
Technical University of Vienna

Bachelor thesis

Numerical computation for the
incompressible Navier Stokes

equations and the coupling with the
convection diffusion equation for the

temperature

Author:
Philip

Lederer

Supervisor:
Prof. Dr. Joachim

Schöberl

2013

1

Abstract
This thesis discusses the Navier-Stokes equations, a non-linear partial differential equa-
tion describing the velocity of an incompressible fluid. Furthermore, those equations will
be connected with the convection diffusion equation for the temperature to take a closer
look on the phenomenon of natural convection.

The first section deals with the modelling of those partial differential equations includ-
ing the Boussinesq approximation for the change of density which will occur by different
temperatures in the fluid.

The second section will describe how to solve those equations using the computer. We will
talk about mixed methods for the Navier-Stokes equations and the discontinuous galerkin
method for the convection diffusion equation of the temperature. As those two equations
are both time-dependent we will also discuss two different ways for the time discretization.

Section three and four contain practical examples. It is shown how to implement the
discussed equations in NGsolve and will compare our results with the data given by the
papers [5] and [8].

2

Acknowledgements
This thesis would not have been possible without the help and countless suggestions
of Prof. Dr. Joachim Schöberl. Thanks for always keeping your doors open and spend-
ing time in helping me out of problems. Also i really want to thank him for giving me
the chance to handle such a great topic, and that he always tried to focus on my interests.

Additionally I want to thank my colleagues and the whole team of the Institute for
Analysis and Scientific Computing at the Technical University of Vienna for giving me a
helping hand when it was needed.

CONTENTS 3

Contents

1 Modelling 5
1.1 Convection diffusion equation for the temperature 5
1.2 Navier Stokes equations . 6
1.3 Natural convection . 8

2 Discretization methods 9
2.1 Mixed methods . 9

2.1.1 Abstract theory . 9
2.1.2 LBB-condition and the Brezzi Theorem 10
2.1.3 Stokes equation . 11
2.1.4 Taylor-Hood element . 12

2.2 Discontinuous Galerkin Method . 13
2.2.1 The convection equation . 13
2.2.2 The diffusion equation . 15

2.3 Time discretization . 16
2.3.1 Implicit Euler method . 17
2.3.2 Diagonal implicit Runge-Kutta method 17

3 Numerical computation using NGsolve 19
3.1 PDE-File . 19
3.2 Creating new procedures and integrators 21

3.2.1 Integrators . 21
3.2.2 Numerical procedures . 24

3.3 The Navier Stokes equations . 25
3.3.1 Non-linear part . 25
3.3.2 Stokes equations . 26
3.3.3 PDE file for the Navier Stokes equations 27
3.3.4 Procedure for the stationary Navier Stokes equations 28
3.3.5 Procedure for the in stationary Navier Stokes equations 29

3.4 Natural convection . 31
3.4.1 PDE file for the natural convection 31
3.4.2 Procedure for the coupled problem 32

4 Examples 33
4.1 Laminar flow around a cylinder . 33

4.1.1 Fluid properties . 33
4.1.2 Geometry . 33
4.1.3 Computed values . 34
4.1.4 Test case 1 - stationary . 36
4.1.5 Test case 2 - unsteady . 37

4.2 Rayleigh-Benard convection . 41
4.2.1 Fluid and heat properties . 41
4.2.2 Geometry . 42
4.2.3 Solution . 43

LIST OF FIGURES 4

List of Figures

1 P 2 and P 1 Taylor-Hood elements . 13
2 Element T and T ′ . 14
3 Geometry and mesh for the laminar flow test case 34
4 Stationary solution of the velocity and pressure with k = 15 and stepend = 15 38
5 Drag coefficient cD and lift coefficient cL for k = 5 and using the DIRK

method . 39
6 Absolute value of the velocity and value of pressure, k = 5, t = 5 s, stepend =

5, dt = 0.01 . 40
7 Absolute value and direction of the velocity near the cylinder, k = 5, t =

5 s, stepend = 5, dt = 0.01 . 40
8 Geometry and mesh of the natural convection test case 42
9 Velocity and temperature at t = 0 s . 43
10 Velocity and temperature at t = 100 s . 44
11 Velocity and temperature at t = 500 s . 44

1 MODELLING 5

1 Modelling

In the first section we focus on the modelling of the convection diffusion equation for the
temperature, the Navier Stokes equations for the velocity of fluids and the Boussinesq
approximation for density variations to describe the natural convection phenomenon.
Therefor, we will need two theorems:

Theorem 1 : (Gauss Theorem) For V ⊂ R3 compact with a piecewise smooth boundary
∂V , and F in C1(U,R3) for an open subset U ⊂ V we have:∫

V

div(F) dx =

∫
∂V

F · n ds (1)

Theorem 2 : (Transport theorem of Osborne Reynolds) For each continuous and on Ω
differentiable function Φ : Ω× [0,∞]→ R and a vector field b : R3 → R3 we have for all
V (t) ⊂ Ω:

∂

∂t

∫
V (t)

Φ(x, t) dx =

∫
V (t)

(
∂Φ

∂t
+ div(Φb)

)
(x, t) dx (2)

1.1 Convection diffusion equation for the temperature

In search for an equation for the evolution of the temperature T (x, t) in an homogeneous
bounded domain Ω with x ∈ Ω, t > 0, first a control volume V ⊂ Ω is examined closer.
Because of the conservation theorem of heat, that in fact describes the conservation of
energy, we have:

heat increase in V = −heatflux through ∂V + heat produced in V.

The heat-energy itself is given by the integral over the temperature and a material de-
pendent constant, the specific heat C. As C has the SI unit J/(kgK), and we have an
integral over the volume V , we have to add the density ρ∫

V

CρT (x, t) dx.

So, the increase of the heat is given by the derivative by time

heat increase in V =
d

dt

∫
V

CρT (x, t) dx =

∫
V

CρTt(x, t) dx. (3)

The heat produced in V should be given by a heat-source with density function h(x, t).

heat produced in V =

∫
V

h(x, t) dx. (4)

Finally, we take a closer look on the heat through ∂V . We define the function q(x, t) as
the heat flux, such that

heat through ∂V =

∫
∂V

q · n ds. (5)

1 MODELLING 6

To describe the heat flux we use Fourier’s law, which states that the heat flux is propor-
tional to the negative gradient of the temperature, and include a term that describes the
flow speed. We get the constitutative equation

q = −κ∇T + CρbT (6)

with the thermal conductivity κ and a vector field b. Combining (3), (4), (5) and (6) we
get ∫

V

CρTt(x, t) dx =

∫
∂V

(κ∇T − CρbT) · n ds+

∫
V

h(x, t) dx.

This equation can be simplified by using Gauss’s theorem (1) on the surface integral
yielding ∫

V

CρTt(x, t) dx =

∫
V

div(κ∇T) dx−
∫
V

Cρdiv(bT) dx+

∫
V

h(x, t) dx.

As we assume enough smoothness of the integrated functions, and because the Gauss
theorem is legit for all subsets V ⊂ Ω we may integrate over Ω and get the strong form:

CρTt(x, t) = div(κ∇T)− Cρdiv(bT) + h(x, t) in Ω

As we have a homogeneous domain, κ is constant and we can write that outside the
divergence term. After dividing by Cρ and pushing the divergence terms on the left side
we get the partial differential equation for the temperature

∂T

∂t
− λ∆T + div(bT) = q in Ω (7)

with λ = κ
Cρ

and q = h
Cρ

. See [7] [9].

1.2 Navier Stokes equations

The Navier Stokes equations, named after Claude-Louis Navier and George Gabriel
Stokes, is a non-linear partial differential equation that describes the motion and the
velocity u(x, t), of fluids with x ∈ Ω and t > 0. In our case, we want to focus on incom-
pressible fluids and again use a control volume V (t) ⊂ Ω for the modelling.
From the point of view of a physicist, the first notion to be discussed is the conservation
of mass ∫

V (t)

ρ(x, t) dx = const ∀t ∈ [0,∞). (8)

Using the transport theorem (2) with b(x, t) = u(x, t), which is the velocity of the fluid,
and Φ(x, t) = ρ(x, t), the derivative with respect to time on the left side becomes 0, and
consequently

0 =
∂ρ

∂t
+ div(ρu) (9)

in V × [0,∞). The transport theorem (2) is valid for all subsets V ⊂ Ω, so (9) applies
on Ω× [0,∞). Because we have an homogeneous fluid, ρ is constant, and the derivative
again becomes 0. We get the continuity equation

div(u) = 0. (10)

1 MODELLING 7

This equation says, that no mass is produced in Ω as time elapses. Next we consider the
conservation of momentum

m(t) =

∫
V

ρ(x, t)u(x, t) dx

and formulate Newtons second law

d

dt
m(t) = F,

where F is the force acting on an object. This force can be divided into the force f which
occurs in V ∫

V

ρ(x, t)f(x, t) dx

and a force which occurs on the surface ∂V∫
∂V

σ(x, t) · n(x, t) ds,

where σ is the stress tensor. Thus brings us to

d

dt
m(t) =

∫
V

ρ(x, t)f(x, t) dx+

∫
∂V

σ(x, t) · n(x, t) ds. (11)

In the next step we use the transport theorem (2) on each component of the velocity on
the left side of (11)

d

dt

∫
V

ρui dx =

∫
V

(
∂

∂t
(ρui) + div(ρuiu)

)
(x, t) dx.

and the Gauss theorem (1) on the right side of (11)

d

dt
m(t) =

∫
V

ρ(x, t)f(x, t) + div(σ(x, t)) dx.

Assuming enough smoothness of the functions, we integrate over Ω and because the Gauss
theorem (1) and the transport theorem (2) are legit for all V ⊂ Ω we get the strong form:

∂

∂t
(ρu) + (div(ρuiu))i=1:3 = ρf + div(σ). (12)

Again, because ρ is constant, we can simplify the divergence term of the velocity in (12)
to

div(ρuiu) = ρdiv(uiu) = ρ

∇ui · u+ ui div(u)︸ ︷︷ ︸
=0

 = ρ∇ui · u,

and we get the convection term

(div(ρuiu))i=1:3 = ρ

u · ∇u1

u · ∇u2

u · ∇u3

 = ρ(u · ∇)u. (13)

As the fluid is viscose, the stress tensor σ can be further refined, to calculate the div(σ)
term in the strong formulation (12). Thanks to physics we know that

σ(x, t) = −p(x, t)I + τ(∇u(x, t)),

where I := (δij)i,j=1:3 is the unit tensor, and p is the pressure. For a Newtonian fluid, τ
has to achieve the following requirements:

1 MODELLING 8

• τ is just linear dependant on the gradient of the velocity

• τ is symmetric

• τ is invariant in rotation

By using that information, physics tells us that

τ(∇u) = λ(div(u))I + 2νD(u)

where

D(u) =
1

2
(∇u+ (∇u)T) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
i=1:3

is the deformation tensor, and λ, ν are the dynamic viscosities. So we get

div(σ) = div

−pI + λ(div(u)︸ ︷︷ ︸
=0

)I + 2νD(u)

 (14)

= −div(pI) + νdiv
(
(∇u+ (∇u)T)

)
(15)

= −div(pI) + νdiv (∇u) + div
(
(∇u)T

)
(16)

= −∇p+ ν∆u. (17)

By combining the continuity term (10), the strong formulation (12), the convection term
(13) and the divergence of the stress tensor (17) we finally get the Navier Stokes equations

ρ
∂u

∂t
− ν∆u+ ρ(u · ∇)u+∇p = ρf

div(u) = 0
(18)

See [2] [3].

1.3 Natural convection

The natural convection is a problem arising from the coupling of the Navier Stokes equa-
tions discribing the motion of the fluid, and the convection diffusion equation for the
temperature. In fact the forces which induce natural convection are produced due to
variable gravity forces that occur because of the variation of the density in the fluid af-
fected by the non-uniformity of the temperature.
More precisely, it is intended to model heat that is applied on the bottom, and cooling
that is applied on the top, what will produce a lifting force that will act against the grav-
ity force g. To model that lifting force we use the Boussinesq approximation, which says
that density differences are so small that they can be neglected except in terms where
they appear in a multiplication with g. Therefore we will use

g′ = g
ρ1 − ρ2

ρ

instead of g. ρ could be approximated by either ρ1 or ρ2 because the difference ∆ρ =
ρ1 − ρ2 is really small.

2 DISCRETIZATION METHODS 9

In our example we will calculate the difference of the densities by using a linear formula-
tion including the temperature

g′ = gρ0(1− β(T − T0))

where ρ0 is a reference density and T0 is a reference temperature. So with ρ0 and g′ as a
force in (39) we get:

ρ0
∂u

∂t
− ν∆u+ ρ0(u · ∇)u+∇p = gρ0(1− β(T − T0))

and after dividing by ρ0

∂u

∂t
− ν

ρ0

∆u+ (u · ∇)u+
∇p
ρ0

= g(1− β(T − T0)),

with g as a vector g =

 0

−9.81

. For the temperature T we will use (7) with the velocity

u for the vector field b
∂T

∂t
− λ∆T + div(uT) = q. (19)

As can be seen, the two partial differential equations are coupled. T is used in the Navier
Stokes equations for gravity force variations, and the velocity u as a vector field in the
convection diffusion equation for the temperature. See [5].

2 Discretization methods

In this section we want to discuss how to get a proper numerical solution for our equations.
For that, we introduce different methods and deal with the problem of a uniquely and
stable solution.

2.1 Mixed methods

The main application for mixed methods are finite element methods where two spaces
are used to approximate two different variables. Quite often the second variable is intro-
duced in the formulation because of the physical interest and is usually related to some
derivatives of the original variable like in the elasticity equation. In other cases there are
two natural independent variables as in the Navier Stokes equations, where we have the
velocity and the pressure. In such cases, mixed methods seem to be the most natural
solution strategy.

2.1.1 Abstract theory

A mixed variational formulations implies two Hilbert spaces V and Q, bilinear-foms

a(u, v) : V × V → R
b(u, q) : V ×Q→ R

2 DISCRETIZATION METHODS 10

and continuous linear-forms

f(v) : V → R
q(q) : Q→ R

The problem is to find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v) ∀v ∈ V
b(u, q) = g(q) ∀q ∈ Q

Contrary to the ordinary case, where we have a system of equations, we now want to
combine them and look at the mixed method as variational problem on the product
space V ×Q. This can be done by simply adding the two lines. So now we want to find
a tuple (u, p) ∈ V ×Q such that

a(u, v) + b(u, q) + b(v, p) = f(v) + g(q) ∀(v, q) ∈ V ×Q

Let us define the big bilinear-form B(·, ·) : (V ×Q)× (V ×Q)→ R as

B((u, p), (v, q)) = a(u, v) + b(u, q) + b(v, p),

so we can write the mixed method as single variational problem:

Find (u, p) ∈ V ×Q : B((u, p), (v, q)) = f(v) + g(q) ∀(v, q) ∈ V ×Q

See [10].

2.1.2 LBB-condition and the Brezzi Theorem

The fundamental question arises, if there is a stable and uniquely solution for the mixed
problem. This is given by the work of the Russian mathematician Olga Alexandrowna
Ladyschenskaja, the Czech-American mathematician Ivo Babuška and the Italian math-
ematician Franco Brezzi. They showed, that under the some well defined conditions, a
saddle point problem, like that one we have, provides a uniquely stable solution. To see
this, some linear operators provided by the Riesz representation theorem are introduced:

A : V → V, u→ Au so that (Au, v)V = a(u, v) ∀v ∈ V
B : V → Q, u→ Bu so that (Bu, q)Q = b(u, q) ∀q ∈ Q
B∗ : Q→ V, p→ B∗p so that (B∗p, v)V = b(v, p) ∀v ∈ V

By this, the mixed variational problem can be written as operator equation

Au+B∗p = JV f

Bu = JQg

using the Riesz-Isomorphismus JV : V ∗ → V and JQ : Q∗ → Q, or also(
A B∗

B 0

)(
u
p

)
=

(
JV f
JQg

)
.

2 DISCRETIZATION METHODS 11

Such linear equation systems including a block matrix of the form(
A B∗

B 0

)
are called saddle-point problems. The Brezzi Theorem, including the LBB-condition,
states the precise requirements to guarantee a uniquely stable solution.

Theorem 3 : (Brezzi’s theorem) Assume that a(., .) and b(., .) are continuous bilinear-
forms

a(u, v) ≤ α2‖u‖V ‖v‖V ∀u, v ∈ V
b(u, q) ≤ β2‖u‖V ‖q‖Q ∀u ∈ V, ∀q ∈ Q.

Assume there holds coercivity of a(., .) on the kernel, i.e.,

a(u, u) ≥ α1‖u‖2
V ∀u ∈ V0

with V0 := {v : Bv = 0}, and there holds the LBB-condition

sup
u∈V

b(u, q)

‖u‖V
≥ β1‖q‖Q ∀q ∈ Q. (20)

Then the mixed problem is uniquely solvable, and the solution fullfills the stability esti-
mate

‖u‖V + ‖p‖Q ≤ c{‖f‖V ∗ + ‖g‖Q∗},

with the constant c depending on α1, α2, β1, β2. See [10].

2.1.3 Stokes equation

Next we choose a simpler model problem, the Stokes equations, which are in fact the same
as the Navier Stokes equations, but used for incompressible fluids with a high viscosity.
In this case the divergence term can be neglected, and so it is easier to analyse them.
Assume Ω ⊂ R2 with a piecewise smooth boundary, then the Stokes equations can be
written as:

−ν∆u+∇p = f in Ω

div(u) = 0 in Ω

u = 0 on ∂Ω

(21)

Again u : Ω → R is the velocity and p : Ω → R is the pressure. When there exist
functions u ∈ [C2(Ω)∩C0(Ω)]2 and p ∈ C1(Ω), then u and p are called classical solutions.
Since we have Dirichlet boundary conditions, the pressure is thereby defined up to an
additive constant. Usually, the standardization∫

Ω

p dx = 0 (22)

is used.
To get the weak formulation, we multiply the first line with test-functions v ∈ [H1

0 (Ω)]2,

2 DISCRETIZATION METHODS 12

the second line with test-functions q ∈ L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω
q dx = 0}∫

Ω

−ν
=∆u︷ ︸︸ ︷

div(∇u) v +

∫
Ω

∇pv =

∫
Ω

fv∫
Ω

div(u)q = 0

integrate by parts

∫
Ω

ν∇u∇v +

=0︷ ︸︸ ︷∫
∂Ω

v∇un ds−
∫

Ω

div(v)p+

=0︷ ︸︸ ︷∫
∂Ω

p(v · n) ds =

∫
Ω

fv∫
Ω

div(u)q = 0

and use −p as value for the pressure (this is not affecting the solution) to get∫
Ω

ν∇u∇v +

∫
Ω

div(v)p =

∫
Ω

fv∫
Ω

div(u)q = 0.

(23)

Together with

a(u, v) :=

∫
Ω

ν∇u∇v dx,

b(u, q) :=

∫
Ω

div(u)q dx,

(f, v) :=

∫
Ω

fv dx,

we get the the saddle point problem: Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = (f, v) ∀v ∈ V
b(u, q) = 0 ∀q ∈ Q

See [10].

2.1.4 Taylor-Hood element

In the last sections we have provided the theoretical results needed for the analysis of
a Galerkin discretization for the stokes equation. The difficulty lies in finding spaces
Vh ⊂ V = [H1

0 (Ω)]2 and Qh ⊂ Q = L2
0(Ω), so that the LBB-condition (20)

sup
u∈Vh

∫
Ω

div(u)q

‖u‖Vh
≥ β1‖q‖Qh ∀q ∈ Qh.

is still valid. A quite famous element is the Taylor-Hood element (Figure 1) with the
chosen spaces

Vh := {vh ∈ [C(Ω)]2 ∩ [H1
0 (Ω)]2 : vh|T ∈ P k for T ∈ Th}

Qh := {qh ∈ C(Ω) ∩ L2
0(Ω) : qh|T ∈ P k−1 for T ∈ Th}.

2 DISCRETIZATION METHODS 13

Figure 1: P 2 and P 1 Taylor-Hood elements

With the right triangulation Th, it can be shown, that for k > 1 the LBB-condition (20)
is valid. For a proof we want to refer to [6, Chp. VI]. The other assumptions for Brezzi’s
theorem (2.1.2) can be shown with the common methods. See [1].

2.2 Discontinuous Galerkin Method

Next we want to introduce a finite element method used for numerical calculations of
convection diffusion equations like (7) where the convection term is dominant. The
difference to common methods is, that we choose finite element spaces that are piecewise
polynomials and do not provide continuity across element boundaries

V DG
h := {v ∈ L2 : v|T ∈ P k} (24)

2.2.1 The convection equation

Assume Ω ⊂ R2 with a piecewise smooth boundary and a vectorfield b : R2 → R2 with
div(b) = 0, then the convection equation is: Find u : R→ R with

div(bu) = f in Ω

u = uD on ∂Ω.

To get the weak formulation we first integrate on Ω and multiply with test functions
v ∈ L2, v|T ∈ H1(T)∫

Ω

div(bu)v =

∫
Ω

(b · ∇u+ u

=0︷ ︸︸ ︷
div(b))v =

∫
Ω

(b · ∇u)v =

∫
Ω

fv.

Next we want to integrate by parts. To do that, we have to assume that the test functions
are piece-wise smooth:∫

Ω

(b · ∇u)v =
∑
T

−∫
T

u(b · ∇v) +

∫
∂T

=uvbn︷ ︸︸ ︷
u(b · vn)

 =

∫
Ω

fv ∀v ∈ L2, v|T ∈ H1(T).

The question is, which value we use for u on the boundary ∂T . For that, we assume that
u ∈ V DG

h , and choose the upwind value

uup :=

{
u|T for bn > 0 (outflow boundary)

u|T ′ for bn ≤ 0 (inflow boundary) and T ′neighbour triangle
(25)

2 DISCRETIZATION METHODS 14

Figure 2: Element T and T ′

If an edge E ⊂ ∂T is on the domain inflow boundary Γin ⊂ ∂Ω, the Dirichlet boundary
value uD is taken as upwind value (25). So now the weak formulation can be written as∑

T

(
−
∫
T

u(b · ∇v) +

∫
∂T\Γin

bnu
upv

)
︸ ︷︷ ︸

=:ADGconv(u,v)

=

∫
Ω

fv −
∫

Γin

bnuDv︸ ︷︷ ︸
=:fDG(v)

∀v ∈ L2, v|T ∈ H1(T).

and the DG finite element method is now: Find uh ∈ V DG
h so that

ADGconv(u, v) = fDG(vh) ∀vh ∈ V DG
h .

Next we want to reformulate ADG by combining the integral of the element-outflow bound-
ary of T with the neighbour boundary of T ′. Consider that∫

∂T ′in

bnT ′u
upvT ′ = −

∫
∂Tout

bnTu|TvT ′

on the shared boundary because bnT ′ = −bnT (see figure 2). By doing that, we can just
sum over all ∂Tout with the special case vT ′ = 0 for ∂Tout ⊂ ∂Ω and get

ADGconv(u, v) =
∑
T

−∫
T

u(b · ∇v) +

∫
∂Tout

bnu
up (v|T − v|T ′)︸ ︷︷ ︸

=:[v]

 . (26)

If we integrate by parts back on each element we see that

ADGconv(u, v) =
∑
T

(∫
T

(b · ∇u)v −
∫
∂T

bnuv +

∫
∂T\Γin

bnu
upv

)
(27)

=
∑
T

∫
T

(b · ∇u)v +

∫
∂Tin

bn (u|T ′ − u|T)︸ ︷︷ ︸
−[u]

v

 . (28)

By averaging the two formulations (26) and (28) we get the final form

ADGconv(u, v) =
1

2

∑
T

(∫
T

{(b · ∇u)v − u(b · ∇v)}
)

+
1

2

∑
E∈Ω◦

(∫
E

|bn|[u][v]

)
+

1

2

∫
∂Ω

|bn|uv

(29)

2 DISCRETIZATION METHODS 15

An example should illustrate our findings: Let E be an internal edge between T1 (seen
as the upwind triangle) and T2 (seen as the downwind triangle). Then, T1 contributes
from (26) the term on its outflow-edge

1

2
bn1u1(v1 − v2),

and T2 contributes from (28) on its inflow-edge

1

2
bn2(u1 − u2)v2.

By adding those two terms and the fact that 0 < bn1 = −bn2 , we get the term that occurs
in (29)

1

2
bn1(u1(v1 − v2)− (u1 − u2)v2) =

1

2
|bn1|[u][v].

If E is a boundary edge, then either (26) or (28) contributes the term 1
2
|bn1 |uv. With

this construction the method is exact for the correct u ∈ [C2(Ω)∩C0(Ω)]2, and stable in
V DG
h , therefore we get convergence. See [10].

2.2.2 The diffusion equation

Assume Ω ⊂ R2 with a piecewise smooth boundary. Then the diffusion equation is: Find
u : R→ R with

−∆u = f in Ω

u = uD on ∂Ω.

Again we first integrate on Ω, multiply with test functions v ∈ L2, v|T ∈ H1(T)∫
Ω

−∆uv =

∫
Ω

fv,

and integrate by part (u ∈ V DG
h)

∑
T

∫
T

∇u∇v −
∫
∂T

(∇u · n)︸ ︷︷ ︸
∂u
∂n

v

 =

∫
Ω

fv ∀v ∈ L2, v|T ∈ H1(T).

As for the convection equation we use the definitions:

Jump: [u] := u1 − u2

Mean value: 〈∂u
∂n
〉 :=

1

2

(
∂u1

∂n1

+
∂u2

∂n2

)
.

Next we do some transformations, stabilize and symmetrize to get:∑
T

(∫
T

∇u∇v
)
−
∑
E

(∫
E

〈∂u
∂n
〉[v]

)
−
∑
E

(∫
E

〈∂v
∂n
〉[u]

)
+
∑
E

α

h

∫
E

[u][v]︸ ︷︷ ︸
=:ADGdiff (u,v)

=

∫
Ω

fv

(30)
with a factor α. For the correct solution u, the jump [u] = 0, so when we integrate back
by parts we get the diffusion equation again. Conventionally, ADGdiff is elliptic on V DG

h ,
provided that α = O(1) is large enough. Again we get consistence and stability on V DG

h ,
so convergence for our discretization. See [10].

2 DISCRETIZATION METHODS 16

2.3 Time discretization

Finally we want to find a way to get a discretization of time independent problems as we
discussed in section (1). By using a differential operator L(u) we can write the problem
in the short form:

∂u

∂t
+ L(u) = f(t) in Ω× [0, T]

u = uD on ∂Ω× [0, T]

u = u0 in Ω× 0

For our methods we first want to solve the problem in Ω, so we look for a discretization of
space, and then use a method for the time. To do that, we integrate over Ω and multiply
with proper test functions v,∫

Ω

∂u

∂t
v +

∫
Ω

L(u)v =

∫
Ω

fv ∀v ∈ V.

Together with the bilinear form a

a(u, v) =

∫
Ω

L(u)v

and a linear form F

F (v) =

∫
Ω

fv,

we get the formulation(
∂u

∂t
, v

)
L2

+ a(u, v) = F (v) ∀v ∈ V, ∀t ∈ [0, T]

u(0) = u0.

With a discretization uh : [0, T]→ Vh, where ndof is the number of degrees of freedom:

uh(x, t) :=

ndof∑
i=1

ui(t)φi(x), (31)

we can write(
∂

∂t
uh, φj

)
L2

+ a(uh, φj) = F (φj) ∀j = 1 . . . ndof, ∀t ∈ [0, T].

With Mij :=
∫
T
φiφj, the so called mass matrix, we can write our problem as:

Mu′(t) + Au(t) = f in Ω× [0, T]

u = u0 in Ω× 0
(32)

with the coefficient vector u = (ui)i=1:ndof . For the ease of notation, we will write uh for
u from now on.

2 DISCRETIZATION METHODS 17

2.3.1 Implicit Euler method

One of the simplest ways is to use one of the Euler methods. Lets define a equidistant
partitioning of the time interval

0 = t0 < t1 < · · · < tm−1 < tm = T

with τ := tj − tj−1, and integrate over one segment∫ tj+1

tj

Mu′h(s) + Auh(s) ds =

∫ tj+1

tj

f(s) ds.

or

M (uh(tj+1)− uh(tj)) +

∫ tj+1

tj

Auh(s) ds =

∫ tj+1

tj

f(s) ds.

Now we can choose between different numerical integration rules to replace the integrals.
We use the right-side rule and with the notation uh(tj) := uj we get

M(uj+1 − uj) + τAuj+1 = τfj+1.

or
(M + τA)uj+1 = Muj + τfj+1.

In case of a right-side rule, a linear system is solvable in any case. So we get

uj+1 = (M + τA)−1(Muj + τfj+1), (33)

which is called the implicit Euler method. See [4].

2.3.2 Diagonal implicit Runge-Kutta method

A famous class of one-step methods for time discretization are the so called Runge-Kutta
methods. We start with our equation (32), transform it into the integral form

Mu′h(t) + Auh(t) = f(t)

Mu′h(t) = f(t)− Auh(t)
u′h(t) = M−1(f(t)− Auh(t))︸ ︷︷ ︸

:=F (t,uh(t))

,

and integrate over one interval of the partitioning∫ tj+1

tj

u′h(s) ds =

∫ tj+1

tj

F (s, uh(s)) ds

so that

uh(tj+1) = uh(tj) +

∫ tj+1

tj

F (s, uh(s)) ds. (34)

Next we can choose between different quadrature rules for the right integral, including
normed integration points cj ∈ [0, 1] and normed weights bj for j = 1, . . . , s. With that
we get

uh(tj+1) = uh(tj) + τ

s∑
l=1

blF (tj + clτ, uh(tj + clτ)). (35)

2 DISCRETIZATION METHODS 18

c A

bT

Table 1: Scheme of Butcher tableau

The problem is, that we do not know the values of uh(tj + clτ), so again we use numeric
integration

uh(tj + ciτ) = uh(tj) +

∫ tj+ciτ

tj

F (s, uh(s)) ds ≈ uh(tj) + τ

s∑
l=1

ailF (tj + clτ, uh(tj + clτ)).

Thus, ail are the normed weights for∫ ci

0

F (x) dx ≈
s∑
l=1

ailF (cl).

With uh(tj) := uj we finally get:

uh(tj + ciτ) := uj,i = uj + τ
s∑
l=1

ail F (tj + clτ, uj,l)︸ ︷︷ ︸
=kl

i = 1, . . . , s

uj+1 = uj + τ
s∑
l=1

blF (tj + clτ, ui,l) = uj + τ
s∑
l=1

bikl

ki := F (tj + ciτ, uj + τ
s∑
l=1

ailkl)

.

We want to focus on autonomous differential equations, because every non autonomous

can be rewritten into an autonomous one, so ci =
s∑
l=1

ail. A good way to illustrate a

Runge-Kutta method is to use a Butcher-tableau. There the coefficients ail, bj and cj are
displayed with a matrix A ∈ Rs×s and two vectors b ∈ Rs and c ∈ Rs. When we want to
use an explicit method, then the matrix A has to be a strictly lower triangular matrix, so
we have s(s−1)

2
coefficients for the ail and s coefficients for the bj. When we want to use

an implicit method, we have to solve a linear system in every step. As we can see now,
the implicit Euler method is also a Runge-Kutta method with s = 1 and the coefficients
c1 = 1, b1 = 1 and a11 = 1.

The diagonal implizit Runge-Kutta methods, abbreviated by DIRK, have a lower di-
agonal matrix A with aii = α for i = 1, . . . , s. The constant α is chosen for stability
reasons. We want to have two integration points, so s = 2, and to get a L-stable method

one row of A has to be bT . Together with ci =
s∑
l=1

ail we get the butcher tableau seen in

table (2). The method should have the order 2, so we have to consider that

s∑
i=1

bici =
1

2

so

(1− α)α + α =
1

2
.

3 NUMERICAL COMPUTATION USING NGSOLVE 19

α α 0

1 1− α α

1− α α

Table 2: Butcher tableau for 2 step, L-Stable DIRK

This equation has the solutions α1 = 1 −
√

1
2

and α2 = 1 +
√

1
2
. As c1 = α is our first

integration point, we choose the solution α = α1, because otherwise we would jump out
of the time interval τ . For the solution of the next step, no we have to compute the ki

k1 = F (tj + ατ, uj + ταk1) = M−1(ft+ατ − A(uj + ταk1))

k2 = F (tj + τ, uj + τ(1− α)k1 + ταk2) = M−1(ft+τ − A(uj + τ(1− α)k1 + ταk2))

so

k1 = (M + Aτα)−1(ft+ατ − Auj)
k2 = (M + Aτα)−1(ft+τ − A(uj + τ(1− α)k1)) (36)

to get
uj+1 = uj + τb1k1 + τb2k2

See [4].

3 Numerical computation using NGsolve

In the next step, the discussed methods shall be put into numerical practise. The pro-
gramm NGsolve, which is a general purpose Finite Element Library on top of NetGen,
is complemented and used in all subsequent calculations.

3.1 PDE-File

Partial differential equations can be loaded with the usage of PDE files (*.pde), where all
the information that describes the problem is saved. The first two lines indicate the used
Ω (in our case R2), and will tell NGsolve which mesh, generated by NetGen, is used.
So we need a *.in2d file, representing the geometry, and a *.vol file created by NetGen.

geometry = example.in2d
mesh = example.vol

Next, we have to define coefficients that are used in the partial differential equation, like
the viscosity or the density. We want to set µ := −1.

define coefficient mu
-1,

For the boundary conditions we also have to define coefficients. Therefore we have to

3 NUMERICAL COMPUTATION USING NGSOLVE 20

differ between using Dirichlet-, Neumann- or Robin-conditions. Although all three can
be computed with NGsolve, we will just discuss Robin-conditions

∂u

∂n
− α(u− uD) = g

By variation of α we can now decide if we either want to have Dirichlet- or Neumann-
conditions. If α >> 1, then u will be pushed down to the value uD, and with α = 0
we will get Neumann conditions. To see this, we make an example for the diffusion
equation −∆u = f . We integrate by part over Ω to get the weak formulation, and use
the boundary condition∫

Ω

−∆uv =

∫
Ω

∇u∇v +

∫
∂Ω

∂u

∂n
v =

∫
Ω

fv

=

∫
Ω

∇u∇v +

∫
∂Ω

α(u− uD)v + gv =

∫
Ω

fv

=

∫
Ω

∇u∇v +

∫
∂Ω

αuv =

∫
Ω

fv +

∫
∂Ω

αuDv −
∫
∂Ω

gv. (37)

We now just have to define two coefficients ubound, and penalty. Penalty will indicate
where we want to have which boundary condition by setting α, and ubound will describe
the values for either g or uD. Lets say that ∂Ω = Γ1 ∪ Γ2, and we want to have

u = 300 on Γ1

∂u

∂n
= 0 on Γ2.

As α also acts on uD on the right side, we have to include this in the coefficients, so we
get

define coefficient penalty
1e8, 0,
define coefficient ubound
(1e8*300), 0,

For the right side of the partial differential equation we set a coefficient that describes
the function f, for example f := x2 + y2.

define coefficient rside
(x*x+y*y);

Next we will define a finite element space and a grid function that will illustrate our
solution. For the finit element space different options can be taken. We want to use an
H1 with basic functions φ ∈ P 2. Note that when the grid function is defined, the space
on which the grid function acts, has to be included.

define fespace v -type=h1ho -order=2

define gridfunction u -fespace=v

Finally we have to define our bilinear forms and linear forms. They are both defined

3 NUMERICAL COMPUTATION USING NGSOLVE 21

by the integrators that stand below the definitions in the PDE-file. NGsolve already
provides different integrators like a laplace integrator or a source integrator. By using
Robin penalties we also have to add some other integrals, as seen in (37). For the left side
an integrator called ”robin” is provided, and for the right side we will use the integrator
called ”neumann” for the boundary integral. Now we need our coefficients we defined
before, so that the integrators know where and with which coefficients they have to
calculate.

define bilinearform a -fespace=v
laplace mu
robin penalty

define linearform f -fespace=v
source rside
neumann ubound

For solving the equation we have to define a preconditioner, the bilinearform, and a
numerical procedure that is provided by NGsolve. We want to solve a bounday value
problem, so we use the numerical procudeure ”bvp” and set how many steps for the
approximation of the solution should be performed:

define preconditioner c -type=direct -bilinearform=a

numproc bvp np1 -bilinearform=a -linearform=f -gridfunction=u
-preconditioner=c -maxsteps=100

At the bottom of the file, some visualizations procedures will be called to visualize the
solutions in NGsolve, but those wont be discussed in this thesis. Now the file is complete
and can be loaded in NGsolve to solve the problem.

3.2 Creating new procedures and integrators

As not every integrator ore procedure is provided by NGsolve, there is a programming
interface, that can be used to integrate new code. To do so, a library can be loaded with
any C++ compiler, so all the variables and classes used by NGsolve can be worked
with. To use your own methods we have to add the following line at the top of the PDE
File.

shared = mynavstokelib

3.2.1 Integrators

A integrator will either calculate a boundary integral or a region integral. The proce-
dure we have to write, then has to compute the element matrix for each element of the

3 NUMERICAL COMPUTATION USING NGSOLVE 22

triangulation. We want to build a new integrator for a divergence term:∫
Ω

div(bu).

For that, we create two files, ”myconvection.hpp” and ”myconvection.cpp”. In the *.hpp
file we define, the class, variables and procedures we want to use.

1 namespace ngfem
2 {
3 // b u i l d a new c l a s s , de r i v ed from the Bi l in i earFormIn teg ra to r c l a s s
4 class MyConvectionIntegrator : public Bi l inearFormIntegra to r
5 {
6 //one c o e f f i c i e n t shou ld be used
7 Coe f f i c i en tFunc t i on ∗ co e f b ;
8

9 // the cons t ruc t o r o f the c l a s s w i l l g e t the c o e f f i c i e n t s
10 public :
11 MyConvectionIntegrator (const Array<Coe f f i c i en tFunc t i on∗> & c o e f f s)
12 : c o e f b (c o e f f s [0])
13 { ; }
14

15 //some v a r i a b l e s t h a t w i l l be used
16

17 virtual s t r i n g Name () const { return ”MyDrift” ; }
18 virtual int DimElement () const { return 2 ; }
19 virtual int DimSpace () const { return 2 ; }
20

21 // i t i s not a boundary i n t e g r a l (but a domain i n t e g r a l)
22 virtual bool BoundaryForm () const { return fa l se ; }
23

24 // procedure t ha t c a l c u l a t e s the element matrix
25 virtual void CalcElementMatrix (const FiniteElement & f e l ,
26 const ElementTransformation & e l t r an s ,
27 FlatMatrix<double> & elmat ,
28 LocalHeap & lh) const ;
29 } ;
30 }

In the *.cpp file we then program what should be done. For the finite element method
we now use the basic functions, and get the value of the integral by transforming it to
the reference element, so we have to include the Jacobian matrix. For the calculations
we have to see that (with a constant b)

div(bu)v = (
∂b1u

∂x
+
∂b2u

∂y
)v = (∇u, bv)R. (38)

1 #include <fem . hpp>
2 #include ”myconvection . hpp”
3

4 namespace ngfem
5 {
6

7 /∗
8 Ca l cu l a t e s the e lement matrix .
9

10 Input i s :

3 NUMERICAL COMPUTATION USING NGSOLVE 23

11 the f i n i t e e lement : f e l
12 the geometry o f the element : e l t r a n s
13

14 Output i s :
15 the e lement matrix : e lmat
16

17 E f f i c i e n t memorymanagement i s prov ided my locheap
18 ∗/
19

20 void MyConvectionIntegrator : : CalcElementMatrix
21 (const FiniteElement & ba s e f e l ,
22 const ElementTransformation & e l t r an s ,
23 FlatMatrix<double> & elmat ,
24 LocalHeap & lh) const
25 {
26 /∗
27 t e l l t he compi ler t h a t we are expec t i n g
28 to g e t an s c a l a r f e in 2D.
29 i f not , an excep t i on w i l l be r a i s ed
30 ∗/
31 const Sca larFin i teElement<2> & f e l =
32 dynamic cast<const Sca larFin i teElement<2> &> (b a s e f e l) ;
33

34 //number o f e lement b a s i s f unc t i on s :
35 int ndof = f e l . GetNDof () ;
36

37 elmat = 0 ;
38

39 Matrix<> dshape r e f (ndof , 2) ; // g rad i en t on re f e r ence element
40 Matrix<> dshape (ndof , 2) ; // g rad i en t on mapped element
41 Vector<> b co e f (2) ;
42 Vector<> s hape r e f (ndof) ; // shape on re f e r ence element
43

44 /∗
45 ge t i n t e g r a t i o n ru l e f o r e lement geometry ,
46 i n t e g r a t i o n order i s 2 t imes element order
47 ∗/
48 In t eg ra t i onRu l e i r (f e l . ElementType () , 2∗ f e l . Order ()) ;
49

50 // loop over i n t e g r a t i o n po in t s
51 for (int i = 0 ; i < i r . GetNIP () ; i++)
52 {
53 // c a l c u l a t e Jacob i matrix in the i n t e g r a t i o n po in t
54 MappedIntegrationPoint<2,2> mip(i r [i] , e l t r a n s) ;
55

56 // eva l ua t e the c o e f f i c i e n t b
57 c o e f b −> Evaluate (mip , b co e f) ;
58

59 // eva l ua t e the g rad i en t o f the ba s i c f unc t i on s
60 //on the r e f e r ence element
61 f e l . CalcDShape (i r [i] , d shape r e f) ;
62

63 // eva l ua t e the ba s i c f unc t i on s on the r e f e r ence element
64 f e l . CalcShape (i r [i] , s h ap e r e f) ;
65

66 // transform i t to the mapped element
67 dshape = dshape r e f ∗ mip . GetJacobianInverse () ;
68

3 NUMERICAL COMPUTATION USING NGSOLVE 24

69 // i n t e g r a t i o n weigh t and Jacob i determinant
70 double f a c = mip . IP () . Weight () ∗ mip . GetMeasure () ;
71

72 // e lmat { i , j } +=
73 // fac ∗ InnerProduct (s hape i ∗ b , grad shape j)
74

75 elmat += fac ∗ s hape r e f ∗ Trans (b co e f) ∗ Trans (dshape) ;
76 }
77 }
78 // r e g i s t e r the i n t e g r a t o r so i t can be used in NGsolve :
79 //name , dimension , c o e f f i c i e n t s
80 stat ic Reg i s t e rB i l i nea rFormInteg ra to r<MyConvectionIntegrator>
81 i n i t l a p (”myconvection” , 2 , 1) ;
82 }

Now the integrator is finished and can be used in the PDE file by using it for a bilinear-
form

define bilinearform a -fespace=v
myconvection b

3.2.2 Numerical procedures

Next, new numerical procedures are going to be implemented. As we have seen in Section
(3.1) a numerical procedure is called in the PDE file including all bilinear forms and
other objects that are used for the calculations. Therefore you have to set them in the
constructor of the new procedure.

1 #include <s o l v e . hpp>
2

3 using namespace ngso lve ;
4

5 // de f i n e a new procedure
6

7 class myNumProc : public NumProc
8 {
9 // de f i n e o b j e c t s t h a t are used

10 protected :
11 Bil inearForm ∗ bfa ;
12 LinearForm ∗ l f f ;
13 Precond i t i one r ∗ pre ;
14 GridFunction ∗ gfu ;
15 NumProc ∗ bvp ;
16 double stepend ;
17 . . .
18

19 public :
20

21 In s ta t i ona ryNav i e rS toke s (PDE & apde , const Flags & f l a g s)
22 : NumProc (apde)
23 {
24 // s e t the o b j e c t s by read ing the
25 // in format ion from the ∗ . pde f i l e
26 bfa = pde . GetBil inearForm
27 (f l a g s . GetStr ingFlag (” b i l i n e a r f o rma ” , ”a”)) ;

3 NUMERICAL COMPUTATION USING NGSOLVE 25

28 l f f = pde . GetLinearForm
29 (f l a g s . GetStr ingFlag (” l i n ea r f o rm ” , ” f ”)) ;
30 pre = pde . GetPrecondi t ioner
31 (f l a g s . GetStr ingFlag (” p r e c ond i t i on e r ” , ”c”)) ;
32 gfu = pde . GetGridFunction
33 (f l a g s . GetStr ingFlag (” g r i d f un c t i on ” , ”up”)) ;
34 bvp = pde . GetNumProc(”np1”) ;
35 stepend = f l a g s . GetNumFlag (” stepend ” , 1 0) ;
36 . . .
37

38 virtual void Do(LocalHeap & lh)
39 {
40

41 // s o l v e the problem us ing the o b j e c t s
42 }
43

44 // r e g i s t e r the numerical procedure so i t can be used in NGsolve :
45 stat ic RegisterNumProc<In s ta t i onaryNav i e rStokes> np in i t 1 (”myNumProc”) ;

So every new procedure, first sets the objects by reading the information of the PDE file,
and then does the programmed commands of the do-loop. The procedure can then be
used by

numproc myNumProc np1 -bilinearform=a -linearform=f
-preconditioner=c -gridfunction=up...

3.3 The Navier Stokes equations

3.3.1 Non-linear part

As we have seen in Section (3.1), the terms of a partial differential equation are set in the
PDE file by the integrators that stand below the definition. First we have to focus on
how to deal with the non-linear part (u · ∇)u of the stationary Navier Stokes equations

−ν∆u+ ρ(u · ∇)u+∇p = ρf

div(u) = 0

For that we want to use the so called Oseen iteration: given uk, find the next iterate
(uk+1, pk+1) by solving:

−ν∆uk+1 + ρ(uk · ∇)uk+1 +∇pk+1 = ρf

div(uk+1) = 0
.

Under the write conditions this iteration is uniquely solvable. As we have seen in section
(1.2) we can write the non-linear part as

ρ(uk · ∇)uk+1 = ρdiv

uk+1
1 uk

uk+1
2 uk


so we can use our own integrator ”myconvection” by using the solution of the last step
uk as vectorfield b. Now the nonlinear part can be solved, and only the Stokes equations
are left. See [10].

3 NUMERICAL COMPUTATION USING NGSOLVE 26

3.3.2 Stokes equations

For the Stokes equation we will use an integrator provided by NGsolve, an so called
BDB-integrator. To see this we start with the waek formulation (23) and add both lines
to get ∫

Ω

ν∇u∇v +

∫
Ω

div(v)p+

∫
Ω

div(u)q =

∫
Ω

fv ∀(v, q) ∈ [H1(Ω)]2 × L2(Ω).

Together with ∇u · ∇v = ∇ux∇vx +∇uy∇vy we get∫
Ω

ν∇ux∇vx +∇uy∇vy +

∫
Ω

(
∂v

∂x
+
∂v

∂y
)p+

∫
Ω

(
∂u

∂x
+
∂u

∂y
)q

or

∫
Ω



∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y

q



T

︸ ︷︷ ︸
=:B(v,q)T



ν 0 0 0 1

0 ν 0 0 0

0 0 ν 0 0

0 0 0 ν 1

1 0 0 1 0


︸ ︷︷ ︸

=:D



∂ux
∂x

∂ux
∂y

∂uy
∂x

∂uy
∂y

p


︸ ︷︷ ︸
=B(u,p)

=

∫
Ω

BTDB.

For the discretization B has to be calculated for every basic function φi for the velocity
components, and ψi for the pressure, on all elements. That will produce a matrix.

∂φ1,x
∂x

· · · ∂φnd u,x
∂x

∂φ1,x
∂y

· · · ∂φnd u,x
∂y

∂φ1,y
∂x

· · · ∂φnd u,y
∂x

∂φ1,y
∂y

· · · ∂φnd u,y
∂y

ψ1 ψnd p


where nd u and nd p are the dots of freedom. In the procedure of the stokes integrator
this is done by the code

1 . . .
2 //number o f do t s o f freedom fo r u and p
3 int nd u = f e l u . GetNDof () ;
4 int nd p = f e l p . GetNDof () ;
5

6 // crea t e a vec t o r wi th the wr i t e s i z e
7 FlatMatrixFixWidth<2> gradu (nd u , lh) ;
8

9 // trans format ion o f d e r i v a t i v e s from re f e r ence element to genera l e lement :
10 // e va l ua t e them at the mapped i n t e g r a t i o n po in t s and save them in grad
11 f e l u . CalcMappedDShape (mip , gradu) ;
12

13 // the shape f unc t i on s o f the pre s sure
14 FlatVector<> vecp (nd p , lh) ;
15 f e l p . CalcShape (mip . IP () , vecp) ;
16

17 //mat i s the matrix where the va l u e s shou ld be saved

3 NUMERICAL COMPUTATION USING NGSOLVE 27

18 mat = 0 ;
19

20 // the f i r s t nd u shape f unc t i on s be long to u x ,
21 // the next nd u be long to u y :
22 mat .Rows (0 , 2) . Cols (c f e l . GetRange (0)) = Trans (gradu) ;
23 mat .Rows (2 , 4) . Cols (c f e l . GetRange (1)) = Trans (gradu) ;
24

25 //and f i n a l l y nd p shape f unc t i on s f o r the pre s sure :
26 mat .Row(4) . Range (c f e l . GetRange (2)) = vecp ;
27 }
28 } ;
29 . . .

3.3.3 PDE file for the Navier Stokes equations

As everything is now provided we can create the PDE file with the bilinear forms for the
Navier Stokes equations. First we will define a finite element space called ”stokes” that
provides spaces P k for the components of the velocity and a space P k−1 for the pressure
as mentioned in section (2.1.4), so the product space Vh := P k × P k × P k−1.

define fespace v -stokes -order=2

As we will need the solution of the velocity, in our case called ”up”, for the integrator
”myconvection” we have to set this in the PDE file by adding the flag ”-addcoef”. For
the iteration we also have to set start values.

define gridfunction up -fespace=v -addcoef
define coefficient ux
0,
define coefficient uy
0,
numproc setvalues npsv1 -gridfunction=up.1 -coefficient=ux
numproc setvalues npsv2 -gridfunction=up.2 -coefficient=uy
define coefficient b
(up.1,up.2),

By defining the coefficient ”b” including the components of the velocity, we are now
able to use it for an integrator. We define the bilinear forms including the parts for the
boundary conditions, and as we have a combined finite element space we also have to tell
the integrators on which component they act. The mass integrator for the pressure is
included with a very small coefficient ”reg” to help inverting the matrices as we do not
use pivoting

define bilinearform a -fespace=v
stokes nu
mass reg -comp=3
myconvection b -comp=1
myconvection b -comp=2
robin penalty -comp=1

3 NUMERICAL COMPUTATION USING NGSOLVE 28

robin penalty -comp=2

define bilinearform m -fespace=v
mass rho -comp=1
mass rho -comp=2

The bilinear form m is used for the time discretization. Finally the linearform and a
direct preconditioner, with the inverting method ”pardiso”, are defined

define linearform f -fespace=v
neumann ubound -comp=1
neumann ubound2 -comp=2

define preconditioner c -type=direct -bilinearform=a -inverse=pardiso

Now we have to decide what we want to solve, and as we do not have a standard problem,
we have to write our own procedures.

3.3.4 Procedure for the stationary Navier Stokes equations

We want to write a new procedure ”statNavStoke” to include the iteration for the sta-
tionary Navier Stokes equations. To do so we first set a boundary value problem ”bvp” in
the PDE file that solves the equation with the start values (discussed in Section (3.3.3)).
Our new procedure then gets the bilinear form ”a”, the preconditioner ”c” the boundary
value problem ”bvp” and the number of steps ”stepend” for the iteration. The do-loop
then computes the method

1 virtual void Do(LocalHeap & lh)
2 {
3 for (double n=1;n<stepend ; n++)
4 {
5 // reassemb le the matrix A
6 bfa−>ReAssemble (lh) ;
7 // update the p r econd i t i one r
8 pre−>Update () ;
9 // s o l v e the problem again wi th the updated c o e f f i c i e n t s

10 bvp−>Do(lh) ;
11 // t e l l NGsolve to redraw the s o l u t i o n
12 Ng Redraw () ;
13 }
14 }

Now the procedure can be used, so we add the following in our PDE file

numproc bvp np1 -bilinearform=a -linearform=f -gridfunction=up
-preconditioner=c -maxsteps=100

numproc statNavStoke np2 -bilinearform=a -linearform=f
-gridfunction=up -preconditioner=c -stepend=15

3 NUMERICAL COMPUTATION USING NGSOLVE 29

3.3.5 Procedure for the in stationary Navier Stokes equations

As we have seen, we need an iteration for the non-linear part, therefore we have to be
careful when using a time discretization. We start with the equation (32)

M
uj+1 − uj

τ
+ A(uj+1) = fj+1

with A(uj+1) := Auj+1
uj+1. The matrix Auj+1

represents the solution of the iteration
with u0

j , so the solution of the last time-step, as starting value. Using the implicit Euler
method we get

Muk+1
j+1 + τAukj+1

uk+1
j+1 = τfj+1 +Mu0

j

or
uk+1
j+1 = (M + τAukj+1

)−1(τfj+1 +Mu0
j) for k = 0, . . . , kmax,

and set the solution of the time-step uj+1 = ukmaxj+1 . To include this method we make a
new numerical procedure ”instatNavStoke”. The procedure should use the bilinear form
”a” for the stationary problem, bilinear form ”m” for the mass matrix, the time interval
”dt” , the end time ”tend”, and the number of steps ”stepend” that should be used for
the iteration. The time discretization then again is implemented in the do-loop of the
procedure including the vectors

d(uj) := (τfj+1 +Muj)

w := (M + τAukj+1
)−1.

Also we assume that the right side f is stationary, so we do not have to update this
vector.

1 . . .
2 virtual void Do(LocalHeap & lh)
3 {
4 // b i l i n ea r f o rm a
5 BaseMatrix & mata = bfa−>GetMatrix () ;
6 // b i l i n ea r f o rm m
7 const BaseMatrix & matm = bfm−>GetMatrix () ;
8 // l inear form f
9 BaseVector & vec f = l f f −>GetVector () ;

10 // the s o l u t i o n u
11 BaseVector & vecu = gfu−>GetVector () ;
12

13 // c r ea t e s a matrix o f same type :
14 BaseMatrix & summat = ∗matm. CreateMatrix () ;
15

16 // crea t e a d d i t i o n a l v e c t o r s and matr ices :
17 BaseVector & d = ∗vecu . CreateVector () ;
18 BaseVector & w = ∗vecu . CreateVector () ;
19

20 BaseMatrix & invmat = ∗ summat . InverseMatr ix
21 (gfu−>GetFESpace () . GetFreeDofs ()) ;
22

23 // s e t the type o f the in v e r s i on
24 summat . SetInverseType (PARDISO) ;
25

26 for (double t=0; t <= tend ; t+=dt)
27 {

3 NUMERICAL COMPUTATION USING NGSOLVE 30

28 // next time s t ep
29 // use o ld s o l u t i o n f o r s t a r t va lue o f i t e r a t i o n
30 d = dt∗ vec f+matm∗vecu ;
31

32 for (double n=1;n<=stepend ; n++)
33 {
34 // s t ep o f i t e r a t i o n
35 bfa−>ReAssemble (lh) ;
36 summat . AsVector () = matm. AsVector () +
37 dt∗ bfa−>GetMatrix () . AsVector () ;
38 BaseMatrix & invmat = ∗ summat . InverseMatr ix
39 (gfu−>GetFESpace () . GetFreeDofs ()) ;
40 w=invmat∗d ;
41 // s e t new s o l u t i o n
42 vecu=w;
43 delete & invmat ;
44 }
45 // t e l l NGsolve to redraw the s o l u t i o n
46 Ng Redraw () ;
47 }
48 }
49 . . .

Now we can use the procedure, so we add the following in the PDE file for solving the
in stationary Navier Stokes equations with τ = 0.01, T = 10, kmax = 5, and using the
implicit Euler method.

numproc instatNavStoke np2 -bilinearform=a -bilinearform=m
-linearform=f -gridfunction=up -preconditioner=c
-stepend=5 - tend=10 -dt=0.01 -method=IE

When we want to use the DIRK method, we have to make two iterations, one for k1 and
one for k2. We start with the iteration for k1, which can be seen as an implicit Euler
method with step size τα. Looking at (36) and using s for the iteration index we get

ks+1
1 = (M + Ausj+ατα)−1(fj+α − Ausj+αu

0
j)

us+1
j+α = u0

j + ταks+1
1 .

with starting value u0
j , and set uj+α = usmaxj+α . For the second iteration we now use

k1 = ksmax1 to get

ks+1
2 = (M + Ausj+1

τα)−1(fj+1 − Ausj+1
(u0

j + τ(1− α)k1)

us+1
j+1 = u0

j + τ b1︸︷︷︸
=1−α

k1 + τ b2︸︷︷︸
α

ks+1
2 .

1 . . .
2 double alpha = 1− s q r t (0 . 5) ;
3 cout<<alpha<<endl ;
4 for (double t=0; t <= tend ; t+=dt)
5 {
6 //k1
7 v=vecu ; // s t a r t va lue u { j }
8 for (double n=1;n<=stepend ; n++)
9 {

3 NUMERICAL COMPUTATION USING NGSOLVE 31

10 bfa−>ReAssemble (lh) ;
11 summat . AsVector () = matm. AsVector () +
12 dt∗ alpha ∗ bfa−>GetMatrix () . AsVector () ;
13 BaseMatrix & invmat = ∗ summat . InverseMatr ix
14 (gfu−>GetFESpace () . GetFreeDofs ()) ;
15 r=vecf−bfa−>GetMatrix ()∗ v ;
16 k1=invmat∗ r ;
17 vecu=v+dt∗ alpha ∗k1 ;
18 delete & invmat ;
19 }
20 //k2
21 v += dt∗(1−alpha)∗ k1 ;
22 for (double n=1;n<=stepend ; n++)
23 {
24 bfa−>ReAssemble (lh) ;
25 summat . AsVector () = matm. AsVector () +
26 dt∗ alpha ∗ bfa−>GetMatrix () . AsVector () ;
27 BaseMatrix & invmat = ∗ summat . InverseMatr ix
28 (gfu−>GetFESpace () . GetFreeDofs ()) ;
29 r=vecf−bfa−>GetMatrix ()∗ v ;
30 k2=invmat∗ r ;
31 vecu=v+dt∗ alpha ∗k2 ;
32 delete & invmat ;
33 }
34 Ng Redraw () ;
35 }
36 . . .

And include the same as before, but change the method

numproc instatNavStoke np2 -bilinearform=a -bilinearform=m
-linearform=f -gridfunction=up -preconditioner=c
-stepend=5 - tend=10 -dt=0.01 -method=DIRK

3.4 Natural convection

As discussed in Section (1.3) the natural convection problem is a coupled problem of the
Navier Stokes equations and the convection diffusion equation for the temperature. The
idea is to first compute the velocity to use it in the next step to update the temperature,
make a time step and start the cycle again.

3.4.1 PDE file for the natural convection

To realize this coupling we have to be able to use the temperature as a coefficient on
the right side of the Navier Stokes equations. We start with the PDE file of the Navier
Stokes equations and first add a new finite element space and a grid function for the
temperature with a start value ”TI”.

define fespace vt -type=h1ho -order=2
define gridfunction T -fespace=vt -addcoef

3 NUMERICAL COMPUTATION USING NGSOLVE 32

numproc setvalues stemp -gridfunction=T -coefficient=TI

Now we can use ”T” and ”up” as coefficients, so we add a new bilinear form ”B” and a
linear form ”g” for the temperature, and a linearform ”f” for the Navier Stokes equations.
Also a bilinear form ”m2” for the mass matrix of the temperature is created, beacuase
we will need it for the time discretization.

...
define coefficient uboundnav
(-9.81*(1-beta*(T-T0))),
...

define bilinearform B -fespace=vt
laplace lam
myconvection b
robin penalty

define bilinearform m2 -fespace=vt
mass rho

define linearform f -fespace=v
neumann ubound2 -comp=1
neumann ubound2 -comp=2
source uboundnav -comp=2

define linearform g -fespace=vt
source temp coef
neumann ubound

The coefficients for the integrators have to be defined as described in the problem.

3.4.2 Procedure for the coupled problem

To solve the coupled problem, we write a new numerical procedure ”NatConv”. For both
steps we want to use the implicit Euler method, so in the do-loop we first make a step
for the velocity, including the iteration, and then a step for the temperature, were we use
the normal implicit Euler method as discussed in section (2.3.1).

1 virtual void Do(LocalHeap & lh)
2 {
3 for (double t=0; t <= tend ; t+=dt)
4 {
5 // assemble l e f t s i d e o f the NVS with new temperature
6 l f f −>Assemble (lh) ;
7 // time s t ep f o r NVS
8 d = dt ∗(l f f −>GetVector ())+matm∗vecu ;
9 for (double n=1;n<=stepend ; n++)

10 {
11 bfa−>ReAssemble (lh) ;

4 EXAMPLES 33

12 summat . AsVector () = matm. AsVector () +
13 dt∗ bfa−>GetMatrix () . AsVector () ;
14 BaseMatrix & invmat = ∗ summat . InverseMatr ix
15 (gfu−>GetFESpace () . GetFreeDofs ()) ;
16 w=invmat∗d ;
17 vecu=w;
18 delete & invmat ;
19 }
20

21 // time s t ep temperature
22 bfb−>ReAssemble (lh) ;
23 summat2 . AsVector () = (1 . 0/ dt) ∗ matm2 . AsVector () +
24 matb . AsVector () ;
25 BaseMatrix & invmat2 = ∗ summat2 . InverseMatr ix
26 (g f t−>GetFESpace () . GetFreeDofs ()) ;
27 d2 = vecg − matb ∗ vect ;
28 w2 = invmat2 ∗ d2 ;
29 vect += w2 ;
30 delete & invmat2 ;
31 Ng Redraw () ;
32 }
33 }

To include the method, we add the following in the PDE file

numproc NatConv np1 -bilinearforma=a -bilinearformm=m
-bilinearformb=B -bilinearformm2=m2 -linearformf=f
-linearformg=g -gridfunctionu=up -grudfunctiont=T
-preconditioner=c -stepend=5 -tend=10 -dt=0.01

4 Examples

4.1 Laminar flow around a cylinder

The first example is a benchmark computation of a laminar flow around a cylinder given
by [8]. We want to use the given geometry and coefficients, and compare the results with
different polynomial degrees k.

4.1.1 Fluid properties

For the examples the fluid properties will all be the same

ρ
∂u

∂t
− ν∆u+ ρ(u · ∇)u+∇p = 0

div(u) = 0
(39)

with the density ρ = 1.0 kg/m3 and the kinematic viscosity ν = 10−3 m2/s.

4.1.2 Geometry

The geometry is given in Figure (3), with H = 0.41 as the height and D = 0.1 as the
diameter of the circle. We would like to have the following boundary conditions for the

4 EXAMPLES 34

Figure 3: Geometry and mesh for the laminar flow test case

Navier Stokes equations

u = (0, 0)T on Γ1 ∪ Γ2 × [0, T]

u = uD on Γ3 × [0, T]

with uD as the inflow value, and Γ4 as the outflow boundary. We save the geometry in the
file ”rechole.in2d”, generate a mesh with NetGen, and save it in the file ”rechole.vol”.

4.1.3 Computed values

To compare the results we compute the drag and the lift coefficients. Therefore we first
need the drag and lift forces

FD =

∫
Γ2

(ν
∂ut
∂n

ny − pnx) ds FL = −
∫

Γ2

(ν
∂ut
∂n

nx + pny) ds (40)

with ut as the scalar tangential velocity on Γ2, and n as the normal vector on Γ2. The
coefficients then are given by

cD =
2FD
ρu2D

cD =
2FL
ρu2D

with

u(t) :=
2uD(0, H/2, t)

3
.

4 EXAMPLES 35

To compute the forces we look back at the weak formulation of the Stokes equations, as
the non-linear convection term won’t take effect on Γ2, and include the terms that occur
by using Robin penalties∫

Ω

ν∇u∇v +

∫
Ω

div(v)p+ α

∫
∂Ω

νuv = α

∫
∂Ω

νuDv∫
Ω

div(u)q = 0.

Now we integrate back in the first line, to get the strong formulation∫
Ω

−ν∆u∇v −
∫
∂Ω

ν(∇u · n)v −
∫

Ω

∇pv +

∫
∂Ω

p(v · n) = α

∫
∂Ω

νuv + α

∫
∂Ω

νuDv.

So the Stokes equations ∫
Ω

−ν∆u∇v −
∫

Ω

∇pv = 0

and

α

∫
∂Ω

νuv + α

∫
∂Ω

νuDv =

∫
∂Ω

ν(∇u · n)v −
∫
∂Ω

p(v · n).

The right side is the sum of our forces FD and FL. To see this, consider that we can write
u = (uτ , un) or u = uT + uN with uT = τ(u · τ) and uT = n(u · n), so we get∫

∂Ω

ν(∇u · n)v −
∫
∂Ω

p(v · n) =

∫
∂Ω

ν
∂u

∂n
v −

∫
∂Ω

p(v · n) =

=

∫
∂Ω

ν

(
∂uT
∂n

+
∂uN
∂n

)
v −

∫
∂Ω

p(v · n).

We now look at the continuity equation that can be written as

div(u) =
∂uτ
∂τ

+
∂un
∂n

= 0,

and as uτ = 0 on Γ2 also

∂uτ
∂τ

= 0,

and we get

∂un
∂n

= 0 and
∂uN
∂n

= (0, 0)T .

For the right side we now have∫
∂Ω

ν

(
∂uT
∂n

+
∂uN
∂n

)
v −

∫
∂Ω

p(v · n) =

∫
∂Ω

ν
∂uT
∂n

v −
∫
∂Ω

p(v · n)

=

∫
∂Ω

ν
∂uτ
∂n

τv −
∫
∂Ω

p(v · n),

4 EXAMPLES 36

and together with τ = (ny,−nx)T , and just considering Γ2 with uD = (0, 0), we finally
get

α

∫
Γ2

νuv =

∫
Γ2

ν
∂uτ
∂n

τv −
∫

Γ2

p(v · n) =

=

∫
Γ2

(ν
∂ut
∂n

ny − pnx)−
∫

Γ2

(ν
∂ut
∂n

nx + pny) = FD + FL.

To compute the values we just have to add two linear forms with the write value α so
only Γ2 is included

fD(v) :=

∫
∂Ω

ανv1 and fL(v) :=

∫
∂Ω

ανv2.

In the PDE file we define the coefficient ”force”

define coefficient force
0, 1e10, 0, 0,

define linearform fD -fespace=v
neumann force -comp=1

define linearform fL -fespace=v
neumann force -comp=2

To get the valus for FD and FL, we then only have to add the following lines in our
numerical procedures

1 . . .
2 double FL,FD;
3 . . .
4 l fFL = pde . GetLinearForm (f l a g s . GetStr ingFlag (” forceFL” , ” fL”)) ;
5 lfFD = pde . GetLinearForm (f l a g s . GetStr ingFlag (” forceFD” , ”fD”)) ;
6 . . .
7 BaseVector & vecFL = lfFL−>GetVector () ;
8 BaseVector & vecFD = lfFD−>GetVector () ;
9 . . .

10 FC=InnerProduct (vecFL , vecu) ;
11 FD=InnerProduct (vecFD , vecu) ;
12 . . .

4.1.4 Test case 1 - stationary

The first test case will be a stationary problem. The inflow condition is time independent
and set as

uD(x, y, t) =

(
4umy(H − y)

H2
, 0

)T
with um = 0.3 m/s. For the computation we want to set the polynomial degree k = 5
and use different numbers of iterations stepend. We set the coefficient ”ubound” as

define coefficient ubound
0, 0, (1e10*4*0.3*y*(0.41-y)/0.1681),0

4 EXAMPLES 37

including α = 1010, and start the numerical procedure including the linear forms for the
forces

numproc statNavStoke np2 -bilinearform=a -linearform=f
-gridfunction=up -preconditioner=c -forceFD=fD
-forceFL=fL -stepend=15

For the two coefficients we compare the results (Table (3)) with the values we get using
stepend = 15

cDref = 5.50607 and cLref = 0.00984321.

stepend cD cL cD − cDref cL − cLref
1 3.093900 0.029417 2.412170 -0.019573

2 5.493330 0.158336 0.012740 -0.148493

3 5.475900 0.022907 0.030170 -0.013064

4 5.499830 0.015446 0.006240 -0.005603

5 5.510060 0.011283 -0.003990 -0.001440

6 5.508480 0.010180 -0.002410 -0.000337

7 5.507010 0.009736 -0.000940 0.000107

8 5.506360 0.009832 -0.000290 0.000011

9 5.506150 0.009859 -0.000080 -0.000016

10 5.506090 0.009838 -0.000020 0.000005

11 5.506080 0.009841 -0.000010 0.000002

12 5.506080 0.009844 -0.000010 -0.000001

13 5.506070 0.009843 0.000000 0.000000

14 5.506070 0.009843 0.000000 0.000000

Table 3: Drag and lift coefficient for stepend = 1 . . . 15

It can be seen, that the solution converges by increasing the numbers of iterations. The
stationary solution of the velocity and the pressure can be seen in Figure (4).

4.1.5 Test case 2 - unsteady

Next we want to look at an non-stationary problem. The inflow condition will still be
time independent and is set as

uD(x, y, t) =

(
4umy(H − y)

H2
, 0

)T

4 EXAMPLES 38

Figure 4: Stationary solution of the velocity and pressure with k = 15 and stepend = 15

with um = 1.5 m/s. So we set the coefficient ”ubound” as

define coefficient ubound
0, 0, (1e10*4*1.5*y*(0.41-y)/0.1681),0

To compare the results the number of iterations is set on stepend = 5 and the end time
is tend = 10. We will then change the number of the polynomial degree k and compare
the results of cD and cL. For the time discretization we now have two options. We can
either use the implicit Euler method or the DIRK method. For the first one, we choose
the time step dt = 0.005, and for the second one dt = 0.01. Although we use the doubled
time step, the DIRK method delivers better results, as it is a second order method. We
then call our numerical procedures by either

numproc instatNavStoke np2 -bilinearform=a -bilinearform=m
-linearform=f -gridfunction=up -preconditioner=c
-stepend=5 -tend=10 -dt=0.005 -forceFD=fD -forceFL=fL
-method=IE

or

numproc instatNavStoke np2 -bilinearform=a -bilinearform=m
-linearform=f -gridfunction=up -preconditioner=c
-stepend=5 -tend=10 -dt=0.01 -forceFD=fD -forceFL=fL
-method=DIRK

In Figure (5) it can be seen, that it takes some time until the coefficients and the solution
converges. Therefore we use the maximum values of cD and cL in one period after
convergence is given. The results then are compared in Table (4) with the reference

4 EXAMPLES 39

values given by the simulation using the DIRK method and k = 5.

cDref = 3.187430 and cLref = 0.969043.

As mentioned before, it can be seen, that even with k = 5 the implicit Euler method is

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

CD

CL

Figure 5: Drag coefficient cD and lift coefficient cL for k = 5 and using the DIRK method

k cDmax cLmax cDmax − cDref cLmax − cLref method

2 3.140990 0.986291 0.046440 -0.017248 DIRK

2 3.001940 0.619345 0.185490 0.349698 IE

3 3.223330 1.050610 -0.035900 -0.081567 DIRK

3 3.047500 0.508779 0.139930 0.460264 IE

4 3.184110 0.967735 0.003320 0.001308 DIRK

4 3.039130 0.524872 0.148300 0.444171 IE

5 3.041150 0.517827 0.146280 0.451216 IE

Table 4: Drag coefficient, lift coefficient and error for k = 1 . . . 5

not as good as using the DIRK method with only k = 2. In Figure (6) and (7) a snapshot
at t = 5s was taken.

4 EXAMPLES 40

Figure 6: Absolute value of the velocity and value of pressure, k = 5, t = 5 s, stepend =
5, dt = 0.01

Figure 7: Absolute value and direction of the velocity near the cylinder, k = 5, t =
5 s, stepend = 5, dt = 0.01

4 EXAMPLES 41

4.2 Rayleigh-Benard convection

The Rayleigh-Benard convection, is a natural convection that occurs in a horizontal layer
of fluid that is heated from below, in which the fluid develops regular convection cells.
We want to take the geometry and coefficients used in tutorial 10 in [5], and compare the
results.

4.2.1 Fluid and heat properties

For the fluid and the temperature we use the equations discussed in (1.3)

∂u

∂t
− ν

ρ0

∆u+ (u · ∇)u+
∇p
ρ0

= g(1− β(T − T0))

div(u) = 0

and
∂T

∂t
− λ∆T + div(uT) = 0.

with the following coefficients

parameter variable value

reference density ρ0 998.3 kg/m3

viscosity ν 1040e−6 Ns/m2

heat capacity C 4183 J/(kgK)

heat conductivity κ 0.58 W/(mK)

heat expansion coefficient β 2.07e−4 K−1

reference temperature T0 293 K

So we set the coefficients in the PDE file as

ν

ρ0

= 1.04177e−6 and λ =
κ

Cρ
= 1.3889e−7

by

define coefficient nu
(1.04177*1e-6),
define coefficient lam
(1.3889*1e-7),
define coefficient beta
(2.08*1e-4),
define coefficient T0
293,

Note that the solution of the pressure p will be scaled by ρ0.

4 EXAMPLES 42

Figure 8: Geometry and mesh of the natural convection test case

4.2.2 Geometry

The geometry is given by figure (8), and the boundary conditions are set as

u = (0, 0)T on Γ1 ∪ Γ2 ∪ Γ3 × [0, T]

T = 293.5 K on Γ1 × [0, T]

T = 293 K on Γ3 × [0, T]

We use NetGen to create a mesh and save it as ”rec.in2d” and ”rec.vol”. For the
boundary conditions the coefficients ”penalty” and ”ubound” are set for the temperature,
and ”penalty2” and ”ubound2” are set for the velocity.

define coefficient penalty
1e10, 0, 1e10

define coefficient penalty2
1e10,1e10,1e10,

define coefficient ubound
(1e10*293.5), 0, (1e10*293)

define coefficient ubound2
0,0,0,

4 EXAMPLES 43

4.2.3 Solution

Before we can use our procedure for the natural convection problem, we first have to
define the coefficient ”uboundnav”(see (3.4.1)). In the definition of the linear form for
the Navier Stokes equations in the PDE file, we see that the source integrator just acts
on the second component, as the gravity force only acts from top to bottom. So we just
have to add

define coefficient uboundnav
(-9.81*(1-beta*(T-T0))),

As there are two stationary solutions, we will start the simulation with a small numerical
noise, like giving a little push to a pendulum that stands on top to bring it to the
stationary solution at the bottom. When looked at the solution provided by [5], we see
that there should occur 7 convections cells. The numerical noise is a sine wave with a
small amplitude set with the numerical procedure ”setvalues”. Consider that the start
value is not in conflict with the boundary conditions.

define coefficient TI
(293.5-50*y+y*(0.01-y)*0.1*1e4*sin(20/0.06*x*pi)),

numproc setvalues stemp -gridfunction=T -coefficient=TI

As the temperature is not linear our solution already shows convections cells at t = 0.
When time passes, it can be seen that some of the convection cells combine together and
finally end up in the stationary solution, see figure (9)(10) and (11).

Figure 9: Velocity and temperature at t = 0 s

4 EXAMPLES 44

Figure 10: Velocity and temperature at t = 100 s

Figure 11: Velocity and temperature at t = 500 s

REFERENCES 45

References

[1] Dietrich Braess. Finite Elemente. Springer, New York, 2000.

[2] Alexandre J. Chorin and Jerrold E. Marsden. A Mathematical Introduction to Fluid
Mechanics. Springer, New York, 1992.

[3] Jean Donea and Antonio Huerta. Fenite Element Methods for Flow Problems. Wiley,
2003.

[4] Gerhard Wanner Ernst Hairer, Syvert P. Norsett. Solving Ordinary Differential
Equations I. Springer, 1993.

[5] CSC IT Center for Science. Elmer tutorials.

[6] Michel Fortin Franco Brezzi. Mixed and Hybrid Finite Element Methods. Springer,
New York, 1991.

[7] Univ.-Prof. Dr. Ansgar Jüngel. Partielle Differentialgleichungen. 2013.

[8] S. Turek M. Schäfer. Benchmark computations of laminar flow around a cylinder.

[9] Prof. Dr. Joachim Schöberl. Elementare Numerische Methoden für partielle Differ-
entialgleichungen. 2009.

[10] Prof. Dr. Joachim Schöberl. Numerical Methods for Partial Differential Equations.
2009.

