Ω},
Qh :=Pk−1(Th,R) ∩Q.

Hence, in contrast to before the velocity space Vh now is normal continuous and by that the
weak divergence is well defined. Note, that the facet space V̂h only consists of polynomials
in tangential direction, thus for example in two dimensions we have on each F ∈ Fh and
v̂h ∈ V̂h

v̂h|F ∈ {tξh : ξh ∈ P k(F,R)},

where t is the tangential vector on F . Since the facet space is needed to incorporate H1

conformity in a weak sense, and normal continuity is already considered in Vh, it makes
sense that V̂h only lies in the tangential plane. Next, let γt(·) = ·t be the tangential projec-
tion on each facet, i.e. we have

γtφ = φt = φ− (φ · n)n,

for all smooth enough functions φ, then we define for all (uh, ûh), (vh, v̂h) ∈ Vh × V̂h and
qh ∈ Qh the bilinear forms

aHDG((uh, ûh), (vh, v̂h)) :=
∑
T∈Th

∫
T
νε(uh) : ε(vh)dx−

∫
∂T
νε(uh) · n(vh − v̂h)t ds

−
∫
∂T
νε(vh) · n(uh − ûh)t ds+

ναk2

h

∫
∂T

(uh − ûh)t(vh − v̂h)t ds,

bHDG(uh, qh) :=
∑
T∈Th

−
∫
T

div(uh)qh dx,

and the problem: Find ((uh, ûh), ph) ∈ (Vh × V̂h)×Qh such that

aHDG((uh, ûh), (vh, v̂h)) + bHDG(vh, ph) = (f, vh) ∀(vh, v̂h) ∈ Vh × V̂h (2.37a)

bHDG(uh, qh) = 0 ∀qh ∈ Qh. (2.37b)

Note that aHDG now only includes tangential jumps. Further, since Vh ⊂ H(div,Ω) we
have that bHDG(uh, qh) = −(div uh, qh). With the same techniques as before we can easily
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proof that (2.37) is a consistent method. By defining the discrete velocity norms now as

‖(u, û)‖21,h :=
∑
T∈Th

‖∇u‖2T +
k2

h
‖(u− û)t‖2∂T

and again use the L2-norm on the pressure space we further have the stability result

Lemma 17. The bilinear form bHDG is continuous on

bHDG(uh, qh) . (
∑
T∈Th

‖∇uh‖2T )1/2‖qh‖0 ∀(uh, qh) ∈ (V reg + Vh)×Q.

Further there holds the discrete LBB condition

sup
(uh,ûh)∈Vh×V̂h

bHDG(uh, qh)

‖uh, ûh‖1,h
& ‖qh‖0 ∀qh ∈ Qh.

Proof. The continuity follows with an element-wise Cauchy-Schwarz argument. For the
ease we will again provide the proof only in two dimensions. The other case follows with
the same steps. Let IBDM : V → Vh be the standard interpolation operator into the BDM
space as presented in 2.5.6, or as in [8], and let Πt

Fh : V̂ → V̂h be the facet wise tangential
L2-projection, i.e. we have∫

F
Πt
Fh v̂ · v̂h ds =

∫
F
v̂ · v̂h ds ∀F ∈ Fh,∀v̂h ∈ V̂h.

Then we define the Fortin operator IF := (IBDM,Π
t
Fh). By the functionals of the BDM

interpolation operator we already have (using a restriction on Vh) for all u ∈ V that

bHDG(IFu, qh) = bHDG(u, qh) ∀qh ∈ Qh.

It remains to prove stability ‖(IBDMu,Π
t
Fh û)‖1,h . ‖u‖1, where û = (u|F )t on all facets F ∈

Fh. On each element theH1- stability of the BDM interpolator already gives ‖∇IBDMu‖T .

‖∇u‖T thus using the triangle inequality we then have

‖(IBDMu,Π
t
Fh û)‖21,h .

∑
T∈Th

‖∇u‖2T +
k2

h
‖(IBDMu− u)t‖2∂T +

k2

h
‖(û−Πt

Fh û)t‖2∂T .

We start with the last term. In section 2.5.6 we have proven that the Piola mapping is the
er mapping for the normal component. Similarly, one shows that the covariant mapping
is the proper transformation for the tangential components, i.e. it preserves the tangential
component. For the ease of notation we use a tilde in this proof to denote quantities on
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the reference element T̃ (instead of T̂ ). Now let F ⊂ ∂T with F = φT (F̃ ) and the function
ũ such that u = F−T

T ũ (i.e. covariant mapped). Next note, that the tangential L2-projection
is interpolation equivalent, i.e. we have Πt

Fh û = Πt
Fh(u|F )t = F−T

T Πt
F̃

(ũ|F̃ )t̃, where Πt
F̃

is the tangential L2-projection on the reference facet F̃ and t̃ is the reference tangential
vector. This gives

‖(û−Πt
Fh û)t‖2∂T =

∫
F

(û−Πt
Fh û)2

t ds = h−1

∫
F̂

(ũ−Πt
F̃
ũ)2
t̃

dŝ = h−1‖ũ−Πt
F̃
ũ‖2

F̃
.

On the reference element we use the continuity of the L2-projection and the trace inequal-
ity to get

h−1‖ũ−Πt
F̃
ũ‖2

F̃
≤ h−1‖ũ‖2

F̃
≤ h−1(‖ũ‖2

T̃
+ ‖∇ũ‖2

T̃
) ≤ h−1‖u‖2T + h‖∇u‖2T ,

where we used a scaling argument (using the covariant mapping!) in the last step. In total
this gives

∑
T∈Th

k2

h
‖(û−Πt

Fh û)t‖2∂T .
∑
T∈Th

h−2‖u‖2T + ‖∇u‖2T .

With the same technique we also prove the other boundary term. To this end let w :=

(IBDMu− u), then as before we get the estimate

‖wt‖2∂T . h−2‖w‖2T + ‖∇w‖2T ,

hence by the approximation properties (and the continuity) of IBDM we then have ‖w‖T ≤
h‖∇u‖T and thus in total finally get

‖(IBDMu,Π
t
Fh û)‖21,h .

∑
T∈Th

‖∇u‖2T +
1

h2
‖u‖2T . ‖u‖21,

and we can conclude with Theorem 14.

Remark 12. Note that although above proof result does not provide robustness with re-
spect to the polynomial order k one can indeed show that the inf-sup constant does not
depend on k, see [28].

Remark 13. The continuity estimate can be trivially extended to (V reg × V̂ reg) + (Vh × V̂h)

using ‖ · ‖1,h on the right hand side. Further note that we do need increased regularity
qh ∈ Qreg.

The remarkable property of the H(div)-conforming HDG approximation is that the dis-
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crete velocity is also exactly divergence free, i.e. there holds a “non conforming” kernel
inclusion property. To see this simply choose the test function qh = div(uh), then we have
for the solution uh by the second line of (2.37) that

0 = bHDG(uh, qh) = −
∫

Ω
|div(uh)|2 dx⇒ div(uh) = 0.

This immediately shows that the method is also pressure robust and we can derive the
following error estimate.

Theorem 20. There exists a unique solution (uh, ûh), ph ∈ (Vh×V̂h)×Qh of problem (2.37).
Let u ∈ H1

0 (Ω,R2)∩H l(Th,Rd) with û := u|Fh and p ∈ L2
0∩H l−1(Th,R) be the exact solution

of (2.7), there holds the approximation result

‖(u− uh, û− ûh)‖1,h,∗ +
1

ν
‖p− ph‖0 . hs(‖u‖Hs+1(Th) +

1

ν
‖p‖Hs(Th)).

where s = min(k, l − 1). Further there holds the pressure robust error estimate

‖(u− uh, û− ûh)‖1,h,∗ . hs‖u‖Hs+1(Th).

Proof. The existence follows by Theorem 10 and above stability results. The approxi-
mation results are derived with the same techniques as in Section 2.5.5. The pressure
robustness follows with the error estimates as in section 2.5.6 and the exact divergence-
free property of the discrete solution uh.

2.6.3 The MCS method

PL: Will be updated
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3.1 Variational formulation of the stationary Navier-Stokes
equations

This chapter is dedicated to analyze and approximate the incompressible stationary Navier-
Stokes equations (1.13), thus including homogeneous Dirichlet boundary conditions we
aim to find a solution u, p such that

−ν div(ε(u)) + div(u⊗ u) +∇p = f in Ω,

div(u) = 0, in Ω,

u = 0, on ∂Ω.

In a first step we will derive the weak formulation of the above problem. Multiplying each
equation with an appropriate test function and integrating by parts we derive the weak
formulation: Find (u, p) ∈ V ×Q such that

a(u, v) + c(u, u, v) + b(v, p) = f(v) ∀v ∈ V, (3.1a)

b(u, q) = 0 ∀q ∈ Q, (3.1b)

where the bilinear forms a and b are defined as for the Stokes equations in (2.11), i.e.

a(u, v) =

∫
Ω
νε(u) : ε(v) dx, and b(u, q) = −

∫
Ω

div(u)q dx . (3.2)

The convective trilinear form c can be defined in several different ways. For this first note
that by the incompressibility constraint (3.3b) we can derive the following identities

div(u⊗ u) = (u · ∇)u+ div(u)u = (u · ∇)u = curl(u)× u+
1

2
∇(u2),
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thus c is given by one of the following forms

c∇(w, u, v) :=

∫
Ω

(w · ∇)u · v dx,

cdiv(w, u, v) :=

∫
Ω

((w · ∇)u+
1

2
(div(w)u)) · v dx,

ccurl(w, u, v) :=

∫
Ω

curl(u)× w · v dx

cskw(w, u, v) :=
1

2
(c∇(w, u, v)− c∇(w, v, u)).

For the definition of cdiv we added the factor 1/2 because this will give us skew symmetry,
see lemma below. Further note, that in the case of c(w, u, v) = ccurl(w, u, v) the pressure
in (3.1) is redefined to the so called Bernoulli pressure p→ p+ 1

2u
2. A crucial property for

the stability analysis is the property of skew symmetry of the convective trilinear form.

Lemma 18. Let w, u ∈ H1(Ω,Rd), then

ccurl(w, u, u) = cskw(w, u, u) = 0.

If either w · n = 0 or if u ∈ H1
0 (Ω,R2) we further have

cdiv(w, u, u) = 0.

If w is weakly divergence free and w · n = 0 on ∂Ω we further have

c∇(w, u, u) = 0.

Further, let u, v, w ∈ V , then there holds the continuity estimate

ci(w, u, v) . ‖w‖1‖u‖1‖v‖1 where i ∈ {∇, skw,div, curl}.

Proof. The results for ccurl and cskw follow from the definition. For the rest we use integra-
tion by parts and the assumptions stated in the lemma. The continuity follows by several
applications of the Cauchy-Schwarz inequality.

Remark 14. In the case of partial Dirichlet boundary conditions integration by parts shows
that

c∇(w, u, v) = −c(w, v, u) +

∫
∂Ω
w · n(u · v) ds,
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hence we then set

cskw(w, u, v) :=
1

2
(c∇(w, u, v)− c∇(w, v, u)) +

1

2

∫
∂Ω
w · n(u · v) ds .

With respect to the discretization of the instationary Navier-Stokes equations we are
particularly interested in the uniqueness and stability of the solution. If this is not the case,
small fluctuations in the input data would produce very different solutions. In such a case
the instationary Navier-Stokes equations should be considered. In order to derive the
stability results we will first consider the linearized Oseen equation. To this end let b ∈ V0

be a given fixed convection “wind”, then we study the problem:Find (u, p) ∈ V × Q such
that

a(u, v) + c∇(b, u, v) + (ξu, v) + b(v, p) = f(v) ∀v ∈ V, (3.3a)

b(u, q) = g(q) ∀q ∈ Q. (3.3b)

The additional reaction bilinear form (ξu, v) is included in order to make the analysis more
general. Further, with respect to the instationary Navier-Stokes equations this term might
correspond to the time derivative. In the following we will assume that ξ ∈ L∞(Ω) with
ξ(x) ≥ 0.

Lemma 19. There exists a unique solution (u, p) ∈ V ×Q of (3.3) such that

ν‖∇u‖20 + ‖
√
ξu‖20 .

1

ν
‖f‖V ∗ and ‖p‖0 . ‖f‖V ∗ + cp(

√
ν‖∇u‖0 + ‖

√
ξu‖0),

with constant cp = (
√
ν + ‖b‖∞√

ν
+ ‖ξ‖1/2∞ ).

Proof. We aim to apply Brezzi’s Theorem 10. First note, that lemma (18) and the Cauchy
Schwarz inequality shows that the bilinear form

ã(u, v) = a(u, v) + c∇(b, u, v) + (ξu, v)

is continuous. For the proof it remains to show that ã is coercive on the kernel V0. Here,
the crucial property is the skew symmetry of the convection bilinear form, i.e. we have
c∇(b, u, u) = 0 for all u ∈ V . This immediately gives

ã(u, u) =

∫
Ω
νε(u) : ε(v) dx+

∫
Ω
ξu · v dx & ‖u‖1,

from which we conclude the existence. The stability results follow again by the Cauchy-
Schwarz inequality and the positivity of ξ. A detailed proof is given in [25].
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Using the results of the linearized equations we are now in the position of analyzing the
non linear problem. To this end we define the constant

N0 := sup
w,u,v∈V0

c∇(w, u, v)

‖w‖V ‖u‖V ‖v‖V
,

Theorem 21. Assume that there holds the estimate

N0‖f‖V ∗
ν2ck

< 1,

(where ck is the Korn inequality) then there exists a unique solution (u, p) ∈ V × Q of
problem (3.1) with

‖∇u‖0 ≤
1

ν
‖f‖V ∗ and ‖p‖0 . ‖f‖V ∗ +

1

ν2
‖f‖2V ∗ .

Proof. For the existence of at least one solution of (3.1) we refer to [25, 16] since the
proof is very technical and out of scope of this lecture. Nevertheless we prove uniqueness
since it includes above assumption which might will also be essential for the discretization.
To this end let S : V0 → V0 be the solution operator that maps an arbitrary wind b ∈ V0

to the solution of the Oseen problem (3.3) uo. In the following we will show that S is a
countinuous contradiction on V0. The boundedness follows by

‖S‖V ∗0 = sup
b∈V0,‖b||V =1

‖S(b)‖V = sup
b∈V0,‖b‖V =1

‖uo‖V ≤
1

ν
‖f‖V ∗ ,

where we used the stability estimate of Lemma 19. Now let b1, b2 ∈ V0 be arbitrary and
let uo1 and uo2 be the corresponding solutions of (3.3) with the wind b1 and b2, respec-
tively. Subtracting the equations (3.3) (with the same right hand side f ) and testing with a
divergence free test function gives

0 = a(uo1 − uo2, v) + c∇(b1 − b2, uo1, v) + c∇(b2, uo1 − uo2, v) ∀v ∈ V0.
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Now choose v = uo1 − uo2 to get (using again skew symmetry of c∇)

‖uo1 − uo2‖21 ≤
1

νck
c∇(b1 − b2, uo1, uo1 − uo2)

≤ N0

νck
‖b1 − b2‖1‖uo1‖1‖uo1 − uo2‖1

≤ N0‖f‖V ∗
ckν2

‖b1 − b2‖1‖uo1 − uo2‖1

< ‖b1 − b2‖1‖uo1 − uo2‖V .

Hence S is a contradiction and we conclude that there exists a unique solution of u ∈ V0.
The uniqueness of the pressure is now a consequence of the fact that V and Q satisfy the
LBB-condition.

Before we introduce finite element methods for the approximation of (3.1), we first dis-
cuss the approximation of a simplified set of equations in the next section.

3.2 Approximation of scalar convection-diffusion equations

In the previous section we saw that the existence proof of the stationary Navier-Stokes
equations is based on the stability results of the linearized Oseen equations (3.3), which
also motivates to first study approximation schemes for the latter one. Nevertheless, since
these equations now include a transport term, we will first discuss the approximation of
the much simpler scalar convection-diffusion equation to analyze the occurring difficulties
resulting from the additional terms.

Let b ∈ H(div,Ω) ∩ L∞(Ω,Rd) be a divergence-free wind div(b) = 0, then we consider
the problem

−ν∆u+ b · ∇u = f on Ω,

u = uD on ΓD,

∇u · n = gN on ΓN ,

with a positive diffusion parameter ν > 0. For the ease we used the same symbols as for
the Navier-Stokes equations. The solution of the above equation will mainly be character-
ized by the wind b. According to the direction b we will now further split the boundary into
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the following three parts

Γin := {x ∈ ∂Ω : b · n < 0},
Γout := {x ∈ ∂Ω : b · n > 0},

Γ0 := {x ∈ ∂Ω : b · n = 0},

representing the inflow, outflow and the so called characteristic boundary part. The addi-
tional convection term drastically changes the behaviour of the solution compared to the
standard Poisson equation. Here, the crucial parameter will be the relation between the
diffusive and the convective terms ν/|b| (considering a domain with diameter O(1)). In the
limiting case ν → 0 (without changing the wind b) the second order differential operator
vanishes, hence we are not allowed to consider any boundary conditions anymore. The
arising problem can be seen by considering the one dimensional problem −νu′′ + u′ = 1

on Ω = (0, 1) with homogeneous Dirichlet boundary conditions on ∂Ω = {0, 1}. The exact
solution is given by

u(x) = x(1− ex−1
ν )

If the diffusive parameter vanishes the exact solution is given by u = x. However, consid-
ering a small value ν � 1, the homogeneous Dirichlet boundary conditions (in particular
on the right side at the point 1) lead to a very thin boundary layer of size ν. Similarly one
may also produce such sharp gradients inside of the domain if we consider for example
a discontinuous boundary condition on the inflow boundary Γin which is transported by
the wind into the inside. Although the tools developed from the functional analysis will
prove solvability of the above problem in the continuous setting, these sharp gradients will
play a crucial role when we aim to introduce a finite element approximation. The tools
and techniques that we develop in this section can then also be applied the stationary and
the instationary Navier-Stokes equations and will be particularly essential if we consider
convection dominant flows, i.e. a high Reynolds number where turbulent flows will appear.

For the ease we only consider the case of homogeneous Dirichlet boundary conditions
in the following. The general case follows as usual with a homogenization technique.
Following the standard approach we can define the weak formulation: Find u ∈ V :=

H1
0,ΓD

(Ω,R)such that

a(u, v) + c(u, v) = f(v) ∀v ∈ V (3.4)
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with

a(u, v) :=

∫
Ω
ν∇u · ∇v dx, c(u, v) :=

∫
Ω

(b · ∇u)v dx, f(v) :=

∫
Ω
fv dx+

∫
ΓN

gv ds .

There holds the following stability result.

Theorem 22. Assume that |ΓD| > 0 and that b · n ≥ 0 on ΓN . There exists a unique
solution of (3.4) and there holds the coercivity and continuity estimate

a(u, v) + c(u, v) ≤ αb‖∇u‖0‖∇v‖0 and a(u, u) + c(u, v) ≥ ν‖∇u‖20,

where αb = ν + ‖b‖∞cF and cF is the Friedrichs constant.

Proof. The continuity follows simply by using the Cauchy-Schwarz inequality and using
that b ∈ L∞ and Friedrichs inequality Theorem to bound ‖v‖0 ≤ cF ‖∇v‖0. For the coer-
civity, integration by parts and div(b) = 0 shows

c(u, v) =

∫
Ω

(b · ∇u)v dx =

∫
Ω
−(b · ∇v)u− (v div(b))udx+

∫
ΓN

uvb · n ds

= −c(v, u) +

∫
ΓN

uvb · n ds,

hence c is nearly skew symmetric. Using the assumption b · n ≥ 0 on ΓN we then have

a(u, u) + c(u, u) = a(u, u) +
1

2

∫
ΓN

u2b · n ds ≥ ν‖∇u‖20,

We conclude with the application of the Lax-Milgram theorem.

Remark 15. In the above prove of the coercivity the boundary term on ΓN is quadratic
and has a positive sign which allows an estimate from below. A similar observation can be
made for the skew symmetric trilinear form as discussed in remark 14. This allows to de-
rive similar stability estimates for approximations of the Navier-Stokes or Oseen equations
if the velocity (or wind) points in the proper direction (u ·n ≥ 0 on ΓN → outflow boundary).

Now let Vh ⊂ V be a standard conforming discrete finite element space, then we have
the problem: Find uh ∈ Vhsuch that

a(uh, vh) + c(uh, vh) = f(vh) ∀vh ∈ Vh. (3.5)

Since we consider a conforming discretization, existence and uniqueness is inherited from
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the continuous case. Applying Céa’s lemma then gives the best approximation result

‖∇(u− uh)‖0 ≤ (1 + P) inf
vh∈Vh

‖∇(u− vh)‖0.

where we used that the Friedrichs constant scales like the size of the domain L and we
defined the Péclet number by

P :=
‖b‖∞L
ν

.

This shows, that best approximation with respect to the H1-semi norm (or also the ν-
weighted seminorm) might deteriorate when the Péclet number increases. Note, that we
can still directly bound the error (using Galerkin orthogonality) by

ν‖∇(u− uh)‖20 ≤ a(u− uh, u− uh) + c(u− uh, u− uh)

= a(u− uh, u− Ihu) + c(u− uh, u− Ihu)

≤ ν‖∇(u− uh)‖0‖∇(u− Ihu)‖0 + ‖b‖∞‖∇(u− uh)‖0‖u− Ihu‖0,

where Ih is a standard conforming interpolation operator into Vh. Dividing by the ν-scaled
error and using the approximation properties of Ih in the L2 norm (assuming enough
regularity of the solution) we get

‖∇(u− uh)‖0 ≤ ‖∇(u− Ihu)‖0 +
‖b‖∞
ν
‖u− Ihu‖0 . (1 +

‖b‖∞h
ν

)h‖u‖H2 .

Hence, we still get optimal convergence rates if the so called mesh-Péclet number Ph :=
‖b‖∞h
ν is smaller then 1. Considering the example from the beginning this shows that

the mesh size h has to be so small such that the boundary layer of size ν is resolved
appropriately. Since a global refinement might result in a high number of unknowns a local
mesh refinement would be appreciable. Nevertheless, since in general one is not aware
of the location of sharp gradients this approach is not useful in practice. In the following
we aim to introduce stabilizing techniques that can be used for a more general approach
and is based on the introduction of some artificial diffusion.

3.2.1 A streamline upwind Petrov Galerkin (SUPG) formulation

Several different approaches can be found in the literature to motivate the SUPG or as it
is sometimes also called streamline diffusion method. As the latter name states, the main
idea here is to add some diffusion in the direction of the stream lines of corresponding to
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the wind b.
The first idea was presented by Brezzi and follows the approach of augmenting the

lowest order linear finite element space such that the solution in the interior of elements is
resolved more accurately. The resulting finite element space equals the scalar version of
the velocity space of the MINI finite element method introduced for the approximation of
the Stokes equations. Following exactly the same ideas as discussed in section 2.5.4 one
can eliminate the local bubbles to define a stabilized method given by: Find uh ∈ Vh :=

P1(Th) ∩ V such that

a(uh, vh) + c(uh, vh) + d(uh, vh) = f(vh) +
∑
T∈Th

α

∫
T
f(b · ∇vh) ∀vh ∈ Vh,

where

d(uh, vh) =
∑
T∈Th

α

∫
T

(b · ∇uh)(b · ∇vh) dx,

and α is a stabilization parameter that needs to be chosen appropriately. An extensive
study on this can be found in the literature and one may choose it on each element as

α|T =

 h
‖b‖∞,T Ph ≥ 1

0 else,

where ‖b‖∞,T is the L∞-norm on T . Above bilinear form d reads as a diffusion in the direc-
tion of b and hence motivates the name streamline diffusion. To generalize this method to
high order cases we discuss the more traditional derivation in terms of a Petrov-Galerkin
formulation. To this end consider a differential operator L and the problem statement
Lu = f . We aim to find a solution in the trial space V such that (with an appropriate inner
product) there holds

(Lu, v) = f(v) v ∈ Ṽ ,

where Ṽ is some (different!) test space. For the SUPG method we now use Vh as trial
space and set

Ṽh := {vh + αb · ∇vh : vh ∈ Vh}.
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The final method then reads as: Find uh ∈ Vh such that

a(uh, vh) + c(uh, vh)−
∑
T∈Th

α

∫
T
rh(uh)(b · ∇vh) dx = f(vh) ∀vh ∈ Vh,

with the discrete residual defined on each element separately by

rh(uh) := f + ν∆uh − b∇uh.

In the above derivation we replaced the integral on the domain Ω by the sum over all
integrals on the elements T ∈ Th because L includes the second order differential operator
which is not well defined for functions in Vh. In the case of a linear approximation the
second order operator vanishes resulting in above formulation. For the high order case
we need to include the diffusive part from the residual such that the resulting method is
still consistent.

For the analysis we now choose the norm

‖uh‖2SD := ν‖∇uh‖20 + ‖αb∇uh‖2,

which naturally includes a scaling with respect to the Péclet number such that dominant
diffusive or convective areas are measured appropriately. By defining the bilinear form

aSD(uh, vh) := a(uh, vh) + c(uh, vh) +
∑
T∈Th

α

∫
T

(−ν∆uh + b∇uh)(b · ∇vh) dx

we have the following stability result.

Lemma 20. The bilinear form aSD is elliptic with constant cSD = O(1), i.e. there holds

aSD(uh, uh) ≥ cSD‖uh‖2SD.

Proof. Follows with above definition of α, Young’s inequality, and a scaling argument and
the definition of the mesh Péclet number.

The crucial point of this stability result is that the coercivity constant does not degrade in
the limiting case ν → 0 and thus the method is also stable in the convection dominant case.
Note however, that for the high order case the resulting method is not symmetric. Further
note that in the instationary case the (local) residual also includes the time derivative
(which makes the method not as practicable).
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3.2.2 A Galerkin least-square stabilization

The least-square ansatz follows a very similar approach as the SUPG method, however in
contrast to a Petrov-Galerkin approach one aims to stabilize the (original) Galerkin method
my means of a local element by element weighted least squares approach. The resulting
method then is simply given by: Find uh ∈ Vh such that

a(uh, vh) + c(uh, vh) +
∑
T∈Th

α

∫
T
rh(uh)(ν∆vh − b · ∇vh) dx = f(vh) ∀vh ∈ Vh.

From a practical point of view there is no big advantage of the least squares method com-
pared to the SUPG method. Note however, that the additional term ν∆vh in the stabilizing
bilinear form results in a symmetric formulation. For the stability analysis we choose the
same norm as before to proof coercivity on the discrete level with a constant that is again
robust for high Péclet numbers.

3.2.3 A discontinuous Galerkin method with upwinding

Although the least squares and the SUPG method have found a lot of attention in the
literature (also due to the historical development) their main disadvantage is the rather
difficult choice of the stabilization parameter which gets in particular more tricky in the case
of the Navier-Stokes setting since then the wind equals the (maybe instationary) velocity.
Further, the continuous finite element setting only allows to consider a local element wise
stabilization neglecting any dominant transportation across interfaces.

A very elegant way of stabilization can be established if we consider a discontinuous
approach. Note that DG methods actually have their origin in the work [40] where the
authors considered a hyperbolic equation rather than an elliptic problem as discussed in
section 2.6. To understand the stabilization technique in detail we first only consider the
pure transport equation. To this end we assume that ΓD = Γin, then we have the problem:
Find u ∈ V such that ∫

Ω
b · ∇uv dx =

∫
Ω
fvh dx ∀v ∈ V. (3.6)

For the derivation of the DG method let v ∈ H1(Th,R) be an element-wise smooth function,
then we can apply locally integration by parts to get

∑
T∈Th

−
∫
T
ub · ∇v dx+

∫
∂T
bnuvds =

∫
Ω
fv ds ∀v ∈ H1(Th),
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where we used that div(b) = 0 and the abbreviation bn := b · n. Since the exact solution
is continuous across element interfaces we can choose the trace of u on each facet F as
the corresponding trace of one of the two adjacent elements. Whereas this choice equals
for the exact solution, it might be different if we consider a discontinuous trial space later
for the finite element method. We now aim to follow a similar approach as in the previous
sections, hence incorporate the direction of the wind into our method. For this we define
on each facet the so called upwind value by

uup(x) := lim
ξ→0+

u(x− ξb) ∀x ∈ F.

Now let T ∈ Th be arbitrary with the normal vector n = n1 and denote by T ′ all the
neighbouring elements. The upwind value on ∂T equals the choice

uup =

u|T for bn > 0 outflow boundary

u|T ′ for bn ≤ 0 inflow boundary
.

The upwind value is defined such that the approximate (discontinuous!) solution on in-
terfaces is transport in the direction of b. In the case where F ⊂ ∂T lies on the inflow
boundary Γin we use the same idea and replace the upwind value by the Dirichlet value
uD. By this can rewrite above formulation as

∑
T∈Th

−
∫
T
ub · ∇v dx+

∫
∂T\Γin

bnu
upvds =

∫
Ω
fv ds−

∑
F∈Fh∩Γin

∫
F
bnuDv ds (3.7)

Now let Vh := Pk(Th,R), then the DG method reads as: Find uh ∈ Vh such that

cDG(uh, vh) = fDG(vh) ∀vh, (3.8)

where we reformulated above equation to define the bilinear and linear form

cDG(uh, vh) :=
∑
T∈Th

−
∫
T
uhb · ∇vh dx+

∫
∂Tout

bnuh[[vh]]∗ds (3.9)

fDG(vh) :=

∫
Ω
fvh dx−

∑
F∈Fh∩Γin

∫
F
bnuDvh ds .

In above definition we used the splitting

∂T = ∂Tin ∪ ∂Tout with ∂Tin := {x ∈ ∂T : bn ≤ 0}, Tout := ∂T \ ∂Tin,
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and that for x ∈ ∂Tout we have

bnu
up
h vh|T + bn′u

up
h vh|T ′ = bnu

up
h vh|T − bnu

up
h vh|T ′ = bnu

up
h [[vh]]∗ = bnuh|T [[vh]]∗,

where T ′ with normal vector n′ is again a neighbouring element of an arbitrary T ∈ Th.
Note that we can reformulate above bilinear form in various way. For this we first use again
integration by parts for (3.7) to get

cDG(uh, vh) =
∑
T∈Th

∫
T
b · ∇uhvh dx−

∫
∂T
bnuv ds+

∫
∂T\Γin

bnu
up
h vhds

=
∑
T∈Th

∫
T
b · ∇uhvh dx−

∫
∂Tin

bn[[uh]]∗vhds (3.10)

Lemma 21. The upwind formulation (3.8) is consistent. Thus, let u ∈ H1(Ω) be the exact
solution of (3.6), then

cDG(u, vh) = (f, vh) ∀vh ∈ Vh.

Proof. Follows by integration by parts and that uup = u for the exact (continuous) solution.

Lemma 22. There holds

cDG(uh, uh) =
1

2
|uh|2DG,2 :=

1

2

∑
F∈Fh

∫
F
|bn|([[uh]]∗)2 ds .

Proof. We aim to combine formulations (3.9) and (3.10) similarly as in the definition of
the skew symmetric convection bilinear form for the Navier-Stokes equations. For this let
F = T1∩T2 be an arbitrary internal facet and assume that b·n1 > 0 thus F ∈ (∂T1)out. With
the notation uhi = (uh)|Ti and vhi = (vh)|Ti for i ∈ 1, 2 we get from (3.9) the contribution
bn1uh1(vh1 − vh2). Similarly we have from (3.10) the contribution bn2(uh1 − uh2)vh2. Since
0 < b · n1 = −b · n2 we get for the average and uh = vh

1

2
bn1(uh1(vh1 − vh2)− (uh1 − uh2)vh2) =

1

2
|bn1 |[[uh]]∗[[uh]]∗.
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Using this relation on each internal facet, the average of (3.9) and (3.10) gives

cDG(uh, uh) =
1

2

∑
T∈Th

∫
T

(b · ∇uhuh − uhb · ∇uh) dx (3.11)

+
1

2

∑
F∈F int

h

∫
F
|bn|([[uh]]∗)2 ds+

1

2

∫
∂Ω
|bn|u2

h ds .

For the last integral we used that ob Γin we have b · n ≤ 0 and on Γout we have b · n > 0

and thus

1

2

∑
T∈Th

(∫
∂Tout∩Γout

bnuh[[uh]]∗ds−
∫
∂Tin∩Γin

bn[[uh]]∗uhds

)

=
1

2

(∫
Γout

bnuhuhds−
∫

Γin

bnuhuhds

)
=

1

2

∫
∂Ω
|bn|uhuh ds .

Above lemma shows, that in contrast to the SUPG stabilization, the upwinding does not
lead to a coercive bilinear form because the |uh|DG,1 is only a semi norm on Vh. To this
end we define the following norm

‖uh‖2DG := |uh|2DG,1 + |uh|2DG,2,

with

|uh|2DG,1 :=
∑
T∈Th

h

|b|∞,T
‖b · ∇uh‖2T .

Theorem 23. The bilinear form cDG is continuous with respect to ‖uh‖DG, and there holds
the discrete inf-sup stability

inf
uh∈Vh

sup
vh∈Vh

cDG(uh, vh)

‖uh‖DG‖vh‖DG
≥ βDG,

with a constant βDG > 0 that only depends on the shape of the elements and the polyno-
mial order k.

Proof. For simplicity we assume that b is piece-wise constant. A more general case can
be found in the literature. Now let uh ∈ Vh be fixed. We aim to find a vh such that
‖vh‖DG . ‖uh‖DG and cDG(uh, vh) & ‖uh‖2DG. The main idea follows similar ideas as in
the proof of stabilized methods for the Stokes problem, i.e. we split the test function into
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to parts vh := αuh + v2
h, where v2

h := h
|b|∞,T b · ∇uh. Here it is crucial that b is piece wise

constant such that v2
h is still an element of Vh. This gives

cDG(uh, vh) = α
1

2
|uh|2DG,2 + cDG(uh, v

2
h).

We continue to estimate the second term. Using representation (3.10) we get by the
Cauchy-Schwarz, the Young inequality (Theorem 3)

cDG(uh, v
2
h) =

∑
T∈Th

h

|b|∞,T
‖b · ∇uh‖2T −

∫
∂Tin

bn[[uh]]∗
h

|b|∞,T
b · ∇uh ds

≥
∑
T∈Th

h

|b|∞,T
‖b · ∇uh‖2T − |bn|

ε

2
‖[[uh]]∗‖2∂Tin −

h2|bn|
2ε|b|2∞,T

‖b · ∇uh‖2∂Tin

≥
∑
T∈Th

h

|b|∞,T
‖b · ∇uh‖2T − |bn|

ε

2
‖[[uh]]∗‖2∂Tin −

h

2|b|∞,T
‖b · ∇uh‖2T

where in the last step we used the inverse inequality for polynomials (b·∇u ∈ Vh) (Theorem
1) with constant cinv and set ε = cinv and that |bn| ≤ |b|∞,T . Now since

−
∑
T∈Th

|bn|
ε

2
‖[[uh]]∗‖2∂Tin & −c1

1

2

∑
F

∫
F
|bn|([[uh]]∗)2,

we have in total

cDG(uh, v
2
h) ≥ 1

2
|uh|2DG,1 − c1|uh|2DG,2.

Now let α = (2c1 + 1) then we have

cDG(uh, vh) = α
1

2
|uh|2DG,2 + cDG(uh, v

2
h)

≥ (2c1 + 1)
1

2
|uh|2DG,2 +

1

2
|uh|2DG,1 − c1|uh|2DG,2

≥ (2c1 + 1)
1

2
|uh|2DG,2 +

1

2
|uh|2DG,1 − c1|uh|2DG,2 ≥

1

2
‖uh‖2DG,2.
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Again by the inverse inequality for polynomials and scaling arguments we further have

‖v2
h‖2DG =

∑
T∈Th

h

|b|∞,T
‖b · ∇v2

h‖2T +
∑
F∈Fh

|bn|‖[[v2
h]]
∗‖2F

=
∑
T∈Th

h

|b|∞,T
‖b · ∇(

h

|b|∞,T
b · ∇uh)‖2T +

∑
F∈Fh

|bn|‖[[
h

|b|∞,T
b · ∇uh]]∗‖2F

.
∑
T∈Th

h

|b|∞,T
|b|2∞,T
h2
‖ h

|b|∞,T
b · ∇uh‖2T +

∑
T∈Th

|bn|
h2

|b|2∞,T
1

h
‖b · ∇uh‖2T . ‖uh‖2DG,

thus in total ‖vh‖2DG . ‖uh‖2DG.

In order to prove that the bilinear form cDG is continuous we introduce a second (stronger)
norm by

‖uh‖2DG,∗ := ‖uh‖2DG +
∑
T∈Th

∫
T

|b|∞,T
h

u2
h dx+

∫
∂T
|bn|u2

h ds .

Similarly as in the previous section we then have the continuity result not only on the
discrete level but also in the continuous setting.

Lemma 23. There holds

cDG(u, v) . ‖u‖DG,∗‖v‖DG,∗ ∀u, v ∈ Vh +H1(Ω) ∩H2(Th).

Proof. Follows with several applications of the Cuachy-Schwarz inequality.

A very important feature of the DG method is that there holds a local discrete conserva-
tion property. To this end let T ∈ Th be such that ∂T ∩Γ = ∅, and choose the characteristic
test function vh = 1 on T and 0 on Ω \ T . Then (3.8) reads as∫

∂T
bnu

up ds =

∫
T
f dx .

Hence, quantities that “enter” and “leave” the element T through the boundary ∂T are
solely balanced by the local source f |T .

3.2.4 A hybrid discontinuous Galerkin method for convection-diffusion
problems

In the previous section we focused on the introduction of the upwinding technique for a
pure hyperbolic convection problem. In the case of a discontinuous approximation of the
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convection diffusion problem (3.4) we want to utilize the advantages of the hybrid approach
introduced in section 2.6. To this end let Vh := Pk(Th,R) and V̂h := {v̂h ∈ Pk(Fh,R) : v̂h =

0 on ∂Ω} as in section 2.6.1. Further let aHDG be the bilinear form as in (2.34), hence the
weak formulation of the Laplacian in the HDG setting. Before we can combine the diffusive
and the convective bilinear formulation from the previous section we have to reformulate
in the setting of an HDG discretization. To this end we will first redefine the upwind value.
Let T ∈ Th be arbitrary with the normal vector n = n1 and denote by T ′ a neighboring
element and F = T ∩ T ′. Consider a given element wise (discontinuous) function uh ∈ Vh
and a facet wise function ûh ∈ V̂h. For a given wind b the upwind value on F ⊂ ∂T , hence
seen from the direction of T , is then given by

uup =

uh|T for bn > 0 outflow boundary

ûh|F for bn ≤ 0 inflow boundary
.

Following the same steps as before we then have (for the pure convection problem)

∑
T∈Th

−
∫
T
uhb · ∇vh dx+

∫
∂T
bnu

upvhds =

∫
Ω
fv ds .

Considering and edge F = T ∩ T ′, we see that either the unknowns of uh on T or on
T ′ couple with the unknowns of ûh on F . However, in contrast to before, the volume
unknowns do not couple at all. To fix this we add another stabilizing term on the outflow
boundaries given by

∑
T∈Th

∫
∂Tout

bn(ûh − uh)v̂h ds . (3.12)

Hence, in the case of an outflow boundary the values of ûh equal the values of uh. This
results in an “indirect” coupling of element unknowns via the facet variables. Next we
define the bilinear form

cHDG((uh, ûh),(vh, v̂h))

:=
∑
T∈Th

−
∫
T
uhb · ∇vh dx+

∫
∂T
bnu

upvhds+

∫
∂Tout

bn(ûh − uh)v̂h ds .
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Similarly as before, we can reformulate cHDG as

cHDG((uh, ûh),(vh, v̂h))

:=
∑
T∈Th

∫
T
vhb · ∇uh dx+

∫
∂Tin

|bn|(u− û)vhds+

∫
∂Tout

|bn|(ûh − uh)v̂h ds,

:=
∑
T∈Th

−
∫
T
uhb · ∇vh dx+

∫
∂Tin

bnu
up(vh − v̂h) ds+

∫
∂TΓ

bnûhv̂h ds .

Algebraically, the HDG bilinear form cHDG results in the same solution as with the DG
formulation. However we get the same nice advantages discussed in section 2.6.1 as
element-wise assembly due to a decoupling of the element unknowns and that inner de-
grees of freedoms can be eliminated (static condensation). The new formulation now fur-
ther lets us define a discrete method for the approximation of (3.4): Find (uh, ûh) ∈ Vh× V̂h
such that

νaHDG((uh, ûh), (vh, v̂h)) + cHDG((uh, ûh), (vh, v̂h)) = (f, vh) ∀(vh, v̂h) ∈ Vh × V̂h.

The stability analysis follows similar techniques as introduced in this section and in section
2.6.1.

3.3 Finite element methods for the stationary Navier-Stokes
equations

In this section we briefly discuss the solving algorithms of finite element methods of prob-
lem (3.1). We define the corresponding discrete problem: Find (uh, ph) ∈ Vh × Qh such
that

a(uh, vh) + c(uh, uh, vh) + b(vh, ph) = (f, vh) ∀vh ∈ Vh, (3.13a)

b(uh, qh) = 0 ∀qh ∈ Qh, (3.13b)

Note that a crucial property in the proof of the uniqueness of the continuous stationary
Navier Stokes equation is the skew symmetry of the convective bilinear form. For the
gradient form c = c∇ this is the case if the wind is exactly divergence, see Lemma 18.
Particularly this holds true for the exact solution. However, since in general the solution of
a finite element method is only weakly divergence free the bilinear form c(uh, ·, ·) might not
be skew symmetric on the discrete level. To this end one often solves (3.13) by means of
cskw, cdiv or ccurl. For simplicity we fix now c = cskw, consider a conforming approximation
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and that Vh and Qh fulfills the Stokes inf-sup condition. We define

N0,h := sup
w,u,v∈V0,h

cskw(wh, uh, vh)

‖wh‖V ‖uh‖V ‖vh‖V
,

Theorem 24. Assume that there holds the estimate

N0,h‖f‖V ∗
ν2ck

< 1,

(where ck is the Korn inequality) then there exists a unique solution (uh, ph) ∈ Vh ×Qh of
problem (3.13) with

‖∇uh‖0 ≤
1

ν
‖f‖V ∗ and ‖ph‖0 . ‖f‖V ∗ +

1

ν2
‖f‖2V ∗ .

Proof. Follows with similar steps as in the continuous setting. A detailed proof is given in
[25].

Note that similar results hold if problem (3.13) is enriched by certain stabilization bilinear
forms in order to guarantee inf-sup solvability or sharp gradient for convection dominant
flows. Further one can also consider a discontinuous approximation by exchanging the
continuous bilinear forms with the corresponding forms defined in the previous sections.

3.3.1 Iterative schemes

We finish this chapter with the introduction of iteration schemes for solving the nonlinear
problem (3.13). The most simple approach is given by a fixed point iteration that includes
the solution of several Stokes problems. To this end let S : V ′ × 0 → Vh × Qh be the
discrete Stokes operator that solves the discrete Stokes equation (2.13) with a given right
hand side. Then the fixed point iteration is given by

uk+1
h := S(f(·)− c(ukh, ukh, ·)).

Although this approach only requires to solve a Stokes problem in each iteration step, the
convergence speed is very small if the viscosity is not sufficiently large. An alternative is
given by the Newton method. To this end we write uk+1

h = ukh + δuh and pk+1
h = pkh + δph.

We aim to find a linearized equation for the difference δuh and δph. For this we first define

99



3 The stationary Navier-Stokes equations

the nonlinear residual given by

rku,h(vh) := (f, vh)− c(ukh, ukh, vh)− a(ukh, vh)− b(vh, pkh),

rkp,h(qh) := −b(ukh, qh).

Assuming that (uk+1
h , pk+1

h ) is the solution of (3.13), it is easy to see, that the corrections
are fulfilling the equation

d(ukh, δuh, vh) + a(δuh, vh) + b(vh, δph) = rku,h(vh) ∀vh ∈ Vh,
b(δuh, qh) = rkp,h(qh) ∀qh ∈ Qh,

with the non linear difference

d(ukh, δuh, vh) := c(ukh, δuh, vh) + c(δuh, u
k
h, vh) + c(δuh, δuh, vh).

If the corrections are small (i.e. we are “close” to the solution), we can linearize above
equation by dropping the last term to get the symmetric linear problem: Find δuh, δph ∈
Vh ×Qh such that

c(ukh, δuh, vh) + c(δuh, u
k
h, vh) + a(δuh, vh) + b(vh, δph) = rku,h(vh) ∀vh ∈ Vh,

b(δuh, qh) = rkp,h(qh) ∀qh ∈ Qh.

The Newton iteration calculates in each step the solution of the above problem and per-
forms the corresponding update.

It is well known that the Newton method converges quadratically in the case where the
current iterate is close to the fixed point. Although this seems to be very desirable, the
convergence radius scales with the viscosity ν, hence convergence might not be guar-
anteed if the initial guess is not close enough. An alternative to the Newtons method is
given by the so called Picard iteration. Beside dropping the quadratic term we also drop
c(δuh, uh, vh) which results in the problem: Find δuh, δph ∈ Vh ×Qh such that

c(ukh, δuh, vh) + a(δuh, vh) + b(vh, δph) = rku,h(vh) ∀vh ∈ Vh,
b(δuh, qh) = rkp,h(qh) ∀qh ∈ Qh.

In the case of c = c∇ we see that the solution (uk+1
h , pk+1

h ) of each step now solves the
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problem

a(uk+1
h , vh) + c(ukh, u

k+1
h , vh) + b(vh, p

k+1
h ) = (f, vh) ∀vh ∈ Vh,

b(uk+1
h , qh) = 0 ∀qh ∈ Qh,

which reads as an Oseen problem with the fixed convective wind ukh. We will use a similar
approach in splitting methods when we consider the instationary Navier Stokes equations
in the next section. The advantage of the Picard iteration is that, compared to the Newton
method, it has a relatively large ball of convergence but has a smaller order of conver-
gence.
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This chapter is dedicated to analyze and approximate the incompressible instationary
Navier-Stokes equations (1.11). Including inflow Dirichlet boundary conditions uin on Γin

homogeneous Dirichlet boundary conditions on the walls Γw we might also consider ho-
mogeneous Neumann boundary conditions on the outflow boundary Γout. Let T be a fixed
time, then we aim to find a solution u, p such that

∂u

∂t
− ν div(ε(u)) + div(u⊗ u) +∇p = f in Ω× (0, T ], (4.1)

div(u) = 0, in Ω× (0, T ], (4.2)

u = uin, on Γin × (0, T ] (4.3)

u = 0, on Γw × (0, T ] (4.4)

(−νε(u) + pId)n = 0, on Γout × (0, T ] (4.5)

u = u0 on Ω× 0. (4.6)

4.1 Existence and uniqueness

PL: Will be updated

4.2 Method of lines and θ-schemes

A very traditional approach of solving the time-dependent Navier Stokes equations is the
method of lines. Let Th be a fixed triangulation of the spatial domain Ω. For the ease
we consider an inf-sup stable finite element pair Vh × Qh but we emphasize that stabi-
lized methods can be used in a similar manner. The discrete spaces are chosen to fit
the boundary conditions as in (4.1) where we assume that Γin = ∅. In the case of an
inflow boundary condition (i.e. non-homogeneous Dirichlet boundary conditions) we use
a standard homogenization process. In contrast to the stationary case we now assume
that the coefficients of the finite element solutions are time dependent, i.e. we have the
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semi-discrete approach

uh(t, x) =
∑
i∈Nu

ui(t)φ
u
i (x) and ph(t, x) =

∑
i∈Np

pi(t)φ
p
i (x),

where φui and φpi are the basis functions of the finite element spaces Vh and Qh, respec-
tively, with dimensions Nu, Np. We derive a semi-discrete weak formulation of (4.1) as
usual by multiplying with (time independent!) test functions and integrating by parts. The
solution (uh, ph) ∈ Vh ×Qh must then satisfy for all t ∈ (0, T ]

(
∂

∂t
uh(t), vh) + a(uh(t), vh) + c(uh(t), uh(t), vh) + b(vh, ph(t)) = (f, vh) ∀vh ∈ Vh,

b(uh(t), qh) = 0 ∀qh ∈ Qh,

and further uh(0) = u0. Next we introduce the matrices M,A ∈ RNu×Nu and B ∈ RNp×Nu

by Mij := (φui , φ
u
j ), Aij := a(φui , φ

u
j ) and Bij = b(φuj , φ

p
i ). Further we define F ∈ RNu by

Fi := (f, φui ). Denoting by u(t) ∈ RNu and p(t) ∈ RNp with u(t)i = ui(t) and p(t)i = pi(t)

the coefficient vectors of the finite element solutions we can reformulate equation (4.7) as

M
d

dt
u(t) +Au(t) + C(u(t))u(t) +BT p(t) = F,

Bu(t) = 0,

where

C : RNu → RNu×Nu , C(w) := c(wh, φ
u
i , φ

u
j ) with wh :=

∑
i∈Nu

wiφ
u
i (x).

Above equation is a system of ordinary differential equations and can be solved by many
different approaches.

Very frequently used schemes are so called one-step θ-schemes. To this end let τ be
a fixed time step used for an equidistant mesh of the interval [0, T ] with N intervals. Let
tn := τn with 0 ≤ n ≤ N and introduce the symbols un = u(tn) and pn = p(tn). Further let
θ ∈ [0, 1] be fixed. We solve for each time step tn the system

[M + θτ [A+ C(un+1)]]un+1 + τBTpn+1 = [M − (1− θ)τ [A+ C(un)]]un + τF

τBun+1 = 0.

Here θ = 0 gives the first order explicit Euler and θ = 1 gives the first order A-stable implicit
Euler method. The choice θ = 1/2 results in the well known Crank-Nicolson method which
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is of higher order but is not A-stable. A very popular method, which is no θ-scheme, is the
backward difference formula of order two, called BDF2 scheme. Here, one solve for n ≥ 2

the system

[
3

2
M + τ [A+ C(un+1)]]un+1 + τBTpn+1 = [2M − τ [A+ C(un)]]un − 1

2
Mun−1 + τF

τBun+1 = 0,

which is a high order scheme in time and A-stable but one needs to store the additional
vector un−1. Another set of very popular methods are the so called fractional θ-schemes
where additional intermediate steps at tn + θτ and tn+1 − θτ are introduced. The three
steps are given by

1. Step from tn → tn+θ:

[M + αθτ [A+ C(un+θ)]]un+θ + θτBTpn+θ = [M − βθτ [A+ C(un)]]un + θτF

θτBun+θ = 0.

2. Step from tn+θ → tn+1−θ:

[M + βθ′τ [A+ C(un+1−θ)]]un+1−θ + θ′τBTpn+1−θ

= [M − αθ′τ [A+ C(un+θ)]]un+θ + θ′τF

θ′τBun+1−θ = 0.

3. Step from tn+1−θ → tn+1:

[M + αθτ [A+ C(un+1)]]un+1 + θτBTpn+1

= [M − βθτ [A+ C(un+1−θ)]]un+1−θ + θτF

θτBun+1 = 0.

To retrieve a second order and A-stable method one chooses θ = 1 −
√

2/2, θ′ = 1 − 2θ,
α ∈ (1/2, 1] and β = 1 − α. Note that the choice α = θ′/(1 − θ) then further results in
αθ = βθ′ which helps in building the system matrices.

4.2.1 Splitting and projection schemes

Although above methods have very nice smoothing and convergence properties, the main
two main difficulties given by the incompressibility constraint (resulting in a saddle point
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problem) and the non-linearity due to the convection (demanding for an iterative method
if treated implicitly) are still included in all intermediate steps. To solve this issue we
introduce the splitting fractional θ-schemes by

1. Step from tn → tn+θ:

[M + αθτA]]un+θ + θτBTpn+θ = [M − βθτA]un − θτC(un)un + θτF

θτBun+θ = 0.

2. Step from tn+θ → tn+1−θ:

[M + βθ′τ [A+C(un+1−θ)]]un+1−θ

= [M − αθ′τ [A+ C(un+θ)]]un+θ − θ′τBTpn+θ + θ′τF

3. Step from tn+1−θ → tn+1:

[M + αθτA]un+1 + θτBTpn+1

= [M − βθτA]un+1−θ − τC(un+1−θ)un+1−θ + θτF

τBun+1 = 0.

Note, that the first and the third step include solving a linear Stokes problem with an
explicit convection in the right hand side, and the second step includes solving a non-
linear convection diffusion equation without any incompressibility constraint. A simplified
first order operator splitting scheme is given by the so called IMEX (implicit explicit Euler)
where we solve

[M + τA]un+1 + τBTpn+1 = Mun − τC(un)un + θτF (4.8)

θτBun+1 = 0,

hence we treat the incompressibility implicitly and the convection explicitly. This method
can also be extended to high-order schemes resulting in so called diagonally implicit
Runge-Kutta methods.

Remark 16. In section 3.2.4 we introduced how the upwind stabilization can be extended
to the HDG setting. If one considers to use a splitting method for an HDG approximation
one has to be careful if the convection is treated explicitly. After the implicit solve of
(for example) (4.8) the trace variable ûn+1 on outflow boundaries ∂Tout does not equal
the value of the corresponding element trace as it would be forced by the gluing term
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introduced in equation (3.12), hence an application of the convection formulated in the
HDG setting would not result in an upwind stabilization. Instead one simply considers a
DG version of the convection and uses it as a driving force only seen by element variables.

Although the explicit treatment of the convection simplifies the solving routine tremen-
dously one still has to solve a saddle point problem with the structure(

M + τA BT

B 0

)(
u

p

)
=

(
G

0

)
,

with some right hand side G including volume forces and the explicit convection terms.
Since a direct solver is limited by the size of the problem, several different approaches
using for example an iterative scheme with (for example) block-diagonal preconditioner.
The main idea of this approach is to decouple the incompressibility constraint from the mo-
mentum equation and can be found in the literature under the terms “quasi-compressibility
method”, “projection method”, “SIMPLE method” and more. We only discuss the very sim-
ple projection scheme proposed by Chorin. For simplicity we only consider the case of
homogeneoues Dirichlet boundary conditions Γw = ∂Ω. The projection then reads as

1. Perform an explicit (or implicit) nonlinear step for the pure convection diffusion step
(also called a Burger’s step) to get an intermediate velocity ũn+1

[M + τA]ũn+1 = Mun − τC(un)un + τF.

2.) Perform a L2-projection of ũn+1 into the manifold of divergence free velocities.

The projection scheme can be interpreted in various different ways. The most common is
to perform the projection by solving a pressure Poisson problem, i.e. we solve the problem

∆p̃n+1 = div(ũn+1)

with homogeneous Neumann boundary conditions ∂np̃
n+1 = 0. Then the projection is

given by un+1 = ũn+1−∇p̃n+1. This immediately shows that div(un+1) = 0. The unnatural
boundary condition in above Poisson problem have caused a lot of discussion in the litera-
ture since it might result in oscillations in the pressure field close to the boundary. Further
note that the finite element spaces have to be chosen appropriately. A very good overview
of projection schemes can be found in [39].
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Projection for the H(div)-conforming HDG method

In the following we show how the projection scheme can be applied to theH(div)-conforming
HDG method introduced in section 2.6.2. To this end let

Vh :=BDMk(Th,Ω) ∩H0(div,Ω)

={vh ∈ Pk(Th,Rd) : [[vh · n]] = 0 on all F ∈ Fh, vh · n = 0 on ∂Ω },
V̂h :={v̂h ∈ Pk(Fh,Rd) : v̂h|F · n = 0 ∀F ∈ Fh, v̂h = 0 on ∂Ω},
Qh :=Pk−1(Th,R) ∩Q.

Assume that (ũh, ˜̂uh) is the solution of the pure convection step and that div ũh 6= 0.
Instead of solving a Poisson problem on the pressure space we reformulate it in a mixed
setting, i.e. we have the problem: Find (δuh, p̃h) ∈ Vh ×Qh such that∫

Ω
δuh · vh +

∫
Ω

div vhp̃h = 0 ∀vh ∈ Vh∫
Ω

div δuhqh =

∫
Ω

div(ũh)qh ∀q̃h ∈ Qh.

Note that we use the same spaces for the projection as used in the HDG method of the
Navier-Stokes discretization. Further note that since div(Vh) = Qh the solution of the
above projection gives div δuh = div ũh in an exact manner, and hence uh = ũh − δuh is
exactly divergence-free.

Remark 17. If one considers to solve a big problem then the projection needs to be solved
with an iterative method. In contrast to a Poisson problem the mixed formulation results in
a saddle point problem which would demand to use a GMRES or MINRES solver including
an H(div) precondtioner. To this end one uses a hybridization of the normal-continuity of
δuh. After a static condensation the resulting system (for the facet Lagrange multiplier) is
SPD and elliptic with respect to an H1-like HDG norm, hence (more) standard precondi-
tioners can be used.

4.2.2 Error analysis

PL: Will be updated
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