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Abstract. Classical inf-sup stable mixed finite elements for the incompressible (Navier–)Stokes
equations are not pressure-robust, i.e., their velocity errors depend on the continuous pressure.
However, a modification only in the right-hand side of a Stokes discretization is able to reestablish
pressure-robustness, as shown recently for several inf-sup stable Stokes elements with discontinuous
discrete pressures. In this contribution, this idea is extended to low and high order Taylor–Hood
and mini elements, which have continuous discrete pressures. For the modification of the right-
hand side a velocity reconstruction operator is constructed that maps discretely divergence-free test
functions to exactly divergence-free ones. The reconstruction is based on localH(div)-conforming flux
equilibration on vertex patches, and fulfills certain orthogonality properties to provide consistency
and optimal a priori error estimates. Numerical examples for the incompressible Stokes and Navier–
Stokes equations confirm that the new pressure-robust Taylor–Hood and mini elements converge
with optimal order and outperform significantly the classical versions of those elements when the
continuous pressure is comparably large.
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1. Introduction and notation.

1.1. Introduction. The classical Taylor–Hood element [45, 21, 34], its higher
order extensions [8], and the classical mini element [1, 21] are among the most pop-
ular discretizations for the incompressible Navier–Stokes equations, since they are
easy to implement, fulfill a discrete LBB condition, and converge with optimal order.
Nevertheless they suffer from a common lack of robustness: since they use continu-
ous discrete pressures, they relax the divergence constraint and are thus not pressure-
robust [25], i.e., their velocity error is pressure dependent, as one can see for an
incompressible Stokes model problem, −ν∆u +∇p = f,div u = 0, with homogeneous
Dirichlet velocity boundary conditions (with ν > 0). Here, the velocity errors for the
Taylor–Hood and mini elements read as

‖∇(u− uh)‖L2(Ω) ≤ C inf
wh∈Vh

‖∇(u−wh)‖L2(Ω) +
1

ν
inf

qh∈Qh

‖p− qh‖L2(Ω) ,

where Vh and Qh denote the discrete trial/test spaces for the velocities and the
pressures, and C is a O(1) constant. This velocity error estimate is sharp and shows
some kind of locking phenomenon [25, 29, 36, 17, 37]: for small parameters ν � 1 the
velocity error can become really large. The issue is well known in the literature, it
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shows up in real-world situations [13, 20, 31, 25] and it is sometimes called poor mass
conservation [19], since for H1-conforming mixed methods such large velocity errors
are accompanied by large divergence errors.

Recently, it was shown for several mixed finite element methods like the noncon-
forming Crouzeix–Raviart element [29, 7] and the conforming P+

2 -P disc
1 element [30]

(and also for a finite volume [28] and the hybrid discontinuous Galerkin methods in
[12, 11]), which all use discontinuous pressures, that a modification only in the right-
hand side of the Stokes discretization is able to reestablish pressure-robustness. This
approach leads to a velocity error estimate [29, 30]

‖∇(u− uh)‖L2(Ω) ≤ C inf
wh∈Vh

‖∇(u−wh)‖L2(Ω) + Cconsh
l+1|u|Hl+1(Ω),

where l denotes the approximation order of the discrete pressure space and Ccons

denotes an O(1) constant, arising due to a consistency error in the discrete right-
hand side. Note that similar pressure-robust velocity error estimates can be achieved
also with divergence-free mixed methods like [41, 47, 48, 23, 24, 27, 18] or by using
the compatible discrete operator schemes by Bonelle and Ern; see [5]. The key idea
for the modification of the Stokes right-hand side in [29] is that discrete divergence-
free velocity test functions are mapped to exact divergence-free ones by some velocity
reconstruction operator. Then, irrotational parts (in the sense of the continuous
Helmholtz decomposition) in the exterior force f of the above Stokes model problem
are orthogonal in the L2 vector product to (mapped) discrete-divergence velocity test
functions and do not spoil the discrete velocity solution uh [29]. Indeed, the so-
called poor mass conservation arises just due to a lack of L2 orthogonality between
discrete divergence-free velocity test functions and arbitrary gradient fields ∇ψ [28,
29, 25]. For LBB-stable mixed finite element methods with discontinuous pressures
the corresponding velocity reconstruction operators employ H(div)-conforming finite
element spaces. The velocity reconstruction operator is defined elementwise, and
fulfills several consistency properties [30, 12].

At the heart of the present contribution lies the construction of novel velocity
reconstruction operators for the Taylor–Hood element family and the mini element,
which have continuous discrete pressures, such that a modification of the Stokes right-
hand side yields a pressure-robust mixed method. A first version of such velocity re-
construction operators has been presented in [26]. Similarly, velocity reconstructions
in the spirit of [22] could probably be adapted also. Since the new corresponding
mixed methods have the same stiffness matrix as their classical counterparts, the dis-
crete LBB condition is inherited from the original method. Optimal convergence of
the new pressure-robust mixed methods is shown. The novel velocity reconstructions
require the solution of local discrete problems, which are defined on vertex patches.
The reconstructions map H1-conforming velocity test functions to H(div)-conforming
ones, which preserve the discrete divergence. Especially, discrete divergence-free ve-
locities are mapped to exact divergence-free ones. The construction uses ideas from
flux equilibration for a posteriori estimates [10, 6]. In order to achieve optimal con-
vergence order for the novel mixed methods, the velocity reconstructions have to
fulfill some consistency properties, which are incorporated in the local problems to
be solved. For this, bubble operators [16], averaging operators [38], and properties of
the Koszul complex [2] have to be exploited.

1.2. Structure of this paper. After defining some notation in the next subsec-
tion, in section 2 the continuous Stokes problem is introduced and the new pressure-
robust mixed finite element methods for its discretizations are presented in a quite
abstract manner. The main Theorem 2 summarizes the most important properties
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of the velocity reconstruction operator Rh, while the proofs of these properties are
postponed to section 4 in the case of the Taylor–Hood element family and to section 5
in the case of the mini element. Section 3 presents a common finite element error
analysis for the proposed Taylor–Hood and mini-element variants. It is shown that
their velocity errors are indeed pressure-robust, and that—quite surprisingly—even
pressure-robustness results hold for their pressure errors, when measured in some
discrete pressure norms. In section 4, different finite element spaces and finite ele-
ment tools like bubble operators [16] and Oswald interpolators are introduced, and
local (saddle-point) problems on vertex patches are defined that are fundamental for
the definition of the novel velocity reconstruction operators for the Taylor–Hood fi-
nite element family. Besides proving the unique solvability of these local problems,
the properties of the corresponding reconstruction operators stated in Theorem 2
are proved. Similarly to section 4, in section 5 velocity reconstruction operators for
lowest and higher order mini elements are defined solving local problems on vertex
patches, and the properties of Theorem 2 are also proved in these cases. Section 6
presents several numerical examples for the incompressible Stokes equations in 2 and
3 dimensions that show that the pressure-robust Taylor–Hood and mini-element vari-
ants can clearly outperform their classical counterparts in the best case, and are only
slightly worse than the classical discretizations in the worst case. Section 7 serves
as an appendix where some properties of the Koszul complex in 3 dimensions are
demonstrated.

1.3. Preliminaries. We introduce some basic notation and assumptions. In
this work we assume an open bounded domain Ω ⊂ Rd with d = 2, 3 and a Lipschitz
boundary Γ. On Ω we define a partition Ω =

⋃NT

i=1 Ti into subdomains called elements
Ti which will be triangles and tetrahedrons in two and three dimensions, respectively.
We shall denote T as such a partition which fulfills a shape regular assumption, so
all elements fulfill |T | < diam(T )d. Furthermore we call T quasi–uniform when all
elements are essentially of the same size, i.e., there exists one global h such that
h ≈ diam(T )∀T ∈ T ; see, for example, [4]. The set of vertices is defined as V and for
each vertex V ∈ V we define the vertex patch ωV and the corresponding triangulation
TωV

as

ωV :=
⋃

T :V ∈T
T ⊂ Ω and TωV

:= {T : V ∈ T} ⊂ T ,

and define the local mesh size hV := max{diam(T ) : T ∈ TωV
}. We define the

polynomial spaces of order m on Ω as Πm(Ω) and on the triangulation as

Πm(T ) := {qh : qh|T ∈ Πm(T ) ∀T ∈ T } =
∏
T∈T

Πm(T ),(1.1)

and similarly for ωV and TωV
. Furthermore we define the spaces

L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω

q dx = 0} =: Q,

H1
0 (Ω) := {u ∈ H1(Ω) : tr u = 0 on ∂Ω},

H0(div,Ω) := {σ ∈ H(div,Ω) : trnσ = 0 on ∂Ω},
V := [H1

0 (Ω)]d,

V0 := {v ∈ V : div v = 0}.

where tr and trn denote the trace operators for H1(Ω) and H(div,Ω). We also de-
fine the L2 projector on polynomials of order m as PmΩ , and the Oswald interpolator
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S : Πm(T ) → Πm(T ) ∩ C0(Ω) (see [38] or the averaging operator in [15]) that maps
discontinuous polynomials to continuous ones. Depending on the dimension we de-
fine the Koszul operator (see [2]) for d = 2 with ~x = (x, y) and for d = 3 with
~x = (x, y, z) as

κ~x : L2(Ω)→ [L2(Ω)]2, κ~x : [L2(Ω)]3 → [L2(Ω)]3,

κ~x(a) :=

(
−y
x

)
a, κ~x(a) := ~x× a.

Furthermore we define the Curl operator for d = 2,

Curl : Πm(Ω)→ [Πm(Ω)]2,

Curl (u) := (−∂yu, ∂xu)t.

In a similar way, all the above introduced spaces and operators can be defined on ωV .
In this work we use a 4 b when there exists a constant c independent of a, b, h such
that a ≤ cb.

2. Continuous and discrete Stokes problems and the velocity recon-
struction operator. The incompressible Stokes problem for a right-hand side forc-
ing f ∈ [L2(Ω)]d is given in weak formulation by [21]: search for (u, p) ∈ V ×Q such
that for all (v, q) ∈ V ×Q it holds

a(u,v) + b(v, p) = l(v),

b(u, q) = 0,
(2.1)

where the bilinear forms a : V × V → R and b : V × Q → R and the linear form
l : [L2(Ω)]d → R are defined by

a(u,v) =

∫
Ω

ν∇u : ∇v dx,

b(v, q) =

∫
Ω

q div v dx,

l(v) =

∫
Ω

f · v dx.

(2.2)

Note that for the continuous Stokes problem there holds the LBB condition

(2.3) inf
q∈Q

sup
v∈V

b(v, q)

‖q‖L2(Ω) ‖∇v‖L2(Ω)

≥ β > 0,

where β denotes the LBB constant.
For the discretization of the continuous Stokes problem (2.1) by inf-sup stable

mixed finite element methods [21, 4] we introduce conforming finite element spaces
for the velocity Vh ⊂ V and the pressure Qh ⊂ Q. We assume that for the pair
Vh ×Qh of discrete spaces there holds a discrete LBB condition

(2.4) inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖qh‖L2(Ω) ‖∇vh‖L2(Ω)

≥ βh > 0.

We remind the reader that the discrete LBB condition implies the existence of a Fortin
interpolator IF : V→ Vh such that for all v ∈ V and for all qh ∈ Qh there holds

(2.5) b(IFv, qh) = b(v, qh) and ‖∇IFv‖L2(Ω) ≤ CF ‖∇v‖L2(Ω) ,
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where CF denotes the stability constant of the Fortin interpolator [21, 4]. Introducing
the space of discrete divergence-free velocity functions

(2.6) V0
h := {vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh},

the following lemma is a classical result by the theory of mixed finite element methods
[21, 4].

Lemma 1. Let the finite element spaces Vh and Qh fulfill the discrete LBB con-
dition (2.4), then it holds that for all v ∈ V0

inf
vh∈V0

h

‖∇v−∇vh‖L2(Ω) ≤ (1 + CF ) inf
wh∈Vh

‖∇v−∇wh‖L2(Ω) .

In the following we propose a nonstandard discretization of the right-hand side
of the Stokes equations, in order to obtain pressure-robust velocity error estimates.
Key is the definition of a velocity reconstruction operator in the spirit of [28, 29] that
maps discrete divergence-free velocity test functions to exact divergence-free ones.
The novelty of this contribution is that we define such reconstruction operators for
mixed finite element methods, which possess only continuous discrete pressures. The
most prominent examples of such mixed finite element methods are given by the
Taylor–Hood element family and the mini element [21, 4]. From now on we focus on
the Taylor–Hood element of order k ≥ 2 so

Vh := [Πk(T )]d ∩ [C0(Ω)]d and Qh := Πk−1(T ) ∩ C0(Ω),

and give a detailed description for the mini element in section 5. The velocity recon-
struction operators

Rh : Vh → Vh + Σh

with some H(div)-conforming finite element space Σh are defined by solving local
problems on vertex patches. A precise definition is given in section 4. We introduce
the discrete space of scalar functions

(2.7) Q̃h := div(RhVh),

and we assume that Qh ⊂ Q̃h holds. The Oswald interpolator is now defined from
S : Q̃h → Qh with the property

S|Qh(Ω) = id.(2.8)

For the error estimates of the finite element method to be proposed, we use the
following abstract properties of Rh, which are summarized in the following theorem.

Theorem 2. For the reconstruction operator Rh defined by (4.19) there holds

i. (divRhwh, q̃h)L2(Ω) = (divwh,S q̃h)L2(Ω) ∀q̃h ∈ Q̃h,(2.9)

ii. (div (wh −Rhwh), qh)L2(Ω) = 0 ∀wh ∈ Vh,∀qh ∈ Qh,(2.10)

iii. (divwh, qh)L2(Ω) = 0 ∀qh ∈ Qh ⇒ (divRhwh, q̃h)L2(Ω) = 0 ∀q̃h ∈ Q̃h,(2.11)

i.e., divRhwh = 0,

iv. (g,wh −Rhwh)L2(Ω) ≤ Ccons|||g|||k−2‖∇wh‖L2(Ω) for any g ∈ [L2(Ω)]d(2.12)

with data oscillation defined by |||g|||m :=

( ∑
V ∈V

h2
V

∥∥g− PmωV
g
∥∥2

L2(ωV )

) 1
2

.
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Remark 3. The data oscillation |||·|||m is similar to an estimation used for the
analysis of adaptive methods; see, for example, [46, p. 60]. Note that for g ∈ H l(Ω)
and a quasi–uniform triangulation T it follows using a scaling argument that

|||g|||m 4 hmin{m+2,l+1}|g|Hl(Ω).

The discrete Stokes problem can now be defined by the following: search for (uh, ph) ∈
Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh there holds

a(uh,vh) + b(vh, ph) = l(Rhvh),

b(uh, qh) = 0.
(2.13)

Remark 4. The stiffness matrix of the proposed discretization (2.13) is the same
as for standard inf-sup stable mixed finite element methods. However, the discretiza-
tion of the right-hand side is nonstandard. The main reason for this nonstandard
discretization is that for the continuous Stokes problem (2.1) it holds that (u, ψ) is
the solution for arbitrary right-hand sides of the form f = ∇ψ with ψ ∈ H1(Ω)

/
R,

i.e., irrotational forces f = ∇ψ lead to a no-flow velocity solution u = 0 [28, 29]. This
is due to the L2 orthogonality

∫
Ω
∇ψ ·w dx = 0 for all w ∈ H0(div,Ω) with div w = 0.

Similarly it holds that uh = 0 for the discretization (2.13), since, due to Theorem 2,
discrete divergence-free velocity test functions are mapped to divergence-free ones
[28, 29].

3. Error estimation for the pressure-robust Stokes discretization. In
this section, an a priori error analysis is performed for the solution of the discrete
Stokes problem (uh, ph) in (2.13). The following lemma is needed to estimate the
consistency error introduced due to the nonstandard discretization of the right-hand
side in (2.13).

Lemma 5. For v ∈ V with ∆v ∈ [L2(Ω)]d and for all wh ∈ Vh it holds that

|(∆v,Rhwh) + (∇v,∇wh)| ≤ Ccons|||∆v|||k−2‖∇wh‖L2(Ω).

Proof. By calculating and applying (2.12), one obtains

(∆v,Rhwh) + (∇v,∇wh) = (∆v,Rhwh −wh) + (∆v,wh) + (∇v,∇wh)

= (∆v,Rhwh −wh) ≤ Ccons|||∆v|||k−2 ‖∇wh‖L2(Ω) ,

where we used integration by parts for (∇v,∇wh) to show the second equivalence.

Let PQ̃h
= Pm−1

Ω be the L2 projector on the space Q̃h.

Theorem 6. For the discrete solution (uh, ph) ∈ Vh × Qh in (2.13) and the
continuous solution (u, p) ∈ (V, Q) of (2.1), assuming the regularity ∆u ∈ [L2(Ω)]d,
the following a priori errors hold:

i. ‖∇(u− uh)‖L2(Ω) ≤ 2(1 + CF ) inf
wh∈Vh

‖∇(u−wh)‖L2(Ω) + Ccons|||∆u|||k−2,

ii. ‖SPQ̃h
p− ph‖L2(Ω) ≤

ν

βh

(
‖∇(u− uh)‖L2(Ω) + Ccons|||∆u|||k−2

)
,

(3.1)

iii. ‖p− ph‖L2(Ω) ≤ ‖p− SPQ̃h
p‖L2(Ω)

+
ν

βh

(
‖∇(u− uh)‖L2(Ω) + Ccons|||∆u|||k−2

)
.
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Proof. Note that from ∆u ∈ [L2(Ω)]d and f ∈ [L2(Ω)]d it follows that p ∈ H1(Ω).
i. For an arbitrary vh ∈ V0

h we define wh := uh − vh ∈ V0
h:

ν ‖∇wh‖2L2(Ω) = a(wh,wh) = a(uh,wh)− a(vh,wh)

= (−ν∆u +∇p,Rhwh)− a(vh,wh)

= a(u− vh,wh)− ν ((∆u,Rhwh) + (∇u,∇wh)) ,

where it was used that divRhwh = 0 holds due to (2.11) and that thus ∇p and Rhwh

are orthogonal in L2. Using Lemma 5 and the Cauchy–Schwarz inequality yields

ν ‖∇wh‖2L2(Ω) ≤ ν ‖∇(u− vh)‖L2(Ω) ‖∇wh‖L2(Ω) + νCcons|||∆u|||k−2 ‖∇wh‖L2(Ω) .

Therefore it holds that

‖∇wh‖L2(Ω) ≤ inf
vh∈V0

h

‖∇(u− vh)‖L2(Ω) + Ccons|||∆u|||k−2.

With the triangle inequality it follows that

‖∇(u− uh)‖L2(Ω) ≤ ‖∇(u− vh)‖L2(Ω) + ‖∇wh‖L2(Ω) .

Applying Lemma 1 yields the first statement.
ii. For proving the pressure error, one computes for an arbitrary vh ∈ Vh

(SPQ̃h
p− ph,div vh) = (SPQ̃h

p,div vh) + (f,Rhvh)− a(uh,vh)

= (PQ̃h
p,divRhvh) + (∇p,Rhvh)− (ν∆u,Rhvh)− a(uh,vh)

= −(ν∆u,Rhvh)− a(uh,vh)

= −(ν∆u,Rhvh)− a(u,vh)− a(uh − u,vh),

where (2.9) was used. Using the discrete LBB condition (2.4) and Lemma 5, one
concludes

‖SPQ̃h
p− ph‖L2(Ω) ≤

ν

βh

(
‖∇(u− uh)‖L2(Ω) + Ccons|||∆u|||k−2

)
.

iii. The last statement follows by the triangle inequality.

Remark 7. Statement i in Theorem 6 shows the pressure-robustness of the a priori
velocity error. Statement ii in Theorem 6 is also interesting. It shows that the pressure
error is also pressure-robust in the sense that ph = SPQ̃h

p up to an error, which is
only velocity dependent. Note that this is completely analogous to pressure-robust
mixed methods with discontinuous pressures [30, 33, 7]. There, Qh and Q̃h coincide
and ph is even the best approximation of p in Qh up to an error, which is also only
velocity dependent.

Corollary 8. Assume a quasi-uniform triangulation T and a solution u ∈
[Hk+1(Ω)]d and p ∈ Hk(Ω) of the continuous problem (2.1). Then, the solution
(uh, ph) of (2.13) satisfies

‖u− uh‖H1(Ω) 4 (2(1 + CF ) + Ccons)h
k|u|Hk+1(Ω), and(3.2)

‖p− ph‖L2(Ω) 4
ν (2(1 + CF ) + 2Ccons)

β
hk|u|Hk+1(Ω) + hk|p|Hk(Ω).(3.3)
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Proof. The proof follows by Theorem 3.1 and standard scaling arguments.

Remark 9. In order to increase the accuracy of the solution one may want to use
a local refinement of the mesh T . This is indeed possible with the modified method
due to local properties of the data oscillation.

Corollary 10. Under the assumptions of Theorem 6, Corollary 8, and the con-
vexity of Ω it holds that

‖u− uh‖L2(Ω) 4 hk+1|u|Hk+1(Ω).

Proof. The proof follows by an Aubin–Nitsche argument [4, 3, 35]. For an ar-
bitrary g ∈ [L2(Ω)]d one employs a dual Stokes problem with a solution ug ∈
V0 ∩ [H2(Ω)]d. Extending the domain of definition of the reconstruction operator
Rh to V0 one sees at once that it holds Rhw = w for all w ∈ V0. Then, Rhug = ug

and the arguments in [30] deliver the desired optimal pressure-robust L2-estimate.

4. Construction and analysis of the reconstruction operator.

4.1. Definition of the operators and spaces. In this section we define local
problems on each vertex patch ωV and prove Theorem 2. For an arbitrary vertex
V ∈ V we start by defining the spaces

Σh,0(TωV
) := {σh ∈ RT k−1(TωV

) : trnσh = 0 on ∂ωV } ⊂ H0(div, ωV ),

Q̃h(TωV
) := Πk−1(TωV

) ⊂ L2(ωV ) Q̃0
h(TωV

) := Q̃h(TωV
) ∩ L2

0(ωV ),

where RT k−1 is the Raviart–Thomas space of order k − 1 (see [4] and [39]), and for
k ≥ 3 using the Koszul operator, also

W h(ωV ) := κ~x−V (Πk−3(ωV )) ⊂ ΛV := κ~x−V (L2(ωV )) for d = 2,

W h(ωV ) := κ~x−V ([Πk−3(ωV )]3) ⊂ ΛV := κ~x−V ([L2(ωV )]3) for d = 3.

Note that Q̃h consists of elementwise polynomials and Πk−3(ωV ) are polynomials on
the patch. Furthermore we have the property

div Σh,0(TωV
) = Q̃0

h(TωV
).(4.1)

We continue with the definition of bilinear form B : (H0(div, ωV )× L2
0(ωV )×ΛV )×

(H0(div, ωV )× L2
0(ωV )×ΛV )→ R by

B((σ, φ,λ), (τ , ψ,µ)) :=∫
ωV

σ · τ dx+

∫
ωV

div τφ dx+

∫
ωV

τ · λ dx+

∫
ωV

divσψ dx+

∫
ωV

σ · µ dx.

Now let T be an arbitrary element T ∈ T , and VT be the set of vertices of T with
NT := |VT |. Let {φj}NT

j=1 be the local (Lagrangian) basis on T for the interpolation

points {xj}NT
j=1 and {qj}NT

j=1 be the coefficients of an arbitrary q ∈ Πk−1(T ), so

φj(xl) = δjl ∀j, l = 1, . . . , NT and q(x) =

NT∑
j=1

qjφj(x).
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V q1

q2

q3

q4

q5

q6 V q1

0

0

0

q5/2

q6/2

Fig. 1. Visualisation of the nodal coefficients q1, . . . , q6 of a quadratic polynomial q ∈ Π2(T )
(left) and the coefficients of its bubble operator PBT,V q (right) on a triangle T with respect to the
vertex V .

Then we define for each V ∈ VT an operator PBT,V : Πk−1(T ) → Πk−1(T ) by setting
the coefficients as

(PBT,V q)j = qjλV (xj),(4.2)

where λV is the barycentric coordinate function of the vertex V , thus PBT,V q is the
Lagrange interpolant of qλV . Figure 1 visualizes the change in the coefficients for a
quadratic polynomial in two dimensions. It holds that

trPBT,V q = 0 on Fop and
∑
V ∈VT

PBT,V q = q,(4.3)

where Fop is the opposite edge of V for d = 2 and the opposite face for d = 3. Using

a trivial extension by 0 on Ω \ T , we can expand the range of PBT,V on Q̃h(T ). By

that we define for every vertex V the bubble operator PBV : Q̃h(T )→ Q̃h(T ) as

PBV q̃h :=
∑

T∈TωV

PBT,V q̃h ∀q̃h ∈ Q̃h(T )(4.4)

with the property

trPBV q̃h = 0 on ∂ωV ,(4.5)

PBV q̃h = 0 on Ω \ ωV .(4.6)

In Figure 2 an example of a projected arbitrary q̃h ∈ Q̃h is given.

Remark 11. More complicated, but polynomial-robust bubble projectors are given
in [44] and [16]. If this robustness is an issue, these operators could be used instead
of PBV .

For a function ψh ∈ Q̃h(TωV
) we furthermore understood Sψh as (S q̃h)|ωV

, where
q̃h ∈ Q̃h is the trivial extension by zero of ψh on Ω \ ωV .

4.2. Definition of the local problem. On the vertex patch, we define the
problem: for a given function divwh ∈ Q̃h(TωV

) find

(σVh , φh,λh) ∈ (Σh,0(TωV
)× Q̃0

h(TωV
)×W h(ωV ))



1300 P. L. LEDERER, A. LINKE, C. MERDON, AND J. SCHÖBERL

(a) Arbitrary polynomial function q̃h (b) Applying the bubble operator PBV q̃h

Fig. 2. An example of the bubble operator on ωV (dark gray).

so that

B((σVh , φh,λh), (τh, ψh,µh)) =
(
divwh,PBV (ψh − Sψh)

)
L2(ωV )

(4.7)

∀(τh, ψh,µh) ∈ Σh,0(TωV
)× Q̃0

h(TωV
)×W h(ωV ).

Equation (4.7) either reads as a variational formulation of a three field problem or
can also be interpreted as a least-squares constrained minimization problem; see, for
example, in Chapter 1.3.2 in [4]. The idea is to minimize the L2 norm of the vector
field σVh with a fixed divergence equal to the right-hand side and an orthogonality
with respect to polynomials in W h(ωV ). We only force orthogonality here on the
subspace W h(ωV ) as we have a decomposition of the polynomial space of order k− 2
given by

[Πk−2(ωV )]d = ∇Πk−1(ωV )⊕W h(ωV );(4.8)

see [2, (3.11)]. The orthogonality with respect to ∇Πk−1(ωV ) is automatically fulfilled
as presented in the proof of Theorem 12 below. The aim of the bubble operator PBV
in the right-hand side is to provide a quasi-locality of the solution σVh . For a function

q̃h ∈ Q̃h(T ) with a support supp(q̃h) ⊆ Ω \ ωV the Oswald interpolated function S q̃h
might have nonzero values on ωV due to the averaging of the degrees of freedom at
the boundary ∂ωV . Using PBV then forces those values back to zero, thus q̃h will have
no influence on the local patch solution σVh .

Theorem 12. Equation (4.7) has a unique solution (σVh , φh,λh) satisfying

i.
∥∥σVh ∥∥L2(ωV )

4 hV ‖divwh‖L2(ωV ) ,(4.9)

ii.
(
divσVh , q̃h

)
L2(Ω)

=
(
divwh,PBV (q̃h − S q̃h)

)
L2(ωV )

∀q̃h ∈ Q̃h(T ),

(4.10)

where σVh was trivially extended by 0 on Ω,

iii. and the solution is L2(ωV )-orthogonal to polynomials of order k − 2, i.e.,(
σVh , ξ

)
L2(ωV )

= 0 ∀ξ ∈ [Πk−2(ωV )]d.(4.11)

Proof of existence, uniqueness, and i. We start with the considered norms

‖τh‖Σh,0(TωV
) := ‖τh‖L2(ωV ) + hV ‖div τh‖L2(ωV ) ,

‖ψh‖Q̃h(TωV
) :=

1

hV
‖ψh‖L2(ωV ) ,

‖µh‖W h(ωV ) := ‖µh‖L2(ωV ) .
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In this part of the proof we use Σh,0 as the symbol for Σh,0(TωV
) and similarly for

Q̃h(TωV
) and W h(TωV

). Next we define the bilinear forms

aσ(σh, τh) :=

∫
ωV

σh · τh dx ∀(σh, τh) ∈ Σh,0 ×Σh,0,

b1(σh, ψh) :=

∫
ωV

divσhψh dx ∀(σh, ψh) ∈ Σh,0 × Q̃h,

b2(σh,µh) :=

∫
ωV

σh · µh dx ∀(σh,µh) ∈ Σh,0 ×W h.

Using the Cauchy–Schwarz inequality we see that aσ, b1, and b2 are all continuous:

aσ(σh, τh) 4 ‖σh‖L2(ωV ) ‖τh‖L2(ωV ) 4 ‖σh‖Σh,0
‖τh‖Σh,0

,

b1(σh, ψh) 4 ‖divσh‖L2(ωV ) ‖ψh‖L2(ωV ) 4 ‖σh‖Σh,0
‖ψh‖Q̃h

,

b2(σh,µh) 4 ‖σh‖L2(ωV ) ‖µh‖L2(ωV ) = ‖σh‖W h
‖µh‖W h

.

As

B((σVh , φh,λh),(τh, ψh,µh)) =

aσ(σh, τh) + b1(σh, ψh) + b2(σh,µh) + b1(τh, φh) + b2(τh,λh),

we show the existence and uniqueness of the saddle-point problem (4.7) as in Chapter
4 in [4], so it remains to show the ellipticity of aσ(·, ·), i.e.,

aσ(σh,σh) < ‖σh‖2Σh,0
∀σh ∈ Σ0

h,0(4.12)

on the kernel

Σ0
h,0 := {σh ∈ Σh,0 : b1(σh, ψh) + b2(σh,µh) = 0 ∀(ψh,µh) ∈ Q̃0

h ×W h},

and the LBB condition with some βσ > 0 such that, for all (ψh,µh) ∈ Q̃0
h ×W h,

sup
σh∈Σh,0

b1(σh, ψh) + b2(σh,µh)

‖σh‖Σh,0

< βσ(‖ψh‖Q̃h
+ ‖µh‖W h

).(4.13)

For a function σh in the kernel Σ0
h,0 it holds, in particular, that

b1(σh, ψh) = 0 ∀ψh ∈ Q̃0
h,

and due to (4.1) divσh = 0 also, thus

‖σh‖L2(ωV ) = ‖σh‖Σh,0
∀σh ∈ Σ0

h,0,

which implies (4.12).
To show (4.13) we will proceed in three steps. First we show the LBB condition

for the bilinear form b1(·, ·) and then for b2(·, ·) by choosing proper candidates that do
not destroy the first condition, and finally combine the two estimates. For b1(·, ·) we
first show the LBB condition on the reference patch ω̂V and then on ωV . It should be
mentioned that there exist different reference patches due to the number of elements
that belong to a vertex, but for each triangulation T there exist a finite number of
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reference patches. We use the standard Raviart–Thomas interpolator IRT of order
k − 1 (see [4] or [14]) that provides

b1(IRT σ, ψh) = b1(σ, ψh) and ‖IRT σ‖H(div,ω̂V ) 4 ‖σ‖H1(ω̂V )

∀ψh ∈ Q̃h(ω̂V ),∀σ ∈ [H1(ω̂V )]d.

For an arbitrary ψ̂h ∈ Q̃0
h(ω̂V ) we have

sup
σ̂h∈Σh,0(ω̂V )

b1(σ̂h, ψ̂h)

‖σ̂h‖H(div,ω̂V )

< sup
σ̂∈[H1

0 (ω̂V )]d

b1(IRT σ̂, ψ̂h)

‖IRT σ̂‖H(div,ω̂V )

< sup
σ̂∈[H1

0 (ω̂V )]d

b1(σ̂, ψ̂h)

‖σ̂‖H1(ω̂V )

.

Next we use the continuous Stokes LBB condition (2.3) to get

sup
σ̂h∈Σh,0(ω̂V )

b1(σ̂h, ψ̂h)

‖σ̂h‖H(div,ω̂V )

≥ β1‖ψ̂h‖L2(ω̂V )(4.14)

with β1 > 0 that depends only of the shape and size of the triangles on the reference
patch. To show the condition on ωV we recall the definition of the Piola transforma-
tion. Let F : ω̂V → ωV be the elementwise affine mapping of the reference patch to
ωV with F ∈ W 1,∞(ω̂V ) and ‖F ′‖∞ ≤ hV and ‖(F ′)−1‖∞ ≤ h−1

V . Then the Piola
transformation is defined as

P(σ̂) :=
1

detF ′
F ′σ̂ ∀σ̂ ∈ H(div, ω̂V );

see, for example, [4]. For an arbitrary ψh we now choose ψ̂h = ψh, and define σ1
h :=

P(σ̂h) for σ̂h that delivers the supremum of (4.14). Standard scaling arguments,
similar to Lemma 2.1.7 in [4], then yield

b1(σ1
h, ψh)

‖σ1
h‖Σh,0

=

∫
ωV

divσ1
hψh dx

‖σ1
h‖L2(ωV )

+ hV ‖divσ1
h‖L2(ωV )

<
h

(d−2)/2
V

∫
ω̂V

div σ̂hψ̂h dx

‖σ̂h‖L2(ω̂V ) + ‖div σ̂h‖L2(ω̂V )

(4.15)

≥ h(d−2)/2
V β1‖ψ̂h‖L2(ω̂V ) = β1

1

hV
‖ψh‖L2(ωV ) = β1 ‖ψh‖Q̃h

.

We continue with the LBB condition for b2(·, ·). We start with the case d = 3.
Choose an arbitrary µh = κ~x−V (ξh) ∈Wh with ξh ∈ [Πk−3(ωV )]3. Furthermore, due
to Theorem 20, we can assume that div ξh = 0. Now we define

σ2
h := −curl (λV ξh),

where λV is the hat function of the vertex V . Note that we have

b1(σ2
h, ψh) = 0.(4.16)

Using integration by parts we get

b2(σ2
h,µh) = −

∫
ωV

curl (λV ξh) · κ~x−V (ξh) dx

= −
∫
ωV

(λV ξh) · curl ((~x− V )× ξh) dx.



DIVERGENCE-FREE RECONSTRUCTION OPERATORS 1303

Using basic vector calculus leads to

curl ((~x− V )× ξh) = (~x− V ) div ξh︸ ︷︷ ︸
=0

+∇(~x− V )︸ ︷︷ ︸
I

ξh − ξh div (~x− V )︸ ︷︷ ︸
=3

−∇ξh(~x− V )

= −2ξh −∇ξh(~x− V )

and so

b2(σ2
h,µh) = −

∫
ωV

(λV ξh) · (−2ξh −∇ξh(~x− V )) dx

=

∫
ωV

2λV ξ
2
h dx+

∫
ωV

λV ξh · ∇ξh(~x− V ) dx

=

∫
ωV

2λV ξ
2
h dx+

1

2

∫
ωV

λV∇ξ2
h · (~x− V ) dx

=

∫
ωV

2λV ξ
2
h dx− 1

2

∫
ωV

ξ2
h div ((~x− V )λV )︸ ︷︷ ︸

3λV +∇λV (~x−V )

dx

=
1

2

∫
ωV

λV ξ
2
h dx− 1

2

∫
ωV

ξ2
h∇λV (~x− V ) dx.

On any T ⊂ TωV
the gradient of λV is equivalent to the scaled normal vector nV on

the face opposite to V , and one can see that −nV · (~x−V ) ≤ 0, which finally leads to

b2(σ2
h,µh) < β2 ‖ξh‖

2
L2(ωV ) < β2 ‖µh‖

2
W h

.(4.17)

For the case d = 2 we proceed similarly. For an arbitrary µh = κ~x−V (ξh) ∈ Wh with
ξh ∈ Πk−3(ωV ) we define

σ2
h := −Curl (λV ξh).

Again property (4.16) holds and we see

b2(σ2
h,µh) = −

∫
ωV

Curl (λV ξh) · κ~x−V (ξh) dx

= −
∫
ωV

∇(λV ξh) · (~x− V )ξh dx

=

∫
ωV

(λV ξh) div ((~x− V )ξh) dx

=

∫
ωV

2λV ξ
2
h +

1

2

∫
ωV

λV (~x− V )∇ξ2
h dx.

The rest is similarly done as before. Now we can show (4.13). For an arbitrary

ψh ∈ Q̃0
h and µh ∈ Wh we choose the functions σ1

h,σ
2
h that fulfill inequalities (4.15)

and (4.17) and (4.16). Furthermore we can scale σ1
h and σ2

h so that∥∥σ1
h

∥∥
Σh,0

= ‖ψh‖Q̃h
and

∥∥σ2
h

∥∥
Σh,0

= ‖µh‖W h
.

For α = 1
β1β2

we then define σh = σ1
h + ασ2

h and get

b1(σh, ψh) + b2(σh,µh) = b1(σ1
h, ψh) + b2(σ1

h,µh) + αb2(σ2
h,µh)

< β1 ‖ψh‖2Q̃h
−
∥∥σ1

h

∥∥
Σh,0
‖µh‖W h

+ αβ2 ‖µh‖
2
W h

< β1 ‖ψh‖2Q̃h
− ‖ψh‖Q̃h

‖µh‖W h
+ αβ2 ‖µh‖

2
W h

.
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Using Young’s inequality we have

‖ψh‖Q̃h
‖µh‖W h

≤ β1

2
‖ψh‖2Q̃h

+
1

2β1
‖µh‖

2
W h

,

and so

b1(σh, ψh) + b2(σh,µh) <
β1

2
‖ψh‖2Q̃h

+
1

2β1
‖µh‖

2
W h

<

(
β1

2
+

1

2β1

)
(‖ψh‖Q̃h

+ ‖µh‖W h
)2.

As ‖σh‖Σh,0
=
∥∥σ1

h + ασ2
h

∥∥
Σh,0

≤ (1 + α)(‖ψh‖Q̃h
+ ‖µh‖W h

) we get

b1(σh, ψh) + b2(σh,µh)

‖σh‖Σh,0

< β(‖ψh‖Q̃h
+ ‖µh‖W h

)

and thus (4.13) holds with βσ =
β2
1+1

2β1(1+α) . Using the theory of saddle-point problems

(Chapter 4 in [4]), (4.7) has a unique and stable solution σVh that fulfills

‖σVh ‖L2 4 ‖ divwh‖Q̃′
h

:= sup
φh∈Q̃0

h

(divwh, ψh)L2

‖ψh‖Q̃h

(4.18)

4 sup
φh∈Q̃0

h

‖divwh‖L2‖ψh‖L2

‖ψh‖Q̃h

= hV ‖ divwh‖L2 ,

so property (4.9) is shown.

Remark 13. In the first step of the above estimation the constant depends on the
operator norms of PBV und S which are independent of h. For S we refer to [38],[15].
For the PBV using the implementation given by the coefficients (4.2) the estimation is
clear as λVi

(xj) ∈ (0, 1).

Proof of ii and iii. Now let c ∈ R be a constant on the patch, then the right-hand
side of (4.7) reads not only as∫

ωV

divwh PBV (c− Sc︸ ︷︷ ︸
=0

) dx = 0,

but also as ∫
ωV

divσVh c dx = c

∫
∂ωV

σVh · n dx = 0;

it then follows that the solution σVh even fulfills∫
ωV

divσVh ψh dx =
(
divwh,PBV (ψh − Sψh)

)
L2(ωV )

∀ψh ∈ Q̃h(TωV
),

in contrast to the restriction on Q̃0
h(TωV

) since both sides vanish for a constant test
function on the patch ωV . Using a trivial extension of σVh by 0 on Ω \ ωV , and that

PBV (q̃h − S q̃h) = 0 for all test functions q̃h ∈ Q̃h(T ) with supp(q̃h) ⊂ Ω \ ωV , leads
to (4.10).
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To show (4.11) we use the decomposition of the polynomial space of order k − 2
given by (4.8). Note that by the shift invariance of polynomial spaces, the origin of
the Koszul operator κ can be set to an arbitrary point V . For an arbitrary bh ∈
Πk−1(ωV ) ⊂ Q̃h(TωV

) we get, using the properties of the bubble operator (4.5), the
Oswald operator, and (4.10),∫

ωV

σVh · ∇bh dx = −
∫
ωV

divσVh bh dx = −
∫
ωV

divwh PBV (bh − Sbh︸ ︷︷ ︸
=0

) dx = 0.

For Wh(ωV ) we already know that the solution σVh of (4.7) fulfills

b2(σVh ,µh) =

∫
ωV

σVh · κ~x−V (ξh) dx = 0

and so (4.11) follows. For the case d = 2 the argument is the same.

4.3. Definition of the reconstruction Rh. Now we can define the recon-
struction. For that we define the space

Σh := RT k−1(T ) ⊂ H(div,Ω).

For a given wh ∈ Vh and all V ∈ V let σVh be the solution of (4.7) on ωV extended
by 0 on Ω \ ωV . Then we define the reconstruction as

Rhwh := wh − σh ∈ Vh + Σh with σh :=
∑
V ∈V

σVh .(4.19)

Remark 14. Due to the zero normal trace of the solutions σVh on the patches ωV ,
the sum σh is still normal continuous over facets, thus σh ∈ Σh.

Proof of Theorem 2. For an arbitrary q̃h ∈ Q̃h it holds using (4.10), (4.4), and
the properties of the bubble operator (4.3) that

(divRhwh, q̃h)L2(Ω) = (divwh, q̃h)L2(Ω) −
∑
V ∈V

(divσVh , q̃h)L2(ωV )

= (divwh, q̃h)L2(Ω) −
∑
V ∈V

(divwh,PBV (q̃h − S q̃h))L2(ωV )

= (divwh, q̃h)L2(Ω) − (divwh,
∑
V ∈V
PBV︸ ︷︷ ︸

=I

(q̃h − S q̃h))L2(Ω)

= (divwh, q̃h)L2(Ω) − (divwh, q̃h)L2(Ω) + (divwh,S q̃h)L2(Ω)

= (divwh,S q̃h)L2(Ω),

thus (2.9) is proven. For an arbitrary qh ∈ Qh, we furthermore see, due to Sqh = qh,
that

(div (wh −Rhwh), qh)L2(Ω) = 0,

and, if (divwh, qh)L2(Ω) = 0 ∀qh ∈ Qh, that

(divRhwh, q̃h)L2(Ω) = (divwh, S q̃h︸︷︷︸
∈Qh

)L2(Ω) = 0,(4.20)
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so also (2.10) and (2.11) is shown. Using (4.11) and (4.9) we finally show (2.12) by

(g,wh −Rhwh)L2(Ω) =
∑
V ∈V

(g,σVh )L2(ωV ) =
∑
V ∈V

(g− Pk−2
ωV

g,σVh )L2(ωV )

4
∑
V ∈V
‖g− Pk−2

ωV
g‖L2(ωV )‖σVh ‖L2(ωV )

4
∑
V ∈V
‖g− Pk−2

ωV
g‖L2(ωV )hV ‖divwh‖L2(ωV )

4 |||g|||k−2‖∇wh‖L2(Ω).

5. The reconstruction operator for the mini finite element method. For
the mini finite element method [1] the bubble enriched velocity spaces read

Πk
+(T ) := Πk(T )⊕

{
Πk+d(T ) ∩H1

0 (T )
}

and

Πk
+(T ) := {qh : qh|T ∈ Πk

+(T ) ∀T ∈ T }.

The definition of the mini element now reads as

Vh := [Πk
+(T )]d ∩ [C0(Ω)]d and Qh := Πk(T ) ∩ C0(Ω).

As in the Taylor–Hood case we solve small problems on the vertex patch ωV but
slightly change the right-hand side and the polynomial orders. For that we define

Σh,0(TωV
) := {σh ∈ RT k+d−1(TωV

) : trnσh = 0 on ∂ωV } ⊂ H0(div, ωV ),

Q̃h(TωV
) := Πk+d−1(TωV

) ⊂ L2(ωV ), Q̃0
h(TωV

) := Q̃h(TωV
) ∩ L2

0(ωV ),

and for k ≥ 2 also

W h(ωV ) := κ~x−V (Πk−2(ωV )) ⊂ ΛV := κ~x−V (L2(ωV )) for d = 2,

W h(ωV ) := κ~x−V ([Πk−2(ωV )]3) ⊂ ΛV := κ~x−V ([L2(ωV )]3) for d = 3.

So for a given function wh ∈ Vh we have divwh ∈ Q̃h(TωV
) and seek (σVh , φh,λh) ∈

(Σh,0(TωV
)× Q̃0

h(TωV
)×W h(ωV )) so that

B((σVh , φh,λh), (τh, ψh,µh)) =
(

divwh,PBV
(
ψh − S̃ψh

))
L2(ωV )

(5.1)

∀(τh, ψh,µh) ∈ Σh,0(TωV
)× Q̃0

h(TωV
)×W h(ωV ),

where S̃ : Q̃h(TωV
) → Qh(TωV

). Note that S̃ now maps elementwise polynomials of
degree k + d− 1 to continuous elementwise polynomials of order k.

Remark 15. This new operator S̃ can be seen as the Oswald operator S of order
k applied to polynomials of higher degree.

Proposition 16. Equation (5.1) has a unique solution (σVh , φh,λh) satisfying

i.
∥∥σVh ∥∥L2(ωV )

4 hV ‖divwh‖L2(ωV ) ,

ii.
(
divσVh , q̃h

)
L2(Ω)

=
(

divwh,PBV
(
q̃h − S̃ q̃h

))
L2(ωV )

∀q̃h ∈ Q̃h(T ),

where σVh was trivially extended by 0 on Ω,

iii. and the solution is L2(ωV )-orthogonal on polynomials of order k − 1, i.e.,(
σVh , ξ

)
L2(ωV )

= 0 ∀ξ ∈ [Πk−1(ωV )]d.
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Proof. Proof uses exactly the same arguments as the proof of Theorem 12.

The reconstruction is defined as in (4.19).

Proposition 17. For the reconstruction operator Rh defined by (4.19) it holds
that

i. (divRhwh, q̃h)L2(Ω) =
(

divwh, S̃ q̃h
)
L2(Ω)

∀q̃h ∈ Q̃h,

ii. (div (wh −Rhwh), qh)L2(Ω) = 0 ∀wh ∈ Vh,∀qh ∈ Qh,

iii. (divwh, qh)L2(Ω) = 0 ∀qh ∈ Qh ⇒ (divRhwh, q̃h)L2(Ω) = 0 ∀q̃h ∈ Q̃h,

i.e., divRhwh = 0,

iv. (g,wh −Rhwh)L2(Ω) ≤ Ccons|||g|||k−1‖∇wh‖L2(Ω).(5.2)

Proof. The proof uses exactly the same arguments as the proof of Theorem 2. In
(4.20) it is important that the Oswald operator maps to Qh, which is the reason to
replace S by S̃ for the mini element.

Remark 18. The mini finite element method with a modified right-hand side using
the operator Rh for test functions also fits in the abstract setting of section 3, but
here the consistency error is of order k + 1 due to (5.2), i.e.,

‖∇(u− uh)‖L2 ≤ 2(1 + CF ) inf
wh∈Vh

‖∇(u−wh)‖L2 + Ccons|||∆u|||k−1.

Hence, also in the case of the mini finite element methods, the pressure-dependent
term from the classical estimate is replaced by a pressure-independent consistency
error of the same order.

6. Numerical examples. In this section we give several numerical examples
to validate and confirm the theoretical findings. As the computational framework,
including the implementation of the reconstruction operator Rh, we used NGSolve
(see [43]) and the NGSpy interface. For all numerical examples we use unstructured,
shape regular, and quasi-uniform triangulations T generated by Netgen (see [42]).

6.1. 2-dimensional example. The first example studies the solution

u := curl ζ with ζ := x2(x− 1)2y2(y − 1)2 and p := x7 + y7 − 1

4

of the Stokes problem on the unit square Ω = (0, 1)2 with a given viscosity ν and the
right-hand side f := −ν∆u−∇p.

Tables 1–3 show the L2 and H1 velocity and L2 pressure errors and their esti-
mated order of convergence (eoc) for the modified Taylor–Hood finite element methods
of order k = 2, 3, 4 with ν = 10−3. All methods show the optimal convergence orders
as expected by the theory. Table 4 allows the same conclusions for the modified mini
finite element method of lowest order.

To clearly see the consequences of pressure-robustness, Figure 3 shows the L2

errors for different ν = 10j for j = −8, . . . , 3 on three fixed meshes for the classical
and the modified Taylor–Hood finite element method of order k = 2. There are several
observations to make:

• For ν ≥ 1 the irrotational part in the right-hand side f is not larger than the
divergence-free part. In this situation both methods deliver similar errors.
Due to the additional consistency error, the errors of the modified method
are a bit larger than the errors of the classical method.
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Table 1
Errors for the modified Taylor–Hood finite element method of order k = 2 in section 6.1.

ndof ‖u− uh‖H1 eoc ‖u− uh‖L2 eoc ‖p− ph‖L2 eoc

96 2.05 · 10−2 1.43 · 10−3 7.79 · 10−2

332 5.91 · 10−3 1.794 1.83 · 10−4 2.966 2.69 · 10−2 1.533
1,236 1.54 · 10−3 1.941 2.36 · 10−5 2.956 7.14 · 10−3 1.913
4,772 3.88 · 10−4 1.988 2.95 · 10−6 3.000 1.8 · 10−3 1.988
18,756 9.7 · 10−5 1.999 3.68 · 10−7 3.005 4.51 · 10−4 1.999

Table 2
Errors for the modified Taylor–Hood finite element method of order k = 3 in section 6.1.

ndof ‖u− uh‖H1 eoc ‖u− uh‖L2 eoc ‖p− ph‖L2 eoc

212 3.5 · 10−3 1.03 · 10−4 1.99 · 10−2

772 4.95 · 10−4 2.823 7.02 · 10−6 3.875 3.39 · 10−3 2.554
2,948 6.07 · 10−5 3.026 4.39 · 10−7 3.999 4.71 · 10−4 2.848
11,524 7.45 · 10−6 3.028 2.74 · 10−8 4.003 6.08 · 10−5 2.953
45,572 9.23 · 10−7 3.012 1.71 · 10−9 3.998 7.67 · 10−6 2.986

Table 3
Errors for the modified Taylor–Hood finite element method of order k = 4 in section 6.1.

ndof ‖u− uh‖H1 eoc ‖u− uh‖L2 eoc ‖p− ph‖L2 eoc

376 6.04 · 10−4 1.46 · 10−5 2.95 · 10−3

1,404 3.86 · 10−5 3.967 4.73 · 10−7 4.948 2.02 · 10−4 3.868
5,428 2.34 · 10−6 4.042 1.47 · 10−8 5.011 1.23 · 10−5 4.034
21,348 1.44 · 10−7 4.028 4.54 · 10−10 5.014 7.6 · 10−7 4.021
84,676 8.89 · 10−9 4.013 1.41 · 10−11 5.008 4.73 · 10−8 4.007

Table 4
Errors for the modified lowest-order mini finite element method in section 6.1.

ndof ‖u− uh‖H1 eoc ‖u− uh‖L2 eoc ‖p− ph‖L2 eoc

72 5.27 · 10−2 5.01 · 10−3 0.11
252 2.58 · 10−2 1.032 1.44 · 10−3 1.794 4.2 · 10−2 1.418
948 1.28 · 10−2 1.007 3.9 · 10−4 1.890 1.17 · 10−2 1.838

3,684 6.27 · 10−3 1.033 9.75 · 10−5 1.998 3.03 · 10−3 1.955
14,532 3.09 · 10−3 1.021 2.41 · 10−5 2.016 7.63 · 10−4 1.988

• For ν < 1 the irrotational part in the right-hand side f begins to dominate
and so does the pressure-dependent term in the a priori error estimate. As
predicted by these estimates, the errors of the classical Taylor–Hood finite
element method deteriorate and scale with 1/ν. The modified Taylor–Hood
method, due to its divergence-free test functions in the right-hand side, does
not see the irrotational force and the errors are independent of ν.

• The transition point ν ≈ 1, where the error becomes pressure dominated,
is the same on all three meshes. Hence, mesh refinement cannot heal this
behavior.
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Fig. 3. Errors for the classical (left) and the modified (right) Taylor–Hood finite element
method of order k = 2 on three fixed meshes and several choices of ν in section 6.1. (ndofs is number
of degrees of freedom.)

• The velocity error of the modified method is independent of ν, since uh is ex-
actly the same for every ν by construction of the discretization. The pressure
error however increases for large ν in both the unmodified and the modified
method. This is consistent with the error estimate (3.1).

For the mini finite element method the observations are almost identical. How-
ever, since the pressure space has the same order as the velocity space, the pressure-
dependent contributions in the a priori error estimates converge faster and can com-
pensate smaller values of ν to some extent.

6.2. 3-dimensional example. The second example investigates the velocity
and pressure

u := curl (ζ, ζ, ζ) with ζ := x2(x− 1)2y2(y − 1)2z2(z − 1)2,

p := x5 + y5 + z5 − 1

2

on the unit cube Ω = (0, 1)3 for ν = 10−3. Table 5 lists the L2 and H1 velocity and
L2 pressure errors for the modified Taylor–Hood finite element method of order k = 2.
Also in this 3-dimensional example the convergence rates are optimal.

Remark 19. For the ease of implementation in NGSolve we used Brezzi–Douglas–
Marini elements of order k (see [4] and [9]) instead of the Raviart–Thomas elements of
order k− 1 as the basis for the H(div)-conforming spaces Σh(T ) and the local spaces
Σh,0(TωV

). This does not affect the convergence order of the error.

6.3. Navier–Stokes for a 2-dimensional potential flow. This example stud-
ies a two-dimensional potential flow for the harmonic potential χ := x5−10x3y2+5xy4.
Note that χ is the real part of the analytic function z5 (with z = x+ iy). We look for
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Table 5
Errors for the modified Taylor–Hood finite element method of order k = 2 in section 6.2.

ndof ‖u− uh‖H1 eoc ‖u− uh‖L2 eoc ‖p− ph‖L2 eoc

115 3.48 · 10−3 2.35 · 10−4 0.15
603 2.07 · 10−3 0.745 1.18 · 10−4 0.992 8.03 · 10−2 0.866

3,913 6.38 · 10−4 1.701 1.79 · 10−5 2.717 2.21 · 10−2 1.859
28,269 1.87 · 10−4 1.772 2.53 · 10−6 2.828 5.54 · 10−3 1.998

2.15 · 105 4.86 · 10−5 1.942 3.25 · 10−7 2.958 1.38 · 10−3 2.005

Table 6
Errors for the Taylor–Hood and the modified Taylor–Hood finite element method for the Navier–

Stokes example |T | = 352.

without reconstruction

k ndof ‖u− uh‖H1 ‖u− uh‖L2 ‖p− ph‖L2

2 1,748 1.42 2.21 · 10−2 0.27
3 4,132 8.91 · 10−2 9.02 · 10−4 1.25 · 10−2

4 7,572 1.33 · 10−3 7.4 · 10−6 2.49 · 10−4

with reconstruction

k ndof ‖u− uh‖H1 ‖u− uh‖L2 ‖p− ph‖L2

2 1,748 8.5 · 10−2 8.08 · 10−4 0.26
3 4,132 9.76 · 10−4 7.39 · 10−6 1.48 · 10−2

4 7,572 3.66 · 10−12 1.66 · 10−14 4.94 · 10−4

the solution of the steady incompressible Navier–Stokes equations −ν∆u+ (u ·∇)u+
∇p = 0, div u = 0 with inhomogeneous Dirichlet boundary conditions for ν = 0.1.
The exact solution of the velocity is given by u = ∇χ and p = 664/63−25/2(x2+y2)4,
modeling the collision of five jets in the plane. For the construction and significance
of potential flows the reader may consult [40]. For the nonlinear term it holds that
(u · ∇)u = 1/2∇(u2). Looking at the weak formulation of this term, it holds for all
v ∈ V0 that∫

Ω

(u · ∇)u · v dx =

∫
Ω

∇
(

u2

2

)
· v dx = −

∫
Ω

(
u2

2

)
div v dx = 0.

This orthogonality may not hold in the discrete case, so, similarly to the modified
Stokes problem (2.13), a nonstandard discretization of the nonlinear convection term
is proposed that employs the reconstruction Rh in the velocity test functions∫

Ω

(uh · ∇)uh · Rhvh dx.

In Tables 6 and 7 one can see the differences in the errors, when standard or non-
standard discretizations of the nonlinear convection term are used in the case of
Taylor–Hood elements of order k = 2, 3, 4 on two consecutive meshes with 352 and
1,408 elements. Note that for k = 4 the exact solution satisfies u ∈ Vh, but only for
the nonstandard discretization does the velocity error vanish. Similarly to the Stokes
example 6.1 we see that a mesh refinement does not heal the observed problems. Al-
though the values predict a proper convergence rate of the method, a more detailed
analysis of the nonlinear problem is needed to guarantee an error estimate that fits
the results in section 3; see also [32].



DIVERGENCE-FREE RECONSTRUCTION OPERATORS 1311

Table 7
Errors for the Taylor–Hood and the modified Taylor–Hood finite element method for the Navier–

Stokes example with |T | = 1, 408.

without reconstruction

k ndof ‖u− uh‖H1 ‖u− uh‖L2 ‖p− ph‖L2

2 6,600 0.39 2.91 · 10−3 6.55 · 10−2

3 16,004 1.25 · 10−2 6.56 · 10−5 1.59 · 10−3

4 29,572 8.29 · 10−5 2.27 · 10−7 1.56 · 10−5

with reconstruction

k ndof ‖u− uh‖H1 ‖u− uh‖L2 ‖p− ph‖L2

2 6,600 2.12 · 10−2 1.04 · 10−4 6.46 · 10−2

3 16,004 1.2 · 10−4 4.55 · 10−7 1.88 · 10−3

4 29,572 4.28 · 10−12 9.59 · 10−15 2.99 · 10−5

Appendix A.

Theorem 20. For Ω ⊆ R3, V ∈ Ω, and k ≥ 0 it holds that

{κ~x−V (q1) : q1 ∈ [Πk(Ω)]3} = {κ~x−V (q2) : q2 ∈ [Πk(Ω)]3,div q2 = 0}.

Proof. Without loss of generality we can set V = 0. For k = 0 there is nothing
to prove. In the case k ≥ 1, for q1 ∈ [Πk(Ω)]3 we define

q2 := q1 + ~xw

with w ∈ Πk−1(Ω). Note that

κ~x(q2) = ~x× q2 = ~x× q1 + ~x× ~x︸ ︷︷ ︸
=0

w = κ~x(q1),(A.1)

and

div q2 = div(q1 + ~xw) = div q1 + div(~x)w + ~x · ∇w = div q1 + 3w + ~x · ∇w.

As we want to have div q2 = 0, we have to solve the equation

3w + ~x · ∇w = −div q1.(A.2)

Due to the finite dimensionality of Πk−1(Ω), this linear inhomogeneous equation can
be solved, if we show that from

3w + ~x · ∇w = 0 it follows that ⇒ w = 0.(A.3)

For k = 1 it holds that w ∈ Π0(Ω) and q1 ∈ [Π1(Ω)]3 and the statement is obviously
true. In the case k ≥ 2 let Hk := {xiyjzl : 0 ≤ i, j, l ≤ k, i+ j + l = k} be the space
of homogeneous polynomials of order k. First note that for hi ∈ Hi it holds, due to
Euler’s identity, that

3hi + ~x · ∇hi = (3 + i)hi.(A.4)
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Now we use that the polynomial w can be represented in terms of homogeneous
polynomials, thus

w =

k−1∑
i=0

cihi,

with coefficients ci ∈ R and hi ∈ Hi. Using the assumption (A.3) and (A.4) we now
have

0 = 3w + ~x · ∇w =

k−1∑
i=0

ci(3 + i)hi.

As all hi are linearly independent it follows that ci = 0 for all i = 0, . . . , k − 1, thus
w = 0. Therefore, we can solve (A.2) and for every q1 we find a q2 with div q2 = 0
and, due to (A.1), the theorem is shown.

Conclusion. In this paper we presented a design for a reconstruction operator
that maps discretely divergence-free velocity fields of Taylor–Hood and mini finite
element methods onto exactly divergence-free ones to set up a pressure-robust finite
element method. We thereby closed an important gap in the foundation of the new
family of pressure-robust modifications of classical finite element methods started by
[29]. The general concept works now for almost every popular classical finite element
method. Moreover, the operator can be used as a postprocessing of the discrete
solution in applications where exactly divergence-free velocity fields are needed, for
example, in coupled transport equations [25].
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